
Performance Evaluation 73 (2014) 110–132

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Operational versus weakest pre-expectation semantics for
the probabilistic guarded command language
Friedrich Gretz a,b,∗, Joost-Pieter Katoen a, Annabelle McIver b
a RWTH Aachen University, Aachen, Germany
b Macquarie University, Sydney, Australia

a r t i c l e i n f o

Article history:
Available online 17 December 2013

Keywords:
Expectation transformer semantics
Operational semantics
Markov decision process
Expected rewards

a b s t r a c t

This paper proposes a simple operational semantics of pGCL, Dijkstra’s guarded command
language extended with probabilistic choice, and relates this to pGCL’s wp-semantics by
McIver and Morgan. Parametric Markov decision processes whose state rewards depend
on the post-expectation at hand are used as the operational model. We show that the
weakest pre-expectation of a pGCL-program w.r.t. a post-expectation corresponds to the
expected cumulative reward to reach a terminal state in the parametric MDP associated
to the program. In a similar way, we show a correspondence between weakest liberal
pre-expectations and liberal expected cumulative rewards. The verification of probabilistic
programs using wp-semantics and operational semantics is illustrated using a simple
running example.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Formal semantics of programming languages has been the subject of intense research in computer science for several
decades. Various approaches have been developed for the description of program semantics. Structured operational
semantics defines the meaning of a program by means of an abstract machine where states correspond to program
configurations (typically consisting of a program counter and a variable valuation) and transitions model the evolution of a
program by executing statements. Program executions are then the possible runs of the abstract machine. Denotational
semantics maps a program onto a mathematical object that describes for instance its input–output behaviour. Finally,
axiomatic semantics provides the program semantics in an indirect manner by describing its properties. A prominent
example of the latter are Hoare triples in which annotations, written in predicate logic, are associated to control points
of the program.

The semantics of Dijkstra’s seminal guarded command language [1] from the seventies is given in terms of weakest
preconditions. It is in fact a predicate transformer semantics, i.e. a total function between two predicates on the state of a
program. The predicate transformer E = wp(P, F) for program P and postcondition F yields the weakest precondition E on
the initial state of P ensuring that the execution of P terminates in a final state satisfying F . There is a direct relation with
axiomatic semantics: the Hoare triple ⟨E⟩ P ⟨F⟩ holds for total correctness if and only if E ⇒ wp(P, F). The weakest liberal
precondition wlp(P, F) yields the weakest precondition for which P either does not terminate or establishes F . It does not
ensure termination and corresponds to Hoare logic in partial correctness. Although providing an operational semantics for
the guarded command language is rather straightforward, it was not until the early nineties that Lukkien [2,3] provided a
formal connection between the predicate transformer semantics and the notion of a computation.

∗ Corresponding author at: Macquarie University, Sydney, Australia.
E-mail addresses: friedrich.gretz@students.mq.edu.au, fgretz@cs.rwth-aachen.de (F. Gretz), katoen@cs.rwth-aachen.de (J.-P. Katoen),

annabelle.mciver@mq.edu.au (A. McIver).

0166-5316/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.peva.2013.11.004

http://dx.doi.org/10.1016/j.peva.2013.11.004
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2013.11.004&domain=pdf
mailto:friedrich.gretz@students.mq.edu.au
mailto:fgretz@cs.rwth-aachen.de
mailto:katoen@cs.rwth-aachen.de
mailto:annabelle.mciver@mq.edu.au
http://dx.doi.org/10.1016/j.peva.2013.11.004

F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 111

Qualitative annotations in predicate calculus are often insufficient for probabilistic programs as they cannot express
quantities such as expectations over program variables. To that end, McIver and Morgan [4] generalised the methods of
Dijkstra andHoare to probabilistic programsbymaking the annotations real-valued expressions – referred to as expectations
– in the program variables. Expectations are the quantitative analogue of predicates. This yields an expectation transformer
semantics of the probabilistic guarded command language (pGCL, for short), an extension of Dijkstra’s language with a
probabilistic choice operator. An expectation transformer is a total function between two expectations on the state of a
program. The expectation transformer e = wp(P, f) for pGCL-program P and post-expectation f over final states yields
the least expected value e on P ’s initial state ensuring that P ’s execution terminates with a value f . The annotation ⟨e⟩ P ⟨f ⟩
holds for total correctness if and only if e ≤ wp(P, f), where ≤ is to be interpreted in a point-wise manner. The weakest
liberal pre-expectation wlp(P, f) yields the least expectation for which P either does not terminate or establishes f . It does
not ensure termination and corresponds to partial correctness.

This paper provides a simple operational semantics of pGCL using parametric Markov decision processes (pMDPs), a
slight variant of MDPs in which probabilities may be parameterised [5,6]. Our main contribution in this paper is a formal
connection between thewp- andwlp-semantics of pGCL byMcIver andMorgan and the operational semantics of pGCL. This
provides a clean and insightful relationship between the abstract expectation transformer semantics that has been proven
useful for formal reasoning about probabilistic programs, and the notion of a computation in terms of the operationalmodel,
a pMDP. In order to establish this connection we equip pMDPs with state rewards that depend on the post-expectation at
hand. Intuitively speaking, we decorate a terminal state in the operational model of a program with a reward that cor-
responds to the value of the post-expectation. All other states are assigned reward zero. We then show that the weakest
pre-expectation of a pGCL-program P w.r.t. a post-expectation corresponds to the expected cumulative reward to reach a
terminal state in the pMDP associated to P . In a similar way, we show that weakest liberal pre-expectations correspond to
liberal expected cumulative rewards. The proofs are by induction on the structure of our probabilistic programs using stan-
dard results from fixed point theory. This paper thus yields a correspondence theorem that enables us to understand the
mathematically involved expectation transformers intuitively using only first principles of Markov decision processes with
rewards. In addition, for finite-state programs (or program fragments), our result implies that algorithms for computing
expected accumulated rewards in MDPs – for which efficient algorithms and tools based on linear programming exist – can
be employed for computing weakest pre-expectations. Finally we recall the notion of probabilistic invariants [4] and apply
our correspondence theorem to find an operational characterisation of invariants (which originally are defined in terms of
expectation transformers).

1.1. Related work

TheMDP semantics of pGCL in this paper bears strong resemblance to the operational semantics of similar languages. To
mention a few, Baier et al. [7] provide anMDP semantics of a probabilistic version of Promela, the modelling language of the
SPINmodel checker. Di Pierro et al. [8] give a semantics to a very similar programming language without non-determinism.
The seminal work by Kozen [9] provides two semantics of a deterministic variant of pGCL and shows their correspondence.
Kozen interprets probabilistic programs as partial measurable functions on a measurable space, and as continuous linear
operators on a Banach space of measures. He et al. [10] provide a mapping from a semantics based on a probabilistic
complete partial order which contains non-determinism à la Jones [11] to a semantics which is amapping from initial states
to sets of probability distributions over final states. To our knowledge, our results on relating weakest pre-expectations of
pGCL and an operational semantics are novel. Our set-up and results can be considered as a probabilistic analogue of the
work by Lukkien [2,3] who provided a formal connection between the predicate transformer semantics of Dijkstra’s guarded
command language and the operational notion of a computation.

More examples of how todiscover and apply invariantswhen reasoning about probabilistic programs canbe found at [12].
There we also describe Prinsys, a tool for semi-automatic invariant generation.

1.2. Structure of this paper

The rest of the paper is divided as follows. In Section 2 we introduce the probabilistic programming language pGCL.
ParametricMarkov decision processeswith rewards are introduced in Section 3. Section 4 recaps the denotational semantics
of pGCL [4] and introduces operational semantics for this language. Then themain result is established, namely that the two
semantics are equivalent. Section 5 provides an example of reasoning over pGCL programs. Finally, Section 6 introduces
invariants and uses our main result to give an operational characterisation for them.

This paper is an extended version of the conference paper [13]. This version contains a generalised version of the proofs of
Theorems 23 and 24, a new section on invariants and an Appendix with a new proof for continuity ofwp(P, ·) andwlp(P, ·).

2. Probabilistic programs

Our programming language pGCL [4] is an extension of Dijkstra’s guarded command language [1]. Besides a non-
deterministic choice operator, denoted [], and a conditional choice, it incorporates a probabilistic choice operator, denoted

112 F. Gretz et al. / Performance Evaluation 73 (2014) 110–132

Listing 1: The duelling cowboys, cf. [4].
1 (t := A [] t := B);
2 c := 1;
3 while (c = 1) {
4 if (t = A) {
5 (c := 0 [a] t := B);
6 } else {
7 (c := 0 [b] t := A);
8 }
9 }

[p], where p is a real parameter (or constant) whose value lies in the range [0, 1]. pGCL is a language to model sequential
programs containing randomised assignments. For instance, the assignment (x := 2 · x [0.75] x := x+ 1) doubles the value
of xwith probability 3

4 and increments it by one with the remaining probability 1
4 .

Definition 1 (Syntax ofpGCL). Let P, P1, P2 bepGCL-programs, p a probability variable, x a programvariable, E an expression,
and G a Boolean expression. The syntax of a pGCL program P adheres to the following grammar:

skip | abort | x := E | P1; P2 | P1 [] P2 | P1 [p] P2 |

if(G){P1} else {P2} | while(G){P}. �

skip stands for the empty statement, abort for abortion, and x := E for an assignment of the value of expression E (over
the program variables) to variable x. The sequentially composed program P1; P2 behaves like P1 and subsequently like P2
on the successful termination of P1. The statement P1 [] P2 denotes a non-deterministic choice; it behaves like either P1 or
P2. The statement P1 [p] P2 denotes a probabilistic choice. It behaves like P1 with probability p and like P2 with probability
1 − p. The remaining two statements are standard: conditional choice and while-loop. Throughout this paper, we assume
that pGCL-programs are well-typed. This entails that for assignments of the form x := E we assume that x and E are of the
same type. We assume G to denote a Boolean expression and variable p to denote a probability in the real interval [0, 1].

