
Isla: Integrating Full-Scale ISA Semantics
and Axiomatic Concurrency Models

Alasdair Armstrong1(B), Brian Campbell2, Ben Simner1, Christopher Pulte1,
and Peter Sewell1

1 University of Cambridge, Cambridge, UK
alasdair.armstrong@cl.cam.ac.uk

2 University of Edinburgh, Edinburgh, UK

Abstract. Architecture specifications such as Armv8-A and RISC-V
are the ultimate foundation for software verification and the correct-
ness criteria for hardware verification. They should define the allowed
sequential and relaxed-memory concurrency behaviour of programs, but
hitherto there has been no integration of full-scale instruction-set archi-
tecture (ISA) semantics with axiomatic concurrency models, either in
mathematics or in tools. These ISA semantics can be surprisingly large
and intricate, e.g. 100k+ lines for Armv8-A.

In this paper we present a tool, Isla, for computing the allowed
behaviours of concurrent litmus tests with respect to full-scale ISA def-
initions, in Sail, and arbitrary axiomatic relaxed-memory concurrency
models, in the Cat language. It is based on a generic symbolic engine
for Sail ISA specifications, which should be valuable also for other veri-
fication tasks. We equip the tool with a web interface to make it widely
accessible, and illustrate and evaluate it for Armv8-A and RISC-V.

By using full-scale and authoritative ISA semantics, this lets one eval-
uate litmus tests using arbitrary user instructions with high confidence.
Moreover, because these ISA specifications give detailed and validated
definitions of the sequential aspects of systems functionality, as used by
hypervisors and operating systems, e.g. instruction fetch, exceptions, and
address translation, our tool provides a basis for developing concurrency
semantics for these. We demonstrate this for the Armv8-A instruction-
fetch model and self-modifying code examples of Simner et al.

1 Introduction

A processor architecture should define, for any initial machine state, the set
of all architecturally allowed observable executions—thus specifying the basic
assumptions for programming and for software verification, and the correct-
ness criterion for hardware verification. Architecture specifications have two
main parts: the sequential and relaxed-memory concurrent aspects of instruc-
tion behaviour, each of which have been studied in previous work. For Armv8-
A and RISC-V, Armstrong et al. have established full-scale sequential mod-
els in Sail [10,15], a domain-specific language for instruction-set architecture

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 303–316, 2021.
https://doi.org/10.1007/978-3-030-81685-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-81685-8_14

304 A. Armstrong et al.

(ISA) specification, that are complete enough to boot real-world operating sys-
tems such as Linux. For Armv8-A this model is automatically derived from
the authoritative Arm-internal specification [24], while for RISC-V it has been
hand-written and adopted by RISC-V International. On the concurrency side,
relaxed-memory semantics can be specified in two main styles: either as abstract-
microarchitectural operational models, characterising observable behaviour with
explicit out-of-order execution and buffering, or as axiomatic models, expressed
as a predicate over complete candidate executions represented as graphs of mem-
ory events. For Armv8-A and RISC-V “user” concurrency, both exist [1,7,8,22],
along with a “Promising ARM” variant [23]. For Armv8-A they have been proved
equivalent [21,22]; the authoritative vendor definition is the axiomatic one.

However, while an architecture should define the set of allowed executions for
arbitrary programs, hitherto there has been no integration of full-scale ISA defi-
nitions with axiomatic concurrency models, either in mathematics or in tools (for
operational models, this has only been done for RISC-V; other operational mod-
els have used small ISA fragments). Research and industry practice for relaxed
memory semantics rely on making the semantics executable as a test oracle:
not just a paper definition (in prose or mathematics), but tool-supported def-
initions that for small litmus-test examples can compute the set of all allowed
executions, that can then be compared against experimental data. Many tools
have been developed for operational and axiomatic architectural concurrency
models [4,6,8,12,14,17–20,25,26,28–32], with axiomatic tools notably includ-
ing the Herd tool of Alglave and Maranget [4,6,8], that can evaluate litmus
tests w.r.t. axiomatic memory models specified in a relational-algebra style in
the Cat language [2]. However, all of these previous tools for axiomatic models
have (at best) used hard-coded ISA semantics that cover only small fragments
of the complete architecture. For example, Zhang et al. [32] use a SMT solver
based approach for SoC verification, with a user-specified memory model (TSO
or SC), however the instruction level abstractions (ILAs) they use are much more
abstract than the ISA semantics we consider.

