
Alternating Tree Automata, Parity Games, and
Modal �-Calculus

Thomas Wilke�

Christian-Albrechts-Universität zu Kiel
Institut für Informatik und Praktische Mathematik
phone: +49 431 880-7511, fax: +49 431 880-7614

email: wilke@ti.informatik.uni-kiel.de
RCS id string: master.tex,v 8.1 2000/11/20 09:18:13 wilke Exp

Contents

1 Introduction 2

2 From Modal �-Calculus to Alternating Tree Automata 4
2.1 Modal �-Calculus . 5

2.1.1 Kripke Structures . 5
2.1.2 Syntax . 6
2.1.3 Substitution . 7
2.1.4 Semantics . 7
2.1.5 Query-Based Semantics 8
2.1.6 Fixed Point Alternation 10

2.2 Alternating Tree Automata . 11
2.2.1 Informal Description . 11
2.2.2 Formal Definition . 12
2.2.3 Runs . 12
2.2.4 Acceptance . 13
2.2.5 Index . 14

2.3 From �-Calculus to Alternating Tree Automata 14
2.3.1 The Conversion . 14
2.3.2 Proof of Correctness . 15

�This paper resulted from an invited talk given at the Journées Montoises, Marne-la-Vallée,
March 2000.

1

3 Model-Checking 20
3.1 Parity Games . 20

3.1.1 Informal Description . 20
3.1.2 Formal Definition . 21
3.1.3 Determinacy and Complexity 22

3.2 Reduction of the Word Problem 23

4 Satisfiability 26
4.1 Memoryless Strategies and Accepting Witnesses 26
4.2 Gadgets . 28
4.3 Parity Games with Extended Winning Condition 30

4.3.1 Formal Definition . 30
4.3.2 Reduction to Ordinary Parity Games 30

4.4 Reduction of the Emptiness Problem 31

1 Introduction

Since Dexter Kozen’s seminal paper in 1983, [10], modal �-calculus has received
ever growing interest, mainly for two reasons: its mathematical theory (model
theory) is very rich; it is well suited for specifying properties of transition sys-
tems. The interest was further stimulated by Ken McMillan’s observation, [13],
that in the case of finite transition systems specifications in modal �-calculus can
be checked efficiently when the state space and the transition relation are repre-
sented “symbolically” (by ordered binary decision diagrams). This is the basis for
numerous industrial-strength model checkers.

Given that modal �-calculus is exactly as expressive as monadic second-order
logic (over trees), [17, 5], it should come as no surprise that it is best investigated
with an automata-theoretic approach. In fact, it is even more amenable to an
automata-theoretic treatment than monadic second-order logic, for the connection
between modal �-calculus and the appropriate automaton model—alternating tree
automata—is much tighter.

In this paper I give a coherent exposition of the connection of alternating tree
automata and modal �-calculus, advocating an automaton model specifically tai-
lored for working with modal �-calculus and slightly modified compared to other
models used in the literature.

The main focus is on the model-checking and the satisfiability problem for
modal �-calculus. The approach taken is modular: both problems are first trans-
lated into problems for alternating tree automata (the “word” problem and the
nonemptiness problem), then these automata problems are solved independently,
by reductions to appropriate problems for parity games. The reduction of the

2

emptiness problem involves a new form of parity games, so-called parity games
with extended winning condition.

It will be shown how the winner problem for parity games with extended win-
ning conditions can be reduced to the winner problem for ordinary parity games.
This reduction is the place where Safra’s fundamental determinization result, [18],
comes into the picture.

The full beauty of the connection between modal �-calculus and (alternat-
ing) tree automata was first revealed in the fundamental study [15] by Damian
Niwiński: there is a correspondence between modal �-calculus formulas and al-
ternating tree automata that respects the alternation depth respectively the Rabin
index. (This result is also the basis for André Arnold’s elegant proof of Bradfield’s
and Lenzi’s alternation hierarchy result, [1, 2, 3, 11].) While in [15], a very gen-
eral approach, applying to a wide range of lattices, is taken, here the definitions
are designed to work particularly well with modal �-calculus.

Ordinals. Von Neumann’s convention on ordinals is used. In particular, when
� denotes a natural number, then � � ��� � � � � � � ��. Also, � denotes the set of
natural numbers.

Sequences. A finite sequence over some set � is a function � � � where �
is a natural number; an infinite sequence over some set � is a function � � � .
Sequence means finite or infinite sequence. The length of a sequence � is denoted
by ���. (Observe that ��� coincides with dom���, for von Neumann’s convention
is used.) When � is a finite nonempty sequence, then ����� � �� denotes its last
element; for simplicity in notation, we will also write ���� instead.