Example 2 (Duelling Cowboys [4]). The pGCL program in Lst. 1 models the following situation: There are two cowboys, A
and B, who are fighting a classical duel. They take turns, shooting at each other until one of them is hit. If A (resp. B) shoots
then he hits B (resp. A) with probability a (resp. b). We assume that either cowboy A or B is allowed to start; the choice
of who will start is resolved nondeterministically. Variable t keeps track of the turns, while c determines whether the duel
continues or someone is hit. Note that it is a distinctive feature that we do not have to specify exact probabilities and instead
allow arbitrary parameters such as a and b. �

3. Markov decision processes

This section introduces the basics of Markov decision processes (MDPs) [5,6] enriched with state rewards. We first
recall the definition of an MDP with a countable state space and define elementary notions such as paths and policies.
Subsequently, we introduce reward-MDPs in which states are equipped with a real valued reward and focus on reachability
objectives, in particular (liberal) expected cumulative rewards to reach a set of states. These measures are later shown to
closely correspond to the weakest (liberal) pre-condition semantics of pGCL-programs.

3.1. Preliminaries

Let Var be a set of variables. In the followingwe consider a countable state space S where each state s is a valuationwhich
maps variables to real values

S : Var → R.

This approach later allows us to nicely connect states of a program to states of a transition system like an MDP (as defined
below). Additionally we fix a set of parameters Par which are independent of states. These parameters will represent
probabilities which can be left unspecified. So each parameter represents a value from the interval [0, 1]. Let V (Par) denote
the set of expressions over Par .

Definition 3 (Parametric Distribution). A parametric distribution µ is a function that maps states to probabilities. The
probabilities are real values in [0, 1] or expressions over Par:

µ : S → V (Par) ∪ [0, 1] with

s∈S

µ(s) = 1.

The set of all parametric distributions over state space S is denoted Dist(S). �

F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 113

Example 4 (Parametric Distribution). Consider S = {s0, s1, s2}. Then a parametric distribution µ might be: µ(s0) = p,
µ(s1) = 1 − p and µ(s2) = 0 where p ∈ V (Par) is an expression that consists of just a single parameter. The expression’s
value is fixed but unknown. The parameter p can be refined by any value from [0, 1]. �

It is important to stress that Definition 3 requires that for any state s the resulting expression µ(s) is a probability, i.e. an
expression that evaluates to a value in [0, 1] for all possible states s and all possible parameter valuations.

Definition 5 (Parametric Markov Decision Process). A pMDP M is a tuple (S, S0, →) where S is a countable set of states with
initial state-set S0 ⊆ S where S0 ≠ ∅, and → ⊆ S × Dist(S) is a transition relation from a state to a set of parametric
distributions over states. �

Let s → µ denote (s, µ) ∈ →and s → t denote s → µ with µ(t) = 1. We define Dist(s) = { µ | s → µ } to be the set
of enabled distributions in state s. In the following we do not emphasise the parametric nature of our structures and use the
term ‘‘Markov decision process’’ (MDP) synonymously. The intuitive operational behaviour of an MDP M is as follows. First,
non-deterministically select some initial state s0 ∈ S0. In state s with Dist(s) ≠ ∅, non-deterministically select µ ∈ Dist(s).
The next state t is randomly chosen with probability µ(t). If Dist(t) = ∅, exit; otherwise continue as for state s.

Remark 6 (Countability of Paths). In the context of this paper we are only interested in finitely branching Markov decision
processes with bounded non-determinism. Therefore |Dist(s)| < ∞ for all s ∈ S and all distributions are assumed to have
finite support. Consequently every state has finitely many successor states. Hence there are countably many (finite) paths
between any two states. This property is crucial for Definition 12 and Lemma 21 later on. �

A path π of MDP M is a maximal alternating sequence of states and distributions, written π = s0
µ0
→ s1

µ1
→ . . . such that

µi ∈ Dist(si) and µi(si+1) > 0 for all i ≥ 0. As any path is a maximal sequence, it is either infinite or ends in a state s with
Dist(s) = ∅. The set of all paths in M is denoted Paths(M). Reasoning about probabilities on sets of paths of an MDP relies
on the resolution of non-determinism. This resolution is performed by a policy1 that selects one of the enabled distributions
in a state. In general a policy may base its decision in state s on the path fragment from s0 ∈ S0 to s. However in the context
of this paper we are interested in computing expectations inMDPs and so it suffices to consider positional policies as shown
in [6].

Definition 7 (Positional Policy). A function P : S → Dist(S) with P(s) ∈ Dist(s) for all s ∈ S is called a positional policy for
MDP M = (S, S0, →). �

A positional policy deterministically selects an enabled distribution based on the current state s only. As in the rest of this
paperweonly consider positional policies,we call themsimply policies. The path fragment leading to sdoes not play any role.
The path π = s0

µ0
→ s1

µ1
→ . . . is called a P-path if it is induced by the policy P, that is, P(si) = µi for all i ≥ 0. Let PathsP(s)

denote the set ofP-paths starting from state s. A policy of anMDP M induces aMarkov chain MP with the same state space
as M and transition probabilities P(s)(t) for states s and t . For finite path fragmentπ = s0

µ0
→ s1

µ1
→ · · ·

µk−1
→ sk of a P-path,

let PP(π) denote the probability of π which is defined by µ0(s1) × · · · × µk−1(sk) =
k

i=1 µi−1(si). Let PrP
s (Π) denote the

probability of the set of paths Π all starting in s under policy P. This probability measure is defined in the standard way
using a cylinder set construction on the induced Markov chain MP [14]. In the following we drop the subscript swhenever
it is clear from the context. Note that the measure PP(π) of a path π starting in state s is 0 if π ∉ PathsP(s).

To compare our operational semantics of pGCLwith its wp- and wlp-semantics, we use rewards (or, dually costs).

Definition 8 (MDP with Rewards). An MDP with rewards (also called reward-MDP, or shortly RMDP) is a pair (M, r) with
M an MDP with state space S and r : S → R≥0 a function assigning a real reward to each state. �

Intuitively, the reward r(s) stands for the reward earned on entering state s. The cumulative reward of a finite path
fragment s0

µ0
→ s1

µ1
→ · · · sk is the sum of the rewards in all states that have been visited, i.e., r(s0) + · · · + r(sk).

Example 9 (RMDP, Cumulative Reward of a Path).

1 Also called scheduler, strategy or adversary.

114 F. Gretz et al. / Performance Evaluation 73 (2014) 110–132

Assume a policy P with P(s0) = µ. Then π = s0
µ
→ s3 ∈ PathsP(s0) is a possible path that is taken under policy P with

probability PP(π) = 0.5 and has cumulative reward r(π) = 17. �

3.2. Reachability objectives

We are interested in reachability events in RMDPs. Let T ⊆ S be a set of target states. The event ♦T stands for the
reachability of some state in T , i.e., ♦T is the set of paths in MDP M that hit some state s ∈ T . Formally ♦T = { π ∈

Paths(M) | ∃i ≥ 0.π [i] ∈ T }where π [i] denotes the ith state visited along π . Wewrite π |H ♦T whenever π belongs to ♦T .
It follows by standard arguments that ♦T is a measurable event. Its measure depends on the chosen initial state and policy.
In order to define the cumulative reward for this event we need to introduce the cumulative reward along a path.

Definition 10 (Cumulative Reachability Reward). Let π = s0
µ0
→ s1

µ1
→ · · · be a maximal path in RMDP (M, r) and T ⊆ S

a set of target states. If π |H ♦T , the cumulative reward along π before reaching T is defined by: rT (π) = r(s0) + · · · +

r(sk) where si ∉ T for all i < k and sk ∈ T . If π |̸H ♦T , then rT (π) = 0. �

Stated in words, the cumulative reward for a path π to reach T is the cumulative reward of the minimal prefix of π
satisfying ♦T . In case π never reaches a state in T , the cumulative reward is defined to be zero. We denote by PathsP(s, ♦T)
the set of paths starting in s that eventually reach T under policy P.

Remark 11 (Reward for Paths that Fail to Reach an Objective). One can argue that the choice of zero as the reward for never
reaching T is arbitrary and that this reward could alternatively be defined as e.g., any constant or even infinity. This depends
on the purpose of rewards. Later we will reward states that correspond to the terminal states of a program. If an execution
fails to reach a terminal state, thenwe treat this as ‘‘undesired’’ behaviour that has reward zero. This agreeswith the previous
definition. �

We can now define the expected reward for reachability. Usually an expectation of a real valued random variable X with
a density function p(x) is defined as

E(X) =

x
x · p(x)dx.

Our random variable is the reward but it is not continuous. Even though a reward function maps states to non-negative
real values, there are only countably many different rewards that can be accumulated on the way from a state s to a target
set T . This is because there are only countably many finite prefixes of paths that lead from a state s to states in T . Hence
the random variable – the reward – can assume only countably many distinct values. We can therefore define a discrete
probability distribution, which assigns each given reward c the probability of all finite path prefixes that run from s to T and
have the cumulative reachability reward c.

Definition 12 (Expected Reward for Reachability). Let (M, r) be an RMDP with state space S and T ⊆ S and s ∈ S. Further
let C denote the set of all cumulative reachability reward values that can be accumulated by paths from s to T in (M, r). The
minimal expected reward until reaching T ⊆ S from s ∈ S, denoted ExpRew(M,r)(s |H ♦T), is defined by:

inf
P

c∈C

c · PrP
{ π ∈ PathsP(s, ♦T) | rT (π) = c }.

The minimal liberal expected reward until reaching some state in T from s, denoted LExpRew(M,r)(s |H ♦T), is defined by:

inf
P

PrP(s |̸H ♦T) +

c∈C

c · PrP
{ π ∈ PathsP(s, ♦T) | rT (π) = c }

.

We omit the superscript (M, r) when the underlying model is clear from the context. �

The expected reward in s to reach some state in T is the expected cumulative reward over all paths (reaching T) induced
under a demonic policy. A demonic policy resolves non-determinism such that the expected reward is minimised. The
motivation to consider a demonic and not an angelic (maximising) policy lies in the relationship between demonic choice
and the notion ofweakest pre-expectation ofpGCL programs. Aswewill see later, a non-deterministic choice inpGCLwill be
resolved in such a way that the pre-expectation is minimised. Note that in case T is not reachable with positive probability
from s under a demonic policy, ExpRew(s |H ♦T) = 0. LExpRew(s |H ♦T) is the expected reward to reach T or never
reach it from s. In case there is no policy under which T can be reached from s with positive probability, we have that
LExpRew(s |H ♦T) = 1. This measure is motivated by reasoning about partial correctness where termination is not
guaranteed and we will later see the relationship to the weakest liberal pre-expectation in Theorem 24. Note that ExpRew
and LExpRew coincide if T is reached with probability one under all policies. For finite MDPs without parameters, expected
and liberal expected rewards for reachability objectives can be obtained by solving a linear programming problem, cf. [6].