In this paper we describe a tool, Isla, that integrates full-scale ISA spec-
ifications, in Sail, with arbitrary axiomatic models, in the Cat language. We
first build a generic symbolic execution library for Sail specifications—which
should also be valuable for other verification tasks. We use this to construct a
tool for symbolically running binary litmus tests for any Sail ISA under any
(non-recursive) Cat axiomatic memory model, using an SMT solver. We equip
it with a web interface to make it widely accessible, and illustrate and evaluate
all this for Armv8-A and RISC-V. Isla is available at https://isla-axiomatic.cl.
cam.ac.uk and https://github.com/rems-project/isla. An extended version of the
paper [11], available at https://www.cl.cam.ac.uk/~pes20/isla/, includes appen-
dices showing the main parts of the full Sail/ASL semantics of a sample Armv8-A
instruction (add x4, x3, #1); the Armv8-A axiomatic concurrency model (com-
bining the official Arm specification for user concurrency [9,13] with the addi-
tions for instruction fetch semantics by Simner et al. [27]); and examples of the
latter.

https://isla-axiomatic.cl.cam.ac.uk
https://isla-axiomatic.cl.cam.ac.uk
https://github.com/rems-project/isla
https://www.cl.cam.ac.uk/~pes20/isla/

Isla: Integrating Full-Scale ISA Semantics 305

Our approach has several key advantages, which all follow from the fact that
mainstream industry ISAs are surprisingly large and intricate. The Armv8-A ISA
specification is around 100k lines. It defines the sequential behaviour of the full
instruction set in all its detail, including e.g. instruction decoding, behaviour at
each exception level, register banking, floating-point, vector instructions, system
registers, exceptions, address translation, virtualisation, security extensions, and
a host of optional architectural features. Simple litmus tests developed to investi-
gate user concurrency have historically used only very few instructions and very
little of this, and hand-written ISA models have sufficed, but even a ‘simple’
ADD instruction can, in reality, involve surprisingly much of the specification. If
one wants to examine arbitrary compiler-generated code one needs many more
instructions; and to develop systems concurrency semantics, e.g. covering the
concurrency behaviour of instruction fetch, exceptions, or address translation,
one might need any of the specification—and it would be exceedingly laborious
and error-prone to reproduce it by hand in a hard-coded semantics. By handling
the full authoritative Armv8-A ISA, we automatically support litmus tests that
use arbitrary instructions, and we enable research on systems concurrency, with
high confidence that the ISA follows the vendor specification. We demonstrate
this by applying our tool to the model and examples for self-modifying code by
Simner et al. [27], and our integration has also identified several places where the
ISA specification needs modifications to correctly give the intended behaviour in
a concurrent setting, e.g. to remove or enforce additional ordering. Because this
is based on authoritative Arm and RISC-V ISA specifications, the work should
enable relaxed-memory behaviour to be included in the standard test-edit-debug
cycle used in the development of such large and critical specifications.

2 Implementation

Axiomatic relaxed-memory concurrency models, being expressed as logical con-
straints over candidate execution graphs, lend themselves to solver-based tool
implementations. For the instruction-semantics part of such a tool, the most
direct approach would be to translate the ISA semantics (for the instructions that
occur in a litmus test) directly into SMT and combine that with the axiomatic-
model constraints, roughly along the lines of Alglave et al. [3]. That approach
was followed by Simner et al. [27], who compiled Sail directly into SMT to test
an axiomatic model for instruction-fetch tests, but using a small handwritten
Arm fragment, rather than the full Sail model derived from the Arm-internal
model. The problem with this direct approach is one of scale: as one covers more
of the Arm semantics, the resulting SMT problem simply becomes too large to
be practicable. For example, for a load instruction, the virtual address must be
translated into a physical address, which is a complex process with a great deal
of configurability—there may be zero, one, or two stages of address translation,
the page size may vary, the number of levels used in the page table may differ,
etc. This approach also required the top level fetch-execute-decode loop to be
handled specially, as one cannot translate such an unbounded loop directly into
SMT, which imposes significant constraints on the shape of allowable tests.

306 A. Armstrong et al.

In contrast, here we build and use a generic symbolic evaluation for Sail def-
initions using the Z3 SMT solver, which lets us compute the possible symbolic
thread-local traces of each instruction, and hence of each thread (treating mem-
ory read values as unknowns, left to the concurrency model constraints). It also
lets us use the same fetch-decode-execute loop that is used for emulation and
co-simulation (which embodies various architecture-specific subtleties).

2.1 Symbolic Execution for Sail

Sail is attractive for symbolic execution for several reasons. First, it is an inten-
tionally simple language, lacking many of the features found in general-purpose
languages. Second, it has to support very few programs, just the specifications
of major ISAs, so (unlike tools for conventional programming languages) we can
tune the execution to them. Third, almost all of the loops in these programs
are bounded. Our starting point is the translation of Sail to C, for emulation,
by Armstrong et al. [10]. This goes via a simple goto-language intermediate
representation which is already well-suited for this task.

Static Function Linearisation. Our symbolic execution always creates a new
task when we hit a branch, and we do not ever merge these tasks at join points.
This is a good strategy for instruction semantics, as it simplifies the symbolic
execution engine significantly, but it does mean some code can cause unnecessary
branching. To avoid this we have a static rewrite that can take a function with
if statements and rewrite it into a ‘linear’ form, e.g. as below:

var x = 2;

if undefined {

x = x + 1

} else {

x = x + 2

};

return x

⇒
let x0 = 2;

let b = undefined;

let x1 = x0 + 1;

let x2 = x0 + 2;

let x3 = ite(b, x1, x2);

return x3

This works by translating the body of the function into SSA form, then
replacing the φ-functions with if-then-else (ite) functions that translate into the
SMT ite. This results in a more complex SMT expression, but less branching in
the symbolic execution, so it is a trade-off, but often worthwhile.

Per-Thread Candidate Executions. For each litmus-test thread this sym-
bolic execution will produce a number of candidate executions, each of which
is a sequence of memory events (memory reads and writes, fences, register
accesses, and so on) with the symbolic values of these events potentially being
constrained by some SMT formula for the overall execution. For example, con-
sider the Armv8-A instruction add x4, x3, #1. For this instruction, our symbolic
evaluator generates an execution:

Isla: Integrating Full-Scale ISA Semantics 307

(declare-const input (_ BitVec 64))

(read-reg |R3| nil input)

(define-const output (bvadd input #x0000000000000001))

(write-reg |R4| nil output)

where the SMTLIB formula is defined by the declare-const and define-const

statements, with read-reg and write-reg effects indicating which variables in the
SMT formula correspond to the values read and written to registers (which are
otherwise just global variables) by the instruction. We simplify here for brevity,
omitting the negative, zero, carry and overflow flags that the model computes.
For more complex instructions, there are additional effects for memory accesses,
cache maintenance events, barriers, and so on.

2.2 Checking a Litmus Test

Figure 1 shows the overall process of checking a litmus test. Tests can be supplied
either in the .litmus format of previous axiomatic and operational tools [4,5,
14], reusing the parser from [4], or as a TOML file (a standard configuration
file format, with libraries available for most languages). We first assemble the
test with a conventional assembler into an ELF binary and load it into the
representation of memory that will be used, before initialising the model with
the program counter set to the entry point for each thread, then we symbolically
execute the instructions in each thread separately, using the Sail semantics for
each instruction, plus the same fetch-execute-decode loop in Sail we would use
for emulation, to produce sets of per-thread traces as above. Treating litmus tests
essentially as binaries, rather than the more-or-less ad hoc fragments of assembly
abstract syntax used by earlier tools, accommodates the fact that the Armv8-A
model does not define an abstract syntax, and reduces the gap between what
the tool evaluates and what is run in experimental testing. Note that the Arm
assembly in Fig. 1, as well as subsequent assembly snippets in this paper, use
the standard Arm convention that x0 and w0 refer to the same register, where w0

refers to the lower 32-bits of the register, and x0 refers to the full 64-bit width.
We then generate an SMT problem for every combination of the candidate

executions of each thread. This problem consists of the per-thread SMT formulae
concatenated together (renaming variables as necessary to avoid name-clashes),
combined with the axiomatic memory model (described in more detail below).