F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 115

Example 13 (Expected Rewards).

Let T = {s2, s3}. Then ExpRew(s0 |H ♦T) = min{4 ·
1
2 , 4 ·

1
3 + 17 ·

1
2 } = min{2, 59

6 } = 2. And LExpRew(s0 |H ♦T) =

min{
1
2 + 4 ·

1
2 ,

1
6 + 4 ·

1
3 + 17 ·

1
2 } = min{2.5, 10} = 2.5. �

4. pGCL semantics

This section describes an expectation transformer semantics of pGCL, as well as an operational semantics using MDPs.
The main result of this section is a formal connection between these two semantics.

4.1. Denotational semantics

When probabilistic programs are executed they determine a probability distribution over final values of program
variables. For instance, on termination of

(x := 1 [0.75] x := 2);

the final value of x is 1 with probability 3
4 and 2 with probability 1

4 . An alternative way to characterise that probabilistic
behaviour is to consider the expected values over random variables with respect to that distribution. For example, to
determine the probability that x is set to 1, we can compute the expected value of the random variable ‘‘x is 1’’ which is
3
4 · 1 +

1
4 · 0 =

3
4 . Similarly, to determine the average value of x, we compute the expected value of the random variable ‘‘x’’

which is 3
4 · 1 +

1
4 · 2 =

5
4 .

More generally, rather than a distribution-centred approach [15,16], we take an ‘‘expectation transformer’’ [4] approach.
We annotate probabilistic programs with expectations. As before we assume a state space S, a set of parameters Par and a
set of expressions V (Par) over it.

Definition 14 (Expectation). Expectations are functions which map program states to (non-negative) real values or
expressions over parameters. The set of expectations over state space S is then

E = {f | f : S → R≥0 ∪ V (Par)}. �

Note that every expectation f maps to a non-negative real value or an expression that is non-negative for all possible
evaluations of its parameters. Expectations are the quantitative analogue to Hoare’s predicates for non-probabilistic
programs. An expectation transformer is a total function between two expectations. The expectation transformer wp(P, f)
for program P and post-expectation f yields the least expected value e on P ’s initial state ensuring that P ’s execution
terminates with a value f . Annotation ⟨e⟩ P ⟨f ⟩ holds for total correctness if and only if e ≤ wp(P, f) where ≤ is to
be interpreted in a point-wise manner. Intuitively, implication between predicates is generalised to pointwise inequality
between expectations. For convenience we use square brackets to cast Boolean truth values to numbers and by convention
[true] = 1 and [false] = 0.

Definition 15 (wp-semantics of pGCL [4]). Let P and Q be pGCL-programs, f a post-expectation, x a program variable, E an
expression, and G a Boolean expression. Thewp-semantics of a program is defined by structural induction over the program
as follows:

• wp(skip, f) = f
• wp(abort, f) = 0
• wp(x := E, f) = f [x/E]

• wp(P;Q , f) = wp(P,wp(Q , f))
• wp(if(G){P}else{Q }, f) = [G] · wp(P, f) + [¬G] · wp(Q , f)
• wp(P []Q , f) = min (wp(P, f),wp(Q , f))
• wp(P [p]Q , f) = p · wp(P, f) + (1 − p) · wp(Q , f)
• wp(while(G){P}, f) = µX . ([G] · wp(P, X) + [¬G] · f) .

116 F. Gretz et al. / Performance Evaluation 73 (2014) 110–132

Here f [x/E]denotes a function that is obtained from f by replacing every occurrence of xby E. The least fixedpoint operatorµ
is usedw.r.t. the ordering≤ on expectations. The existence of the fixed point can be seen from Theorem 30 in the Appendix.
We refer to [4] for more details. �

If program P does not contain a probabilistic choice, then this wp is isomorphic to Dijkstra’s wp [4]. A weakest liberal
pre-expectation wlp(P, f) yields the least expectation for which P either does not terminate or establishes f .

Definition 16 (wlp-semantics of pGCL). wlp-semantics differs from wp-semantics only for while and abort:
• wlp(abort, f) = 1
• wlp(while(G){P}, f) = νX . ([G] · wlp(P, X) + [¬G] · f).

Here ν is the greatest fixed point operator w.r.t. the ordering ≤ on expectations. �

While expectations do not need to be bounded from above in general, an upper bound is required for the definition of
wlp. This is because non-terminating programs produce the maximal pre-expectation which has to be well-defined. In this
paper we set this upper bound of wlp to one. In [17] a more general approach is discussed.

As the previous definitions indicate, the difference between wp and wlp lies in the handling of non-termination. The
expectation transformers wp and wlp coincide for programs that terminate with probability one as is the case for ExpRew
and LExpRew.

Example 17 (Application of wp-semantics). Consider again the duelling cowboys example. Assume we are given the post-
expectation:

f (c, t) = [t = A ∧ c = 0] + [t = A ∧ c = 1] ·
a

a + b − ab
+ [t = B ∧ c = 1] ·

(1 − b)a
a + b − ab

.

The post-expectation f gives the probability that A wins, depending on the state that the program is in. The states are
characterised by the predicates in square brackets. Let us compute the weakest pre-expectation of the loop body from Lst. 1
w.r.t. the post-expectation f . This yields:

wp(if(t = A){(c := 0 [a] t := B); }else{(c := 0 [b] t := A); }, f)
= [t = A] · wp((c := 0 [a] t := B), f) + [t ≠ A] · wp((c := 0 [b] t := A), f)
= [t = A] · (a · wp(c := 0, f) + (1 − a) · wp(t := B, f)) + [t ≠ A] · (b · wp(c := 0, f) + (1 − b) · wp(t := A, f))

= [t = A] ·

a ·

[t = A ∧ 0 = 0] + [t = A ∧ 0 = 1] ·

a
a + b − ab

+ [t = B ∧ 0 = 1] ·
(1 − b)a

a + b − ab

+ (1 − a) ·

[B = A ∧ c = 0] + [B = A ∧ c = 1] ·

a
a + b − ab

+ [B = B ∧ c = 1] ·
(1 − b)a

a + b − ab

+ [t ≠ A] ·

b ·

[t = A ∧ 0 = 0] + [t = A ∧ 0 = 1] ·

a
a + b − ab

+ [t = B ∧ 0 = 1] ·
(1 − b)a

a + b − ab

+ (1 − b) ·

[A = A ∧ c = 0] + [A = A ∧ c = 1] ·

a
a + b − ab

+ [A = B ∧ c = 1] ·
(1 − b)a

a + b − ab

= [t = A] ·

a · [t = A] + (1 − a) · [c = 1] ·

(1 − b)a
a + b − ab

+ [t ≠ A] ·

b · [t = A] + (1 − b)

[c = 0] + [c = 1] ·

a
a + b − ab

= [t = A] · a + [t = A ∧ c = 1] ·

(1 − a)(1 − b)a
a + b − ab

+ [t ≠ A ∧ c = 0] · (1 − b) + [t ≠ A ∧ c = 1] ·
(1 − b)a

a + b − ab

= [t = A ∧ c ≠ 1] · a + [t = A ∧ c = 1] ·
a

a + b − ab

+[t ≠ A ∧ c = 0] · (1 − b) + [t ≠ A ∧ c = 1] ·
(1 − b)a

a + b − ab
.

In the last step we use the fact that [t = A] · a can be split into

[t = A ∧ c = 1] · a + [t = A ∧ c ≠ 1] · a.

This computation tells us that if, say f describes the probability after one iteration of the loop that cowboy A wins, then the
computed expression gives the probability that A wins before that iteration of the loop. The result of this example will be
used in Section 5. �

F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 117

Table 1
Inference rules for pGCL programs.

⟨skip, η⟩ → ⟨exit, η⟩

⟨abort, η⟩ → ⟨abort, η⟩

⟨x := E, η⟩ → ⟨exit, η[x := [[E]]η]⟩

⟨P, η⟩ → µ

⟨P;Q , η⟩ → ν
with ν(⟨P ′

;Q , η′
⟩) = µ(⟨P ′, η′

⟩) where exit;Q = Q .

⟨P []Q , η⟩ → ⟨P, η⟩ ⟨P []Q , η⟩ → ⟨Q , η⟩

⟨P [p]Q , η⟩ → µ with µ(⟨P, η⟩) = p and µ(⟨Q , η⟩) = 1 − p

η |H G
⟨if(G){P} else {Q }, η⟩ → ⟨P, η⟩

η |̸H G
⟨if(G){P} else {Q }, η⟩ → ⟨Q , η⟩

η |H G
⟨while(G){P}, η⟩ → ⟨P;while(G){P}, η⟩

η |̸H G
⟨while(G){P}, η⟩ → ⟨exit, η⟩

4.2. Operational semantics

Our aim is to model the stepwise behaviour of a pGCL-program P by an MDP denoted M[[P]]. This MDP represents the
operational interpretation of the program P and intuitively acts as an abstract machine for P . This is done as follows. Let η be
a variable valuation of the program variables. That is, η is amapping from the program variables onto their (possibly infinite)
domains. For variable x, η(x) denotes the value of x under η. For expression E, let [[E]]η denote the value of E under valuation
η. This is defined in the standardway, e.g., for E = 2·x+ywith η(x) = 3 and η(y) = 7, we have [[E]]η = 2·η(x)+η(y) = 13.
We use the distinguished semantic construct exit to denote the successful termination of a program. States in the MDP are
of the form ⟨Q , η⟩ with Q a pGCL-statement or Q = exit and η a variable valuation. For instance, the execution of the
assignment x := 2 · x + y under valuation η with η(x) = 3 and η(y) = 7 results in the state ⟨exit, η′

⟩ where η′ is the same
as η except that η′(x) = 13. Initial states of program P are tuples ⟨P, η⟩ where η is arbitrary.

Definition 18 (Operational Semantics of pGCL). The operational semantics of pGCL-program P , denoted M[[P]], is the MDP
(S, S0, →) where:

• S is the set of pairs ⟨Q , η⟩ with Q a pGCL-program or Q = exit, and η is a variable valuation of the variables occurring in
P ,

• S0 = { ⟨P, η⟩ } where η is arbitrary, and
• → is the smallest relation that is induced by the inference rules in Table 1. �

Each rule tells us how to obtain the successors from a state. For example, in a state with probabilistic choice theMDPwill
make a transition to the parametric distributionµ. Then a successor state is chosen according toµ. We omit the distribution
when it is obvious and write an arrow to the successor instead. For instance the rules for non-deterministic choice are a
shorthand for

⟨P []Q , η⟩ → {µ, ν}

with µ(⟨P, η⟩) = 1 and ν(⟨Q , η⟩) = 1.

A premise is used to enable or disable transitions depending on the variable valuation of the current state. Consider the last
two rules: if the system evolves from a state that represents a loop, it will proceed to a state where the loop body has to be
executed once before going back to the loop header provided that the current variable valuation η satisfies the loop’s guard
G. If it does not, the last rule dictates that the loop is terminated, i.e. the system moves to an exit state.

Example 19 (Operational Semantics). Fig. 1 depicts the MDP underlying the cowboy example. This MDP is parameterised
with parameters a and b. Technically, for every possible initial variable evaluation there should be an initial state. However,
a programmer usually has to initialise the program variables before they may be used in a computation. This is also the case
in our example program from Lst. 1. Therefore it does not matter in which initial state we start as the initialisation steps
will always take us to the states (4, A, 1) or (4, B, 1). This observation allows us to represent the program by an MDP with
a finite state space where all initial states have been merged into one. A slight adaptation of our example program in which
we keep track of the number of shots before one of the cowboys dies, yields anMDPwith infinitelymany states. The support
of any distribution in this MDP is finite however. �

Let P
√

denote the set of states in MDP M[[P]] of the form ⟨exit, η⟩ for arbitrary variable valuation η. Note that states in
P

√

represent the successful termination of P . If P
√

is not reachable, program P diverges under all possible policies.

118 F. Gretz et al. / Performance Evaluation 73 (2014) 110–132

Fig. 1. MDP M for the duelling cowboys example. Each state is determined by a triple: (program location, value of t , value of c) where ∗ denotes an
arbitrary value.

Definition 20 (RMDP of a pGCL-program). Let P be a pGCL-program and f a post-expectation for P . The reward-MDP
associatedwith P and f is defined as Rf [[P]] = (M[[P]], r)with M[[P]] theMDP of P as defined before and reward function
r defined by r(s) = f (η) if s = ⟨exit, η⟩ ∈ P

√

and r(s) = 0 otherwise. �

Note that we use a special reward structure: only terminal states are assigned a reward which is not necessarily zero. All
other states have a zero reward. The following lemma explains how expected rewards can be computed in Rf [[P]].

Lemma 21 (Characterising Expected Rewards). For pGCL program P and a state s = ⟨P, η⟩, we have:

ExpRewRf [[P]](s |H ♦P
√

) = inf
P

π∈ PathsPmin(s,♦P

√

)

PP(π) · rP
√(π),

where PathsPmin(s, ♦P
√

) is the set containing all (finite) paths of the form s0 . . . sk with s0 = s, sk ∈ P
√

and si ∉ P
√

for all
0 ≤ i < k that adhere to the policy P. �

Proof. Let T = P
√

for pGCL program P . The proof requires a property stated in Remark 6 namely that in an MDP there are
only countably many finite paths that lead from one state to another. Consider the definition of expected reward:

inf
P

c∈C

c · PrP
{ π ∈ PathsP(s, ♦T) | rT (π) = c }.

Given that PrP(π |H ♦T) = PP(π) where prefix π of π is minimal and ends in T , the above term equals:

inf
P

c∈C

c · PP
{π ∈ PathsPmin(s, ♦T) | rT (π) = c}.

As in Rf [[P]] the number of finite path prefixes π that reach T and accumulate a reward c is countable we can rewrite the
sum into:

inf
P

π∈ PathsPmin(s,♦T)

PP(π) · rT (π). �

Lemma 21 expresses the expected reward in terms of paths that reach an exit state and their cumulative rewards. This
provides a straightforward way to calculate expected rewards (for finite systems). In the next subsection Lemma 21 will be
helpful in the proofs of our main results.

F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 119

Analogously we obtain:

Lemma 22 (Characterising Liberal Expected Rewards). For pGCL program P and variable valuation η, we have:

LExpRewRf [[P]](⟨P, η⟩ |H ♦P
√

) = inf
P

PrP(⟨P, η⟩ |̸H ♦P
√

) +

π∈ PathsPmin(s,♦P

√

)

PP(π) · rP
√(π)

 . �

Proof. Follows immediately from Definition 12 and Lemma 21. �

4.3. Correspondence between operational and expectation transformer semantics

We now present the main results of this paper: a formal relationship between thewp-semantics of pGCL-program P and
its operational semantics in terms of a RMDP, and similarly for the wlp-semantics. We first consider the wp-semantics.

Theorem 23 (Correspondence Theorem). For pGCL-program P, variable valuation η, and post-expectation f :

wp(P, f)(η) = ExpRewRf [[P]](⟨P, η⟩ |H ♦P
√

). �

Proof. By structural induction over thepGCLprogram P .Wewrite paths as sequences of states and leave out the distribution
in between each pair of states for the ease of presentation. In this proofweuse the alternative definition for expected rewards
given in Lemma 21.
Induction base:

• For P = skip we use the fact that skip does not change the post-expectation. We derive:

ExpRewRf [[skip]](⟨skip, η⟩ |H ♦skip
√

) = inf
P

π∈ PathsPmin(⟨skip,η⟩,♦skip

√

)

PP(π) · rskip
√(π)

= inf
P

PP(⟨skip, η⟩⟨exit, η⟩) · f (η)

= 1 · f (η)

= f (η)

= wp(skip, f)(η).

• For P = abort we use the fact that it fails to terminate and has a pre-expectation of zero. We derive:

ExpRewRf [[abort]](⟨abort, η⟩ |H ♦abort
√

) = inf
P

π∈ PathsPmin(⟨abort,η⟩,♦abort

√

)

PP(π) · rabort
√(π)

= 0
= wp(abort, f)(η)

as there is no path starting from ⟨abort, η⟩ that reaches an exit-state.
• Let P be the assignment x := E. For this case we apply the substitution:

ExpRewRf [[x:=E]](⟨x := E, η⟩ |H ♦(x := E)
√

) = inf
P

π∈ PathsPmin(⟨x:=E,η⟩,♦(x:=E)

√

)

PP(π) · r(x:=E)
√(π)

= inf
P

PP(⟨x := E, η⟩⟨exit, η[x/E]⟩) · f (η[x/E])

= 1 · f (η[x/E])

= f (η[x/E])

= f [x/E](η)

= wp(x := E, f)(η).

Induction hypothesis: assume that for program P (and analogously for Q)

wp(P, f)(η) = ExpRewRf [[P]](⟨P, η⟩ |H ♦P
√

).

Induction step:

120 F. Gretz et al. / Performance Evaluation 73 (2014) 110–132

• Consider the probabilistic choice P [p]Q (this also covers conditional choice since it can be written as P [[G]]Q).2 The
idea is to represent the expected reward as a weighted sum of the expected rewards computed from successor states.
This corresponds to the weighted sum for the weakest pre-expectation:

ExpRewRf [[P [p]Q]](⟨P [p]Q , η⟩ |H ♦(P [p]Q)
√

)

= inf
P

π∈ PathsPmin(⟨P [p]Q ,η⟩,♦(P [p]Q)

√

)

PP(π) · r(P [p]Q)
√(π)

= inf
P

π∈ PathsPmin(⟨P,η⟩,♦P

√

)

p · PP(π) · rP
√(π) +

π∈ PathsPmin(⟨Q ,η⟩,♦Q

√

)

(1 − p) · PP(π) · rQ
√(π)

∗
= p · inf

P1

π∈ Paths

P1
min(⟨P,η⟩,♦P

√

)

PP(π) · rP
√(π) + (1 − p) · inf

P2

π∈ Paths

P2
min(⟨Q ,η⟩,♦Q

√

)

PP(π) · rQ
√(π)

= p · ExpRewRf [[P]](⟨P, η⟩ |H ♦P
√

) + (1 − p) · ExpRewRf [[Q]](⟨Q , η⟩ |H ♦Q
√

)

I.H.
= p · wp(P, f)(η) + (1 − p) · wp(Q , f)(η)

= wp(P [p]Q , f)(η).

In ∗ we use the fact that the policy for paths starting in ⟨P, η⟩ is independent of the policy for paths starting in ⟨Q , η⟩

because they are positional policies.
• Consider the non-deterministic choice P []Q which is analogous to probabilistic choice, except that min replaces the

weighted sum:

ExpRewRf [[P []Q]](⟨P []Q , η⟩ |H ♦(P []Q)
√

)

= inf
P

π∈ PathsPmin(⟨P []Q ,η⟩,♦(P []Q)

√

)

PP(π) · r(P []Q)
√(π)

= min

inf
P

π∈ PathsPmin(⟨P,η⟩,♦P

√

)

PP(π) · rP
√(π), inf

P

π∈ PathsPmin(⟨Q ,η⟩,♦Q

√

)

PP(π) · rQ
√(π)

= min{ExpRewRf [[P]](⟨P, η⟩ |H ♦P

√

), ExpRewRf [[Q]](⟨Q , η⟩ |H ♦Q
√

)}

I.H.
= min{wp(P, f),wp(Q , f)}
= wp(P[]Q , f)(η).