Finally, we need to generate some ‘glue’ SMT that connects the per-thread
semantics with the memory model. For every effect in the per-thread SMT
semantics we generate an enumeration of events, e.g. for an execution with two
reads and two writes:

(declare-datatypes ((Event 0)) (((R1) (R2) (W1) (W2) (IW))))

The event IW is a special write event that represents the initial state. We generate
relations such as value-of that relate events to their values as determined by the
effects in the per-thread semantics, so if the second read event R2 read the value
#xABCD, (value-of R2 #xABCD) would be true. We generate syntactic dependency

308 A. Armstrong et al.

Fig. 1. Overview of process for checking the allowed executions of a litmus test

relations for address, data, and control dependencies, discussed in more detail
in Sect. 2.3. Finally, there is a constraint on the final state of each test which
specifies values expected in registers and memory after all threads have executed.

The Cat language represents axiomatic memory models as definitions of rela-
tions over the above events, and constraints over those relations, e.g. that spe-
cific relations are irreflexive, acyclic, or empty (or the negation of any of these).
Relations are defined in a point-free relation-algebraic style, in terms of standard
relational operators such as composition, intersection and union. The memory
models we consider are all multi-copy-atomic, and all recursion in their defini-
tions can trivially be replaced with (reflexive)-transitive closure. Herd’s let rec
construct computes the least solution to a set of equations [2], which is tricky
to represent in SMT, so we do not support it. We believe even relations such
as Power’s (mutually recursive) preserved program order are nevertheless repre-
sentable as SMT, so this limitation is mostly in our translation from Cat—we
would likely want to use a different syntax to represent these relations for Isla.

A satisfiable solution to the overall SMT problem described above thus rep-
resents an execution permitted by the architecture. Parsing the model generated
by the SMT solver allows us to generate a graph of the execution by instantiating
each relation in the model with the various events. If all generated SMT problems

Isla: Integrating Full-Scale ISA Semantics 309

are unsatisfiable for every combination of per-thread candidate executions then
there are no permitted executions. If desired we can repeatedly ask the SMT
solver for additional distinct models until we have all permitted executions.

2.3 Syntactic Dependency Analysis

Axiomatic memory models for relaxed hardware architectures rely heavily on
notions of address, data, and control dependencies between instructions. For
example, consider the following assembly:

ldr w0, [x1] // load 32 bits from address in x1 into x0

cbnz w0, LC01 // compare and branch if non-zero to LC01

LC01:

mov w2, #1 // load 1 into x2

str w2, [x3] // store 32 bit-value in x2 to the address in x3

Here there is a control dependency between the load (ldr) and the store (str), as
the value read by the load is used to determine whether the branch instruction
cbnz that precedes the store is taken or not. This control dependency exists irre-
gardless of whether the branch is taken or not—its existence is purely determined
by the syntactic structure of the above code.

In general, existing ISA descriptions do not cover this aspect of the archi-
tecture well, as they are principally developed only to describe the sequen-
tial behaviour. Previous tools have either hand-coded dependency information,
which is acceptable for cut-down ISA models but too laborious and error-prone
at the scale of the ISA models we use, or used a heavyweight taint-tracking
interpreter [15]. Our approach avoids both of these. It is similar to the latter,
computing dependencies from the ISA specification, but building the footprint
analysis atop our symbolic execution library requires only around 500 LoC.

To express dependencies, we need to associate each event in our candidate
executions with the syntactic instruction/opcode that generated them. To do
this we use a Sail function , called in each architecture’s
fetch-decode-execute loop just after fetching an instruction; this adds a special
effect to the candidate execution recording the instruction opcode. We also have
another special effect that delimits each fetch-decode-execute cycle, so each effect
such as read-mem and write-mem that would give rise to an event can be associated
with an opcode, as well as an index in the program order relation for its thread.