• Consider the sequential composition P;Q . The idea is break up each path into a prefix that corresponds to the execution
of P and a suffix that corresponds to the execution of Q . We can then compute the expected reward over the suffixes
and use this intermediate result to compute the expected reward over the prefixes which corresponds to the nesting of
weakest pre-expectations:

ExpRewRf [[P;Q]](⟨P;Q , η⟩ |H ♦(P;Q)
√

)

= inf
P

π∈ PathsPmin(⟨P;Q ,η⟩,♦(P;Q)

√

)

PP(π) · r(P;Q)
√(π)

∗
= inf

P

π∈ PathsPmin(⟨P;Q ,η⟩,♦P

√

)

PP(π) · rq
P
√(π) where rq

P
√(π) is the sum of rewards rq along π with

rq(s) = inf
P′

π ′∈PathsP

′

min(s,♦Q
√

)

PP′

(π ′) · rQ
√(π ′)

 if s ∈ P
√

and rq(s) = 0 otherwise

= ExpRewRg [[P]](⟨P, η⟩ |H ♦P
√

) where g(η) = ExpRewRf [[Q]](⟨Q , η⟩ |H ♦Q
√

)

I.H.
= wp(P;wp(Q , f))(η)

= wp(P;Q , f)(η).

In ∗ we divide each path into the aforementioned pre- and suffixes. We use the positionality of policies as the policies
according to which the suffixes are constructed are independent of the history, i.e. the prefix of those paths.

2 The guard is enclosed in square brackets twice: the inner brackets cast the Boolean formula to a {0, 1}-valued function, the outer brackets are part of
the probabilistic choice statement.

F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 121

• Consider the loopwhile(G){P}. For this case we show by induction that the two semantics correspond for every iteration
that the loop performs.We rely on the previously shown cases for abort, skip and sequential composition. Let the bounded
while-loop for k > 0 be

(while(G){P})k+1
= if(G){P; (while(G){P})k} else {skip}

where the base case is (while(G){P})0 = abort. We will show for every k that

wp((while(G){P})k, f)(η) = ExpRewRf [[(while(G){P})k]](η). (1)

Observe that

wp((while(G){P})k+1, f)(η) ≥ wp((while(G){P})k, f)(η).

From the fixpoint Theorem 3 in [18] we know that themore iterations the boundedwhile loop is allowed to perform, the
closer it approximates the fixpoint given in Definition 15. Formally this means

lim
k→∞

wp((while(G){P})k, f)(η) = wp(while(G){P}, f)(η). (2)

A thorough justification for (2) is given in Appendix A.
From (1) it follows that for every k, ExpRew behaves identically to wp. Thus with (2) it follows that

wp(while(G){P}, f)(η) = ExpRewRf [[while(G){P}]](η).

It remains to prove (1). This is done by induction on k. Base case (k = 0):

wp((while(G){P})0, f)(η) = wp(abort, f)(η)
∗
= ExpRewRf [[abort]](η)

= ExpRewRf [[(while(G){P})0]](η)

(∗) was already shown earlier in the case abort.
Induction hypothesis: Eq. (1) holds for some unspecified but fixed value of k.
Induction step:

wp((while(G){P})k+1, f)(η) = wp(if(G){P; (while(G){P})k}else{skip}, f)(η)

=

[G] · wp(P; (while(G){P})k, f) + [¬G] · wp(skip, f)

(η)

∗
=

[G] · ExpRewRf [[P;(while(G){P})k]]

+ [¬G] · ExpRewRf [[skip]]

(η)

= ExpRewRf [[if(G){P;(while(G){P})k}else{skip}]](η)

= ExpRewRf [[(while(G){P})k+1
]](η)

(∗) follows from the induction hypothesis and the previously shown cases for skip and sequential composition. �

Thus, wp(P, f) evaluated at η is the least expected value of f over any of the result distributions of P .

Theorem 24 (Correspondence Theorem for Liberal Semantics). For pGCL-program P, variable valuation η, and post-expectation
f :

wlp(P, f)(η) = LExpRewRf [[P]](⟨P, η⟩ |H ♦P
√

). �

Proof. By structural induction over the pGCL program P (analogously to the proof of Theorem 23). Similarly we
apply Lemma 22 here. To avoid repetition we skip the base cases which are rather simple.

Induction hypothesis: assume that for program P (and analogously for Q)

wlp(P, f)(η) = LExpRewRf [[P]](⟨P, η⟩ |H ♦P
√

).

Induction step:

• Consider the probabilistic choice P [p]Q (again, this covers conditional choice):

LExpRewRf [[P [p]Q]](⟨P [p]Q , η⟩ |H ♦(P [p]Q)
√

)

= inf
P

PrP(⟨P [p]Q , η⟩ |̸H ♦(P [p]Q)
√

) +

π∈ PathsPmin(⟨P [p]Q ,η⟩,♦(P [p]Q)

√

)

PP(π) · r(P [p]Q)
√(π)

= inf
P

p · PrP(⟨P, η⟩ |̸H ♦P
√

) +

π∈ PathsPmin(⟨P,η⟩,♦P

√

)

p · PP(π) · rP
√(π)

122 F. Gretz et al. / Performance Evaluation 73 (2014) 110–132

+ (1 − p) · PrP(⟨Q , η⟩ |̸H ♦Q
√

) +

π∈ PathsPmin(⟨Q ,η⟩,♦Q

√

)

(1 − p) · PP(π) · rQ
√(π)

= p · inf

P1
PrP1(⟨P, η⟩ |̸H ♦P

√

) +

π∈ Paths

P1
min(⟨P,η⟩,♦P

√

)

PP(π) · rP
√(π)

+ (1 − p) · inf
P2

PrP2(⟨Q , η⟩ |̸H ♦Q
√

) +

π∈ Paths

P2
min(⟨Q ,η⟩,♦Q

√

)

PP(π) · rQ
√(π)

= p · LExpRewRf [[P]](⟨P, η⟩ |H ♦P
√

) + (1 − p) · LExpRewRf [[Q]](⟨Q , η⟩ |H ♦Q
√

)

I.H.
= p · wlp(P, f)(η) + (1 − p) · wlp(Q , f)(η)

= wlp(P [p]Q , f)(η).

• Consider the non-deterministic choice P []Q :

LExpRewRf [[P []Q]](⟨P []Q , η⟩ |H ♦(P []Q)
√

)

= inf
P

PrP(⟨P []Q , η⟩ |̸H ♦(P []Q)
√

) +

π∈ PathsPmin(⟨P []Q ,η⟩,♦(P []Q)

√

)

PP(π) · r(P []Q)
√(π)

= min

inf
P

PrP(⟨P, η⟩ |̸H ♦P
√

) +

π∈ PathsPmin(⟨P,η⟩,♦P

√

)

PP(π) · rP
√(π)

 ,

inf
P

PrP(⟨Q , η⟩ |̸H ♦Q
√

) +

π∈ PathsPmin(⟨Q ,η⟩,♦Q

√

)

PP(π) · rQ
√(π)

= min{LExpRewRf [[P]](⟨P, η⟩ |H ♦P

√

), LExpRewRf [[Q]](⟨Q , η⟩ |H ♦Q
√

)}

I.H.
= min{wlp(P, f)(η),wlp(Q , f)(η)}

= wlp(P[]Q , f)(η).

• Consider the sequential composition P;Q :

LExpRewRf [[P;Q]](⟨P;Q , η⟩ |H ♦(P;Q)
√

)

= inf
P

PrP
{⟨P;Q , η⟩ |̸H ♦(P;Q)

√

} +

π∈ PathsPmin(⟨P;Q ,η⟩,♦(P;Q)

√

)

PP(π) · r(P;Q)
√(π)

∗
= inf

P

PrP
{⟨P, η⟩ |̸H ♦P

√

} +

π∈ PathsPmin(⟨P;Q ,η⟩,♦P

√

)

PP(π) · rq
P
√(π)

where rq

P
√(π) is the sum of rewards rq along π with

rq(s) = inf
P′

PrP′

{⟨Q , η′
⟩ |̸H ♦Q

√

} +

π ′∈ PathsP

′

min(s,♦Q
√

)

PP′

(π ′) · rQ
√(π ′)

 if s ∈ P
√

and rq(s) = 0 otherwise

= LExpRewRg [[P]](⟨P, η⟩ |H ♦P
√

) where g(η) = LExpRewRf [[Q]](⟨Q , η⟩ |H ♦Q
√

)
I.H.
= wlp(P;wlp(Q , f))(η)
= wlp(P;Q , f)(η).

In ∗ we again rewrite each path into a prefix and a suffix and use positionality of policies. Additionally, observe that
diverging paths are also split up into paths that already diverge before reaching an exit state of P and paths that do reach
the end of P but diverge before reaching an exit state ofQ . The probability of the former is captured by PrP

{⟨P, η⟩ |̸H ♦P
√

}

and the probability of the latter is the product of the probability of the prefix and the suffix whose probability is captured
by rq

P
√ .

• Consider the loop while(G){P}. Again we prove this case by induction on the number of iterations that a while-loop
performs. Let (while(G){P})k be defined as in the proof of the previous theorem. We show for every k that

wlp((while(G){P})k, f)(η) = LExpRewRf [[(while(G){P})k]](η). (3)

F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 123

The only difference is now that

wlp((while(G){P})k+1, f)(η) ≤ wlp((while(G){P})k, f)(η).

Using this we again know that the bounded while loop approximates the fixpoint given in Definition 16 (only this time
from above). Formally this means

lim
k→∞

wlp((while(G){P})k, f)(η) = wlp(while(G){P}, f)(η). (4)

From (3) we know that for every k LExpRew behaves identically to wlp. Thus with (4) it follows that

wlp(while(G){P}, f)(η) = LExpRewRf [[while(G){P}]](η).

It remains to prove (3). This is done by induction on k. Base case (k = 0):

wlp((while(G){P})0, f)(η) = wlp(abort, f)(η)
∗
= LExpRewRf [[abort]](η)

= LExpRewRf [[(while(G){P})0]](η)

(∗) was already shown earlier in the case abort.
Induction hypothesis: Eq. (3) holds for some unspecified but fixed value of k.
Induction step:

wlp((while(G){P})k+1, f)(η) = wlp(if(G){P; (while(G){P})k}else{skip}, f)(η)

=

[G] · wlp(P; (while(G){P})k, f) + [¬G] · wlp(skip, f)

(η)

∗
=

[G] · LExpRewRf [[P;(while(G){P})k]]

+ [¬G] · LExpRewRf [[skip]]

(η)

= LExpRewRf [[if(G){P;(while(G){P})k}else{skip}]](η)

= LExpRewRf [[(while(G){P})k+1
]](η)

(∗) follows from the induction hypothesis and the previously shown cases for skip and sequential composition. �

The weakest liberal pre-expectation wlp(P, f) is thus the least expected value of f over any of the result distributions of
P plus the probability that P does not terminate.