For each instruction we also need to know its footprint : data about the
instruction including which input registers it reads, which output registers it
writes, whether it is a branch instruction, and so on. It also contains taint
information—we need to know which registers writes may contain data ‘tainted’
by a memory read performed by a load, or which input registers ‘taint’ data
written to memory. The Sail ISA specifications do not explicitly describe this
footprint, so we are forced to derive it from the specification.

To do this we symbolically evaluate each opcode independently in a suitably
unconstrained environment so as to capture all its possible behaviours. This
can be computationally expensive due to the number of possible behaviours

310 A. Armstrong et al.

some instructions have, so we build a footprint cache to avoid re-computing this
where possible. It turns out to be hard to distinguish ordinary branches from
instructions that can cause an exception to occur, so we add a special branch
address announce effect, created by a Sail function
that we call in branch instructions. This also enables the taint tracking for branch
addresses we need for control dependencies as described above. The taint tracking
is achieved simply by looking at what sub-expressions in the generated SMT
problem contain variables that also appear in the various effects in each trace.

Once we have this footprint information we can analyse it for the opcodes
between each read and write effect and derive the necessary dependency relations
over their events. Note that this dependency relation must be exact. If we under-
approximate, we will allow executions that should be forbidden, and if we over-
approximate we will forbid executions that should be allowed.

In some cases the current Arm-provided ISA specification does not include
enough information to identify the architecturally respected dependencies, and
our dependency analysis would identify a dependency when there should not be
one. To solve this we add some special Sail functions that give fine-grained control
of the dependency calculation. For example, in indirect branches we ignore any
dependency between the target register Xn and the link register X30 by including
a function in the Sail definition that tells the footprint analysis to ignore any
relation it finds between the two registers.

if branch_type == BranchType_INDCALL then {

ignore_dependency_edge(n, 30);

X(30) = PC() + 4

};

This works by adding a special annotation in the candidate execution trace
which can be used by the footprint analysis—for all other purposes it is a no-
op. This information should properly become part of the architecture specifica-
tion, as mistakes in the dependency calculations could be a source of soundness
bugs. The lack of support for this information in existing ISA specifications can
partly be explained by the lack of tooling to properly explore the integration of
ISA specifications with concurrency, something we hope a tool such as ours can
address.

2.4 Web Interface

Figure 2 shows the web interface we have developed for our tool, based on the
web interface for the C memory model tool Cerberus-BMC by Lau et al. [16].
This can either be run locally, or via a website, https://isla-axiomatic.cl.cam.ac.
uk.

3 System Litmus Tests

As mentioned previously, one advantage of our tool is that, because it supports
the full sequential ISA, it enables easy experimentation with tests and models

https://isla-axiomatic.cl.cam.ac.uk
https://isla-axiomatic.cl.cam.ac.uk

Isla: Integrating Full-Scale ISA Semantics 311

Fig. 2. Web interface for the tool

outside the scope of previous tools, e.g. involving new systems features. For
example, Simner et al. developed semantics for Arm instruction fetch and I/D
cache maintenance [27]. Consider the litmus test in Fig. 3 [27, §3.3], a simple
test involving self-modifying code. In order to run this test and the others in [27]
our tool required only minimal changes: we had to add support for data-cache
and instruction-cache maintenance events and relations for them in our Cat
to SMT translation. Additionally we needed to generalise how we generated
the rf (reads-from) relation to generate both the regular rf relation and the
new irf (instruction-reads-from) relation. Because our tool already runs tests
using a fetch-execute-decode loop, all the instruction fetch events were already
available—we in fact filter them out when running user-mode tests.

When generating candidate executions for a thread we normally do not
assume anything about what other threads may be doing, but for self-modifying
code this would clearly be problematic, as it would imply that any other thread
could modify any of this thread’s instructions arbitrarily. We therefore mark the
memory locations that contain instructions that can be modified and provide in
advance all the possible values they might take.

4 Results and Comparisons

We evaluate our tool for correctness and performance with respect to Herd using
previous corpora of tests.

312 A. Armstrong et al.

Fig. 3. Self-modifying code litmus test SM+cachesync-isb

We select 3798 litmus tests for both Armv8-A and RISC-V to compare
between our tool and Herd—these tests include a representative set of features
such as barriers and atomics, while exercising all of the basic litmus test shapes.
All tests were run on a 2.6GHz Intel Xeon Gold 6240 CPU with 36 physical
cores and 400GB of RAM. The tests are split into rough categories based on
the contents of the tests. We ran 36 concurrent instances of both our tool and
Herd across each set of tests, running Herd with the -speedcheck fast flag which
causes it to stop enumerating executions when it resolves the final assertion in
each test, which is the closest behaviour to how our tool behaves by default.

To assess correctness, we use a set of golden references for these above tests,
for all of which the previous operational RMEM [14] and axiomatic Herd models
and tools agree, and which have been extensively validated against hardware
implementations. We confirm that our tool produces the same expected results
as those models for all the litmus tests, including when run in exhaustive mode.

To assess performance, the table below gives the total real execution time for
each batch of tests.

Test set Number of tests Isla Herd

Armv8-A basic 2-thread 1377 49 s 11 s
Armv8-A basic 3-thread 161 11.7 s 1.2 s
Armv8-A exclusives 23 20.2 s 1.5 s
Armv8-A DMB/LD 70 7.4 s 0.7 s
Armv8-A PPO 2020 3 m 29.3 s 16.2 s
RISC-V basic 2-thread 36 0.7 s 0.2 s
RISC-V AMOs 111 2 s 0.7 s

Isla: Integrating Full-Scale ISA Semantics 313

In general Herd is faster for nearly all tests, but this is not surprising given
the amount of detail in the full-scale instruction semantics that we are using,
particularly for Armv8-A. Our goal is not to be faster, but to support those
full-scale ISA semantics while remaining fast enough for practical purposes. We
achieve this: most tests take only a second or so to run, which is perfectly usable
interactively. For example, given the Armv8-A basic 3-thread tests, for a single
sequential run of the tests, the shortest took 872ms to run, while the longest
took 1231ms. The above batch times are similarly perfectly usable for (e.g.)
regression testing while editing a model.

We also evaluate our tool with respect to that of Simner et al., for the
instruction-fetch tests (which are currently not supported by Herd) in Sect. 6
of their paper. Our tool returns the expected results for all these tests, includ-
ing the two tests (FOW and SM.F+ic) that were unsupported by their tool.
In terms of performance, we note that their tool took 30min to run just 90 of
the 1377 basic 2-thread tests above, which is awkwardly slow for using a tool in
practice, whereas when limiting our tool to 8 cores (to more closely match their
experimental setup) our tool will execute all 1377 in under 3min. We were addi-
tionally able to provide further validation that the Simner et al. model behaves
as the standard Armv8-A model for non-self-modifying tests by showing that it
behaves identically for all 3798 of the non-self-modifying tests above.

Acknowledgement. This work was partially supported by the UK Government
Industrial Strategy Challenge Fund (ISCF) under the Digital Security by Design
(DSbD) Programme, to deliver a DSbDtech enabled digital platform (grant 105694),
ERC AdG 789108 ELVER, EPSRC programme grant EP/K008528/1 REMS, an Arm
iCASE award, Arm, and Google. Approved for public release; distribution is unlim-
ited. This work was supported by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8650-
18-C-7809 (“CIFV”). The views, opinions, and/or findings contained in this report are
those of the authors and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

References

1. The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, Document Ver-
sion 20191214-draft, 238 pages (2020). https://riscv.org/technical/specifications/.
Accessed 23 Sept 2020

2. Alglave, J., Cousot, P., Maranget, L.: Syntax and semantics of the weak consistency
model specification language cat. CoRR abs/1608.07531 (2016)

3. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Computer Aided Verification - 25th
International Conference, CAV, pp. 141–157 (2013). https://doi.org/10.1007/978-
3-642-39799-8_9