Example 25 (Duelling Cowboys). Consider again the duelling cowboys example from Lst. 1. Assume we are interested in the
probability that cowboy A wins the duel. In terms of the MDP semantics this means we are interested in

ExpRew(M,r)(⟨2, ∗, ∗⟩ |H ♦(M, r)
√

)

where M is the MDP from Fig. 1 and r is the reward function that indicates whether cowboy A has won or not, i.e.

r(s) =

1 if s = ⟨11, A, 0⟩
0 otherwise.

In this example the MDP is finite and this allows us to compute the desired expected cumulative reward easily. That is,
cowboy A wins with probability at least

(1 − b)a
a + b − ab

.

Fig. 2 visualises this result. We nicely see how the expected winning chance depends on a and b. Parameterising our model
allows us to carry out a calculation only once and make statements about all possible refinements of the system. According
to Theorem 23we can obtain the same result when applying the expectation transformermechanism. The following section
illustrates how this works. �

5. Analysis

Although the computation of (liberal) expected rewards on MDPs may be numerically involved, its basic idea is intuitive
in principle. However, pGCL programs will often have an infinite state space in particular due to the infinite domain of the
program variables. In that case it is not possible to compute the expected reward on the rewardmodel in general. In contrast
to this, the denotational semantics does not depend on the underlying state space but on the structure of the program. In
this section we show how to determine a pre-expectation using wp-semantics.

Again let us determine the probability that cowboy Awins the duel. Therefore we choose [t = A] as the post-expectation
and determine wp(cowboyDuel, [t = A]).

124 F. Gretz et al. / Performance Evaluation 73 (2014) 110–132

Fig. 2. Probability that A wins the duel, depending on a and b. Bear in mind that this is the least guaranteed probability that A wins. In the worst case (for
A) cowboy B will shoot first and therefore as b tends to 1 the plot goes to 0, i.e. cowboy A has no chances. However for smaller values of b the influence of
a increases.

Listing 2 shows the program cowboyDuel with annotations.

Listing 2: The duelling cowboys, annotated with expectations.

1 ⟨
(1−b)a
a+b−ab ⟩

2 ⟨min{
a

a+b−ab ,
(1−b)a
a+b−ab }⟩

3 (t := A [] t := B);
4 ⟨[t = A] ·

a
a+b−ab + [t = B] ·

(1−b)a
a+b−ab ⟩

5 c := 1;
6 ⟨[t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] ·

a
a+b−ab +[t = B ∧ c = 1] ·

(1−b)a
a+b−ab ⟩

7 while (c = 1) {
8 ⟨[t = A ∧ c = 1] ·

a
a+b−ab + [t = B ∧ c = 1] ·

(1−b)a
a+b−ab ⟩

9 ⟨[t = A ∧ c ≠ 1] · a + [t = A ∧ c = 1] ·
a

a+b−ab + [t = B ∧ c = 0] · (1 − b) + [t = B ∧ c = 1] ·
(1−b)a
a+b−ab ⟩

10 if (t = A) {
11 (c := 0 [a] t := B);
12 } else {
13 (c := 0 [b] t := A);
14 }
15 ⟨[t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] ·

a
a+b−ab + [t = B ∧ c = 1] ·

(1−b)a
a+b−ab ⟩

16 }

17 ⟨[c ≠ 1] ·

[t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] ·

a
a+b−ab + [t = B ∧ c = 1] ·

(1−b)a
a+b−ab

⟩

18 ⟨[t = A]⟩

The program is annotated backwards according to the rules from Definition 15. In line 18 we start with the post-
expectation that we are interested in. We finish with the sought probability in line 1. The only non-trivial step is to discover
the so-called invariant which appears in lines 6 and 15. But let us assume for the moment that it is given. Then all other
annotations are obtained by applying the syntactic rules from Definition 15 and rewriting. We can rewrite the expectation
in line 9 into the expectation in line 8 because at this point the program must be in a state where c = 1 (the loop guard)
holds and the expectations are equivalent for all these states. The same applies to expectations in lines 17 and 18 because
at that point c ≠ 1 holds. The calculation from line 15 to line 9 was already shown in Example 17. This means that once we
have found the aforementioned invariant, the analysis can be automatically carried out by a computer — irrespective of the
underlying state space size.

6. Invariants

The annotation in lines 6 and 15 of Lst. 2 which we call an invariant is an expectation that over-approximates the fixed
point solution in Definition 15. In the following we use I for invariant expectations.

Definition 26 (Probabilistic Invariant). An expectation I is called invariant for a loop while(G){P} if

I · [G] ≤ wlp(P, I). � (5)

F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 125

In our example, I is the expectation in line 6, G is the loop guard c = 1 and loop body P is the code in lines 10–14. In line
8, the expectation represents I · [G] and line 9 is wlp(P, I). Clearly, (5) is satisfied in our example.

6.1. Standard invariants

Before we elaborate more on invariants for probabilistic programs, let us consider invariants for traditional, non-
probabilistic programs and how they are used. For thiswe remind the reader of the non-probabilistic version of Definition 26
along the lines of [1].

Definition 27 (Standard Invariant). A predicate I is called invariant for a loop while(G){P} if

I ∧ G ⇒ wlp(P, I). � (6)

In this definition a single iteration of the loop body P is considered. The implication ensures that an execution of the loop
body preserves the validity of I. Note that G appears in the premise because we restrict our attention to states from which
the loop will perform (at least) one iteration. States characterised by I ∧ ¬G are irrelevant because the loop will be skipped
and one can trivially conclude that at the end of the loop’s execution I is still true. Since (6) has to be satisfied on every
iteration of the loop it follows that any execution beginning in a state that satisfies the invariant will terminate in a state
that again satisfies the invariant (or the execution of the loop does not terminate). This property is colloquially summarised
as ‘‘the set of states characterised by I is not left by the execution of the loop’’.

The key motivation for invariant annotations is that they establish the following relationship:

I ⇒ wlp(while(G){P}, I ∧ ¬G).

This relationship is called partial correctness. It means that every execution of the loop from a state satisfying the invariant
can only terminate in a state that also satisfies the invariant and violates the guard G. The correctness is partial because
it is possible that there are some executions which never terminate. In a separate proof, e.g. using a loop variant, one can
establish that the loop terminates when started in some state in I. This gives us total correctness:

I ⇒ wp(while(G){P}, I ∧ ¬G).

In practice one usually wants to prove that given some precondition pre before the beginning of the loop, the postcondition
post will hold after the loop’s execution. The straightforward way is to show this by directly applying wp semantics, i.e.
proving

pre ⇒ wp(while(G){P}, post).

But it turns out to be hard because this requires to find the least fixed point of the loop with respect to post. Although that
fixed point is mathematically well-defined it often is difficult to compute it in practice. Instead it usually3 is easier to

1. find a predicate I such that

pre ⇒ I and I ∧ ¬G ⇒ post,

2. show I is invariant for the loop while(G){P}, cf. Definition 27 and
3. prove that the loop terminates from any state in I ∧ G.

Via this detour the same relation between pre and post is established as

pre ⇒ I ⇒ wp(while(G){P}, I ∧ ¬G) and I ∧ ¬G ⇒ post.

6.2. Probabilistic invariants

Let us now return to probabilistic programs. In the probabilistic setting, we use an invariant I in the same way but this
time it is an expectation. The post-expectation I · [¬G] has the pre-expectation I.

However there is a crucial difference between non-probabilistic and probabilistic programs. Once we have shown that
the loop in a non-probabilistic program terminates we have at the same time established that the set of reachable states
is finite. This is because in a non-probabilistic program there may be several different executions from a given state due to
non-determinism but the proof of termination shows that there are only finitely many emanating executions and each of
them has finite length. For probabilistic programs the situation is somewhat different. Consider the example in Lst. 3 below.

3 One can construct a loop and pre- and postconditions such that the alternative approach turns out to be as hard as finding the fixed point. In practice
however there is a big difference.

126 F. Gretz et al. / Performance Evaluation 73 (2014) 110–132

Listing 3: Symmetric random walk over N with absorbing barrier at zero [4].
1 n := 1;
2 while(n != 0){
3 (n := n - 1 [0.5] n := n + 1);
4 }

This loop will terminate with probability one4 because the probability of an infinite walk is zero. However there exist
infinitely many different walks of finite length from the initial state. Each of these walks has a positive probability. To
convince ourselves that this indeed makes a difference we choose the invariant I = n. It does satisfy Definition 26. Hence,

n ≤ wlp(while(n ≠ 0){n := n − 1 [0.5] n := n + 1}, n · [n = 0]).

And we have already shown that the loop terminates almost surely. We could therefore falsely conclude that

n ≤ wp(while(n ≠ 0){n := n − 1 [0.5] n := n + 1}, n · [n = 0]).

This would ‘‘prove’’ that the expected value of n · [n = 0] depends on the initial value of n and in the given example it is one.
This of course is wrong as n · [n = 0] is zero everywhere. It is a nice exercise to compute the fixed point of this loopw.r.t. n. It
gives a function that evaluates to zero for every nwhich coincides with the intuition that the expected outcome, in fact the
only possible one, is zero. This also nicely shows that establishing termination is not the same as establishing termination
with probability one.

In conclusion, given a probabilistic loop while(G){P} and a post-expectation post, we can establish an upper bound for
pre-expectation pre if we

1. find an expectation I such that

pre ≤ I and I ∧ ¬G ≤ post,

2. show I is invariant for the loop while(G){P}, cf. Definition 26,
3. prove that the loop terminates from any state in Gwith probability one and
4. either show that from every initial state of the loop only a finite state space is reachable

or make sure that I is bounded from above by some fixed constant
or show that wp(P, I · [G]) tends to zero as the number of iterations tends to infinity.