4. Alglave, J., Maranget, L.: The diy7 tool. http://diy.inria.fr/. Accessed 28 Jan 2021
5. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: running tests against hard-

ware. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp.
41–44. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_5

https://riscv.org/technical/specifications/
https://arxiv.org/abs/1608.07531
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
http://diy.inria.fr/
https://doi.org/10.1007/978-3-642-19835-9_5

314 A. Armstrong et al.

6. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM TOPLAS 36(2), 7:1–7:74 (2014).
https://doi.org/10.1145/2627752

7. Arm: Arm Architecture Reference Manual: Armv8, for Armv8-A architecture
profile, 8248 pages (2020). https://developer.arm.com/documentation/ddi0487/fc.
Accessed 23 Sept 2020

8. Arm: Memory model tool (2020). https://developer.arm.com/architectures/cpu-
architecture/a-profile/memory-model-tool Accessed 26 Jan 2021

9. ARM Ltd.: ARM Architecture Reference Manual (ARMv8, for ARMv8-A architec-
ture profile) (2017). ARM DDI 0487B.a (ID033117). https://developer.arm.com/
documentation/ddi0487/b/?lang=en

10. Armstrong, A., et al.: ISA semantics for ARMv8-A, RISC-V, and CHERI-MIPS
(2019). http://www.cl.cam.ac.uk/~pes20/sail/

11. Armstrong, A., Campbell, B., Simner, B., Pulte, C., Sewell, P.: Isla: integrating
full-scale ISA semantics and axiomatic concurrency models (extended version).
In: Extended version of a paper in Proceedings of CAV 2021: 33rd International
Conference on Computer-Aided Verification (2021). https://www.cl.cam.ac.uk/
~pes20/isla/

12. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Cohen, A., Vechev, M.T. (eds.) Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, 18–23 June, 2017, pp. 467–481. ACM (2017). https://
doi.org/10.1145/3062341.3062353

13. Deacon, W.: The ARMv8 application level memory model. https://github.com/
herd/herdtools7/blob/master/herd/libdir/aarch64.cat (2016)

14. Flur, S., French, J., Gray, K., Pulte, C., Sarkar, S., Sewell, P.: RMEM (2020).
www.cl.cam.ac.uk/~pes20/rmem/. Accessed 28 Jan 2021

15. Gray, K.E., Kerneis, G., Mulligan, D., Pulte, C., Sarkar, S., Sewell, P.: An inte-
grated concurrency and core-ISA architectural envelope definition, and test oracle,
for IBM POWER multiprocessors. In: Proceedings of MICRO-48, the 48th Annual
IEEE/ACM International Symposium on Microarchitecture (2015). https://doi.
org/10.1145/2830772.2830775

16. Lau, S., Gomes, V.B.F., Memarian, K., Pichon-Pharabod, J., Sewell, P.: Cerberus-
BMC: a principled reference semantics and exploration tool for concurrent and
sequential C. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification. LNCS,
vol. 11561, pp. 387–397. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-25540-4_22

17. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiproces-
sors. In: Proceedings of the 24th International Conference on Computer Aided
Verification, pp. 495–512 (2012). https://doi.org/10.1007/978-3-642-31424-7_36

18. Martonosi Research Group: Check research tools and papers. https://check.cs.
princeton.edu/. Accessed 28 Jan 2021

19. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Pro-
ceedings of TPHOLs 2009: Theorem Proving in Higher Order Logics, LNCS 5674,
pp. 391–407 (2009). https://doi.org/10.1007/978-3-642-03359-9_27

20. Park, S., Dill, D.L.: An executable specification and verifier for relaxed memory
order. IEEE Trans. Comput. 48(2), 227–235 (1999)

21. Pulte, C.: The semantics of multicopy atomic ARMv8 and RISC-V. Ph.D. thesis,
University of Cambridge (2018). https://www.repository.cam.ac.uk/handle/1810/
292229

https://doi.org/10.1145/2627752
https://developer.arm.com/documentation/ddi0487/fc
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/documentation/ddi0487/b/?lang=en
https://developer.arm.com/documentation/ddi0487/b/?lang=en
http://www.cl.cam.ac.uk/~pes20/sail/
https://www.cl.cam.ac.uk/~pes20/isla/
https://www.cl.cam.ac.uk/~pes20/isla/
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
www.cl.cam.ac.uk/~pes20/rmem/
https://doi.org/10.1145/2830772.2830775
https://doi.org/10.1145/2830772.2830775
https://doi.org/10.1007/978-3-030-25540-4_22
https://doi.org/10.1007/978-3-030-25540-4_22
https://doi.org/10.1007/978-3-642-31424-7_36
https://check.cs.princeton.edu/
https://check.cs.princeton.edu/
https://doi.org/10.1007/978-3-642-03359-9_27
https://www.repository.cam.ac.uk/handle/1810/292229
https://www.repository.cam.ac.uk/handle/1810/292229