The last item gives sufficient conditions to make reasoning with invariants sound for probabilistic programs [4, pp. 71–72].
Even thoughwe argue that finding invariants and proving termination separately is easier than computing the least fixed

point of the loop directly, it still remains a hard task to find a non-trivial invariant. Trivial invariants are constant functions
such as 0 or 1 which are invariant for every loop but will hardly be useful for calculating an expectation. The invariant
generation process is a topic on its own and beyond the scope of this paper. For probabilistic programs we have developed a
constraint-based approach to generate invariants [19]. These ideas were implemented in our recently developed prototype
tool Prinsys [12]. It helps the user to find invariants for probabilistic programs semi-automatically. For instance, it was
applied to our running example, the duelling cowboys, to calculate cowboy A’s winning probability in Section 5.

In the rest of this section we apply our theoretical set-up to obtain an operational view of invariants for probabilistic
systems.

6.3. Characterising invariants operationally

Recall that invariants for non-probabilistic programs are predicates, and they characterise the set of states that is never
left by a loop as discussed before. This yields a straightforward operational characterisation of invariants: in a transition
system that represents the loop we can identify a set of states with the property that one iteration of the loop started in
such a state will end in this set again. If we can describe this set by a predicate this predicate will satisfy Definition 27.

For probabilistic programs the situation ismore complicated. Invariants are expectations andnot predicates and therefore
do not necessarily characterise states. Instead they assign values to states such that an execution of the loop body started
from a state with value e will on average end in a state with a value no less than e (if the execution terminates at all).
Thus invariants establish lower bounds on pre-expectations. In fact, this idea generalises standard invariants which can be
represented as {0, 1}-valued expectations.

Theorem 24 allows us to give an operational interpretation to invariants for probabilistic programs in terms of MDPs.
Given an MDP for a while loop that is constructed according to the rules in Table 1 we can characterise an invariant in the
following way:

4 Also referred to as almost sure termination.

F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 127

Corollary 28 (Operational Interpretation of Quantitative Loop Invariants). An expectation I is invariant for the loopwhile(G){P}

if in M[[while(G){P}]] for any state s of the form ⟨P;while(G){P}, η⟩:

I(η) ≤ LExpRewRI [[P]](⟨P, η⟩ |H ♦P
√

).

Intuitively this formula requires that the liberal expected reward w.r.t. the execution of the loop body P and the post-
expectation I is bounded from below by I. Corollary 28 is an immediate consequence of Definition 26 and Theorem 24.
On the left hand side we evaluate I on η in those states where the loop has just been entered. This corresponds to the
left hand side of the inequality in Definition 26. For the right hand side we have applied Theorem 24 to the right hand
side of Definition 26. Thus the operational characterisation of invariants requires an expectation to meet a set of inequality
constraints. Any expectation that is a solution to this set of constraints will satisfy Definition 26 as well. The difference
between Definition 26 and Corollary 28 is that the former gives one inequality between two functions and this inequality
is obtained by applying the wlp calculus while the latter gives one inequality for every possible initial state of the loop and
each inequality is obtained by calculating a reachability objective in an MDP.

Below is an example for two different expectation functions, one of which is invariant and the other is not.

Example 29 (Invariants).

Both MDPs represent the loop from our running example in Lst. 1. Here the solid black states are of the form
⟨P;while(G){P}, η⟩ and the grey shaded states are the ones where one iteration of the loop has finished.

Let us once again consider the expectation

f = [t = A ∧ c = 0] · 1 + [t = A ∧ c = 1] ·
a

a + b − ab
+ [t = B ∧ c = 1] ·

(1 − b)a
a + b − ab

.

We evaluate this expectation in the black and grey states of the left MDP. According to Corollary 28 the following two
inequalities have to be checked:

f (A, 1) =
a

a + b − ab
≤

a
a + b − ab

= a · 1 + (1 − a) ·
(1 − b)a

a + b − ab
= a · f (A, 0) + (1 − a) · f (B, 1) ✓

f (B, 1) =
(1 − b)a

a + b − ab
≤

(1 − b)a
a + b − ab

= b · 0 + (1 − b) ·
a

a + b − ab
= b · f (B, 0) + (1 − b) · f (A, 1) ✓.

Both are fulfilled and hence f is invariant.
Now let us choose a different expectation, for instance

g = [t = A] · c.

128 F. Gretz et al. / Performance Evaluation 73 (2014) 110–132

The expectation g is evaluated on the black and grey states of the right MDP and the inequalities given by Corollary 28
become:

g(A, 1) = 1 ≰ 0
= a · 0 + (1 − a) · 0
= a · g(A, 0) + (1 − a) · g(B, 1) ×

g(B, 1) = 0 ≤ 1 − b
= b · 0 + (1 − b) · 1
= b · g(B, 0) + (1 − b) · g(A, 1) ✓.

We find out that g is not invariant because the inequality corresponding to state ⟨4, A, 1⟩ does not hold. �

In this section we have discussed the purpose of invariants and their properties. Furthermore we have shown an
operational characterisation for invariants for probabilistic programs. As mentioned above, in other work [19] we have
developed a technique to support the semi-automatic discovery of loop invariants which can be used to verify probabilistic
properties of while loops.

7. Conclusion

This paper provides a formal connection between the expectation transformer semantics of pGCL by McIver and
Morgan [4] and a simple operational semantics using (parametric) MDPs. This yields an insightful relationship between
semantics used for deductive reasoning for probabilistic programs and the notion of a computation in terms of an MDP.
Our approach assigns rewards to terminal states (only), and establishes that expected cumulative rewards correspond to
wp-semantics. A slight variant of expected rewards yields a connection to the wlp-semantics.

The presented operational semantics provides a connection to model-checking algorithms for MDPs. In case a
pGCL program yields a finite (parameterised) MDP, expected cumulative rewards (and thus weakest pre-expectations) can
be computed by solving rational functions [20]. Future research will focus on exploiting results on the analysis of infinite
MDPs (such as one-counter MDPs) to the verification of pGCL programs.

Acknowledgements

This work is supported by the DFG Research Training Group 1298 ‘‘AlgoSyn’’, the iMQRES scholarship, the EU FP7 project
CARP (Correct and Efficient Accelerator Programming), the DFG–NWO bilateral ROCKS project and by Australian Research
Council Discovery Grant DP1092464. The authors would like to thank Daniel Stan (ENS Cachan) who during his internship
at the RWTH University contributed to the proof that appears in the Appendix. Additionally, we thank Tahiry Rabehaja and
the anonymous reviewers for their valuable feedback.

Appendix. Proofs

In the proofs of Theorems 23 and 24 we rely on the fact that the wp and wlp semantics of a loop can be seen as the limit
of a loop that may perform only n steps where n tends to infinity. This is a consequence of one of the renowned fixed point
theorems. In [18] the authors discuss several similar fixed point theorems due to Kleene, Knaster and Tarski. We justify our
proof by what they propose as the ‘‘folk theorem’’:

Theorem 30 (Theorem 3 in [18]). Every continuous function F over a cpo has a least fixed point which is lubn∈N{F n(⊥)}. �

Note that ‘‘continuous’’ means Scott-continuous here. In the following we define the necessary notions to understand
the theorem and subsequently show that our expectation transformer wp(P, ·) is indeed a Scott-continuous function.
Hence we can characterise the behaviour of a loop by the supremum5 over the behaviours of bounded loops. Finally, since
wp((while(G){P})k, ·) ismonotonically increasingwe can exchange supremum for limit. Analogously,wlp((while(G){P})k, ·)
is monotonically decreasing and the infimum can be replaced by the limit as well.

The first necessary notion is that of a directed set.

Definition 31 (Directed Set).Anon-empty setD is directed if for all x, y ∈ D, there exists z ∈ D such that z ≥ x and z ≥ y. �

The expectation space (E, ≤) (cf. Definition 14, page 6) is directed because for any two expectations we can find an
expectation which is (pointwise) greater than both, for example by taking their pointwise supremum.

Definition 32 (Complete Partial Order). A set C is a (directed) complete partial order (cpo) if for every directed subset D ⊆ C
the supremum of D exists and lies in C . �

5 Least upper bound (lub) and supremum (sup) mean the same.

F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 129

(E, ≤) is not a cpo in general because there is no top element. Hence infinitely ascending chains are possible in (E, ≤).
So for technical reasons we assume there is a top element ∞ in E such that for any directed subset D of expectations we
can take the pointwise supremumwhich again is in E. Alternatively we may restrict ourselves to pGCL programs for which
we can prove that a bounded post-expectation will always be transformed to a bounded pre-expectation. This alternative
approach is taken in [4].

Note that Theorem 30 above requires a bottom element ⊥ in the cpo. In the domain of expectations this is the constant
0 function.

Definition 33 (Scott-Continuous Function). Let C , C ′ be cpo’s. A function F : C → C ′ is Scott-continuous if

• for all directed subsets D ⊆ C , the image F(D) is directed and
• F(supD) = sup F(D). �

This concludes our introduction of necessary definitions and we can now prove the following lemma that justifies the
application of Theorem 30 in the proof of Theorem 23 (and similarly Theorem 24).

Lemma 34 (Continuity of Expectation Transformers). For every pGCL program P the expectation transformer wp(P, ·) is a Scott-
continuous function over (E, ≤). The same holds for wlp(P, ·). �

Proof. The first point of Definition 33 follows immediately from monotonicity of wp(P, ·).
It remains to show that for any directed subset D of expectations

wp(P, sup
f∈D

f) = sup
f∈D

wp(P, f).

The proof is carried out by induction on the structure of the program P .

Induction base:

• P = skip:

wp(skip, sup
f∈D

f) = sup
f∈D

f = sup
f∈D

wp(skip, f).

• P = abort:

wp(abort, sup
f∈D

f) = 0 = sup
f∈D

wp(abort, f).

• Let P be an assignment x := E:

wp(x := E, sup
f∈D

f) =

sup
f∈D

f

[x/E]

∗
= sup

f∈D
(f [x/E])

= sup
f∈D

wp(x := E, f).

For (∗) observe that one can construct the supremum expectation and then substitute x for the expression E or first do
the substitution and then construct (the same) pointwise supremum.

Induction hypothesis: assume that for program P (and analogously for Q)

wp(P, sup
f∈D

f) = sup
f∈D

wp(P, f).

Induction step:

• Consider the sequential composition P;Q :

wp(P;Q , sup
f∈D

f) = wp(P,wp(Q , sup
f∈D

f))

I.H.
= wp(P, sup

f∈D
wp(Q , f))

I.H.
= sup

f∈D
wp(P,wp(Q , f)).