Isla: Integrating Full-Scale ISA Semantics 315

22. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8. In:
POPL 2018: Proceedings of the 45th ACM SIGPLAN Symposium on Principles of
Programming Languages (2018). https://doi.org/10.1145/3158107

23. Pulte, C., Pichon-Pharabod, J., Kang, J., Lee, S.H., Hur, C.K.: Promising-
ARM/RISC-V: a simpler and faster operational concurrency model. In: PLDI 2019:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (2019). https://doi.org/10.1145/3314221.3314624

24. Reid, A.: Trustworthy specifications of ARM v8-A and v8-M system level architec-
ture. In: FMCAD 2016, pp. 161–168 (2016). https://alastairreid.github.io/papers/
fmcad2016-trustworthy.pdf

25. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Proceedings of PLDI 2011: the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 175–186
(2011). https://doi.org/10.1145/1993498.1993520

26. Sarkar, S., et al.: The semantics of x86-CC multiprocessor machine code. In: Pro-
ceedings of POPL 2009: the 36th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 379–391 (2009). https://doi.org/10.
1145/1594834.1480929

27. Simner, B., et al.: Armv8-a system semantics: instruction fetch in relaxed archi-
tectures. In: ESOP 2020: Proceedings of the 29th European Symposium on Pro-
gramming (2020). http://www.cl.cam.ac.uk/~pes20/iflat/top-extended.pdf

28. Trippel, C., Manerkar, Y.A., Lustig, D., Pellauer, M., Martonosi, M.: Full-stack
memory model verification with tricheck. IEEE Micro 38(3), 58–68 (2018)

29. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically com-
paring memory consistency models. In: Castagna, G., Gordon, A.D. (eds.) Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, 18–20 January 2017, pp. 190–204. ACM
(2017). http://dl.acm.org/citation.cfm?id=3009838

30. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Analyzing the intel
Itanium memory ordering rules using logic programming and SAT. In: Geist,
D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 81–95. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39724-3_9

31. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: a framework for
axiomatic and executable specifications of memory consistency models. In: 18th
International Parallel and Distributed Processing Symposium (IPDPS 2004), Santa
Fe, New Mexico, USA (2004). https://doi.org/10.1109/IPDPS.2004.1302944

32. Zhang, H., Trippel, C., Manerkar, Y.A., Gupta, A., Martonosi, M., Malik, S.:
ILA-MCM: integrating memory consistency models with instruction-level abstrac-
tions for heterogeneous system-on-chip verification. In: 2018 Formal Methods in
Computer Aided Design (FMCAD), pp. 1–10 (2018). https://doi.org/10.23919/
FMCAD.2018.8603015

https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf
https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1594834.1480929
https://doi.org/10.1145/1594834.1480929
http://www.cl.cam.ac.uk/~pes20/iflat/top-extended.pdf
http://dl.acm.org/citation.cfm?id=3009838
https://doi.org/10.1007/978-3-540-39724-3_9
https://doi.org/10.1109/IPDPS.2004.1302944
https://doi.org/10.23919/FMCAD.2018.8603015
https://doi.org/10.23919/FMCAD.2018.8603015

316 A. Armstrong et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Isla: Integrating Full-Scale ISA Semantics and Axiomatic Concurrency Models
	1 Introduction
	2 Implementation
	2.1 Symbolic Execution for Sail
	2.2 Checking a Litmus Test
	2.3 Syntactic Dependency Analysis
	2.4 Web Interface

	3 System Litmus Tests
	4 Results and Comparisons
	References