130 F. Gretz et al. / Performance Evaluation 73 (2014) 110–132

• Consider the probabilistic choice P [p]Q (this also covers conditional choice because it can be rewritten as P [[G]]Q):
A property of sup immediately provides an inequality:

wp(P [p]Q , sup
f∈D

f) = p · wp(P, sup
f∈D

f) + (1 − p) · wp(Q , sup
f∈D

f)

I.H.
= sup

f∈D
(p · wp(P, f)) + sup

f∈D
((1 − p) · wp(Q , f))

≥ sup
f∈D

(p · wp(P, f) + (1 − p) · wp(Q , f))

= sup
f∈D

wp(P [p]Q , f).

We can strengthen the inequality to equality. Assume for the purpose of contradiction that

sup
f∈D

(p · wp(P, f) + (1 − p) · wp(Q , f)) < sup
f∈D

(p · wp(P, f)) + sup
f∈D

((1 − p) · wp(Q , f)) .

Then by definition of sup there must exist g1, g2 ∈ D for which this strict inequality holds.

sup
f∈D

(p · wp(P, f) + (1 − p) · wp(Q , f)) < p · wp(P, g1) + (1 − p) · wp(Q , g2)

∗

≤ p · wp(P, h) + (1 − p) · wp(Q , h)
≤ sup

f∈D
(p · wp(P, f) + (1 − p) · wp(Q , f)) Contradiction!

Where in (∗) we use that D is directed and therefore there is an h ∈ D with g1 ≤ h and g2 ≤ h. And since wp(P, ·) is
monotonous for any P , the summands cannot decrease and hence the sum cannot decrease which gives the (non-strict)
inequality.

• Consider the non-deterministic choice P []Q . The proof for this case goes along the same lines as for probabilistic choice:
A property of sup immediately provides an inequality:

wp(P []Q , sup
f∈D

f) = min

wp(P, sup

f∈D
f),wp(Q , sup

f∈D
f)

I.H.
= min

sup
f∈D

wp(P, f), sup
f∈D

wp(Q , f)

≥ sup
f∈D

min {wp(P, f),wp(Q , f)}

= sup
f∈D

wp(P []Q , f).

We can strengthen the inequality to equality. Assume for the purpose of contradiction that

sup
f∈D

min {wp(P, f),wp(Q , f)} < min

sup
f∈D

wp(P, f), sup
f∈D

wp(Q , f)

.

Then by definition of sup there must exist g1, g2 ∈ D for which this strict inequality holds.

sup
f∈D

min {wp(P, f),wp(Q , f)} < min {wp(P, g1),wp(Q , g2)}

≤ min {wp(P, h),wp(Q , h)}
≤ sup

f∈D
min {wp(P, f),wp(Q , f)} Contradiction!

• Consider the loop while(G){P}.
In Definition 15, the semantics of the loop (w.r.t. a post-expectation f) were defined as the least fixed point of a

function

F(X) = [G] · wp(P, X) + [¬G] · f .

For the sake of notation we additionally define:

Fsup(X) = [G] · wp(P, X) + [¬G] · sup
f∈D

f .

By the induction hypothesis F(X) is Scott-continuous in X . Therefore we can apply Theorem 30:

µX .F(X) = sup
n∈N

F n(0).

F. Gretz et al. / Performance Evaluation 73 (2014) 110–132 131

Using this we deduce:

wp(while(G){P}, sup
f∈D

f) = sup
n∈N

F n
sup(0)

= sup
n∈N

(sup
f∈D

F)n(0)

∗
= sup

n∈N
sup
f∈D

F n(0)

∗∗
= sup

f∈D
sup
n∈N

F n(0)

= sup
f∈D

wp(while(G){P}, f).

For (∗) one can show that (supf∈D F)n(0) = supf∈D F n(0) by induction on n using the definition of F , directedness of D
and continuity of wp(P, ·) as per induction hypothesis.

The equality in (∗∗) can be established by applying the suprema to F n(0) one by one and showing inequality in both
directions. The existence of these suprema is a consequence of the induction hypothesis which gives us the continuity of F
and Theorem 30. �

Thewlp-semantics for a loop is defined as the greatest fixed point solution of an equation, cf. Definition 16.We can adapt
the proof above towlp(P, ·), if we reverse the direction of the directed set of expectations and bound expectation functions
from above by 1 (as in Definition 16). The semantics of the loop will be the limit of F n(1) (where the constant expectation
function 1 is the top element in the reversed cpo).

Remark 35 (Continuity Proofs). Continuity was proven for regular transformers of expectations over finite and countable
state spaces [4]. Our result generalises to uncountable state spaces but restricts to pGCL programs which induce a subset of
regular transformers. �

References

[1] E.W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.
[2] J.J. Lukkien, An operational semantics for the guarded command language, in: MPC, in: LNCS, vol. 669, Springer, 1992, pp. 233–249.
[3] J.J. Lukkien, Operational semantics and generalized weakest preconditions, Sci. Comput. Program. 22 (1–2) (1994) 137–155.
[4] A. McIver, C. Morgan, Abstraction, Refinement And Proof For Probabilistic Systems (Monographs in Computer Science), Springer, 2004.
[5] R.A. Howard, Dynamic Programming and Markov Processes, MIT Press, 1960.
[6] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, John Wiley and Sons, 1994.
[7] C. Baier, F. Ciesinski, M. Größer, Probmela: a modeling language for communicating probabilistic processes, in: Second ACM and IEEE International

Conference on Formal Methods and Models for Co-Design, 2004, MEMOCODE’04, IEEE, 2004, pp. 57–66.
[8] A. Di Pierro, C. Hankin, H. Wiklicky, Program analysis probably counts, Comput. J. 53 (6) (2010) 871–880.
[9] D. Kozen, Semantics of probabilistic programs, J. Comput. System Sci. 22 (3) (1981) 328–350.

[10] J. He, K. Seidel, A. McIver, Probabilistic models for the guarded command language, Sci. Comput. Program. 28 (2–3) (1997) 171–192.
[11] C. Jones, Probabilistic non-determinism, Ph.D. thesis, University of Edinburgh, 1989.
[12] F. Gretz, J.-P. Katoen, A. McIver, Prinsys — on a quest for probabilistic Loop invariants, in: K.R. Joshi, M. Siegle, M. Stoelinga, P.R. D’Argenio (Eds.), QEST,

in: Lecture Notes in Computer Science, vol. 8054, Springer, 2013, pp. 193–208.
[13] F. Gretz, J.-P. Katoen, A. McIver, Operational versus weakest precondition semantics for the probabilistic guarded command language, in: QEST, IEEE

Computer Society, 2012, pp. 168–177.
[14] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, 2008.
[15] J. den Hartog, E.P. de Vink, Verifying probabilistic programs using a hoare like logic, Internat. J. Found Comput. Sci. 13 (3) (2002) 315–340.
[16] G. Barthe, B. Köpf, F. Olmedo, S.Z. Béguelin, Probabilistic relational reasoning for differential privacy, in: J. Field, M. Hicks (Eds.), POPL, ACM, 2012,

pp. 97–110.
[17] O. Celiku, A. McIver, Cost-based analysis of probabilistic programs mechanised in HOL, Nord. J. Comput. 11 (2) (2004) 102–128.
[18] J.-L. Lassez, V.L. Nguyen, L. Sonenberg, Fixed point theorems and semantics: a folk tale, Inf. Process. Lett. 14 (3) (1982) 112–116.
[19] J.-P. Katoen, A.McIver, L.Meinicke, C.C.Morgan, Linear-invariant generation for probabilistic programs: - automated support for proof-basedmethods,

in: R. Cousot, M. Martel (Eds.), SAS, in: Lecture Notes in Computer Science, vol. 6337, Springer, 2010, pp. 390–406.
[20] E.M. Hahn, H. Hermanns, L. Zhang, Probabilistic reachability for parametric Markov models, STTT 13 (1) (2011) 3–19.

Friedrich Gretz received his diploma in computer science from the RWTH Aachen University in 2011. Since then he is a doctoral
student under the joint supervision of Joost-Pieter Katoen and Annabelle McIver. Friedrich is a member of the DFG research
training group AlgoSyn at the RWTH and an iMQRES scholarship holder at Macquarie University. His research interest is focused
on semantics and verification of probabilistic systems.

http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref1
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref2
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref3
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref4
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref5
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref6
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref7
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref8
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref9
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref10
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref12
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref13
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref14
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref15
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref16
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref17
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref18
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref19
http://refhub.elsevier.com/S0166-5316(13)00142-9/sbref20

132 F. Gretz et al. / Performance Evaluation 73 (2014) 110–132

Joost-Pieter Katoen is a distinguished professor at the RWTH Aachen University (since 2004) and is part-time affiliated to
the University of Twente. His research interests are concurrency theory, model checking, timed and probabilistic systems,
and semantics. He co-authored more than 200 journal and conference papers, and co-authored the book ‘‘Principles of Model
Checking’’. He is a member of the Academia Europaea, IFIP WG 1.8 and WG 2.2, a member of the steering committees of the
conferences ETAPS (chair), CONCUR, FORMATS, and QEST (chair), and a member of the editorial board of STTT.

AnnabelleMcIver holds degrees inmathematics from Cambridge (BA) and Oxford (D.Phil.), and has worked in industry. Currently
she is an associate professor in the Department of Computing atMacquarie University, Sydney. She has publishedwidely in formal
methods on topics ranging from highly theoretical (quantitative modal algebra) to extremely practical (automatic correctness
verifiers for probabilistic systems). Her (joint) text book ‘‘Abstraction, refinement and proof for probabilistic systems’’ is the only
full research text on probabilistic program refinement theory.

	Operational versus weakest pre-expectation semantics for the probabilistic guarded command language
	Introduction
	Related work
	Structure of this paper

	Probabilistic programs
	Markov decision processes
	Preliminaries
	Reachability objectives

	pGCL semantics
	Denotational semantics
	Operational semantics
	Correspondence between operational and expectation transformer semantics

	Analysis
	Invariants
	Standard invariants
	Probabilistic invariants
	Characterising invariants operationally

	Conclusion
	Acknowledgements
	Proofs
	References