Let � � � � � be any partial function. The set of elements from� occurring
infinitely often in the range of � is denoted by inf���, that is, inf��� � �� � � �
�������� ���.

Graphs. In this paper, the term graph means directed graph. That is, a graph is
a pair �	�
� where 	 is an arbitrary set of vertices and
 is an arbitrary subset
of 	 � 	 . The successors of a vertex � in a graph� will be denoted by Scs����.
So if� � �	�
�, then Scs���� � ��� � 	 � ��� ��� �
�.

A vertex � is a dead end of a graph � � �	�
� if Scs���� � 	. A path
through a graph � is a sequence � over 	 satisfying ���
�� ��
 � ��� �
 for
every
 with
� � � ���.

Let � be an arbitrary set. An � -vertex-labeled graph is a tuple �	�
� ��
where �	�
� is an ordinary graph and �	 �� is a so-called labeling function.

3

Structures. As usual, mathematical objects like graphs, trees, automata, etc.
will be defined as fixed length tuples with certain components, just as a graph is
a pair �	�
�. To refer to the individual components of a structure denoted �, the
superscript � is used. For instance, the vertex set of a graph� is denoted by 	 �.

Trees. In this paper, the term tree means directed tree. A branch of a tree � is
a maximum path through � starting in the root. So a branch is either a finite path
starting in the root and ending in a dead end or an infinite path starting in the root.

We will use the following operations on trees. Assume � is an arbitrary tree.
Let 	 � be a subset of 	 � not containing the root of � . Then � � 	 � is the tree
obtained from � by removing all vertices in 	 � from � and all their descendants.
Let � be some vertex in � . Then �
� is the subtree of � rooted at �. Let � be a
set of pairs ���� �� where � is a vertex of � and � � a tree. Then � � � is the tree
that is obtained from � by adding, for every ���� �� � � , a copy of � � to � at �
in such a way that an edge from � to the root of � � is inserted. If necessary, the
vertices of the trees � � are renamed.

We will use the following lemma about trees.

Lemma 1 Let � � �	�
� be a tree and � � 	 . For every ordinal �, define ��

as follows.
– �� � 	.
– A vertex � belongs to ���� if � � � and all descendants of � (excluding �)

belong to
�

���� ���
 �	 � ��.
– �� �

�
���� ��� for every limit ordinal �.

Then the following are equivalent for every � � � .
– There exists some ordinal � such that � � ��.
– Every branch of �
� contains only a finite number of elements from � .

Projections. When � � ���� � � � � ����� is a tuple and
 � �, then pr���� denotes
the
-th component of �, that is, pr���� � ��.

2 From Modal �-Calculus to Alternating Tree Au-
tomata

Our first goal is to prove that each modal �-calculus formula can be converted
into an equivalent alternating tree automaton. In the first subsection, the basics on
modal �-calculus are recalled and basic notation is explained. In the second sub-
section, the model of alternating tree automaton used in this paper is introduced.

4

The third subsection presents the desired conversion from modal �-calculus to
alternating tree automata.

2.1 Modal �-Calculus

Modal �-calculus is modal logic augmented by operators for least and greatest
fixed points. For simplicity, this paper only deals with the unimodal case, but
all the definitions, results, and proofs given here extend canonically to the multi-
modal case. An extension to backward modalities as treated in [21] is not difficult
either.

2.1.1 Kripke Structures

Modal �-calculus—just as modal logic—is a logic to express properties of Kripke
structures.

A Kripke structure is a directed graph together with an interpretation (or as-
signment) of propositional variables in each vertex of the graph. Once and for all,
we fix a countably infinite supply� of propositional variables. Formally, a Kripke
structure is a tuple

� � ��� � ��� ��� (1)

where
– �� , the universe of�, is a set of worlds,
– �� � �� ��� is an accessibility relation, and
– �� � � � ��

�

is an interpretation of the propositional variables, which
assigns to each propositional variable the set of worlds where it holds true.

The class of all Kripke structures is denoted by �.
A pointed Kripke structure is a pair ��� �� where� is a Kripke structure and

� a world of it, which is called the distinguished world of ��� ��. The class of
all pointed Kripke structures is denoted by �.

A Kripke structure or pointed Kripke structure is finite if �� is finite and
����� � 	 for almost all �. Such a Kripke structure can easily be encoded as
a finite string and can thus serve as input for decision procedures. This will be
important in the next section.

A Kripke query1 is a class of pointed Kripke structures, that is, a subclass
of �. There is a natural one-to-one correspondence between Kripke queries and
mappings assigning to each Kripke structure � a subset of �� , as explained in
the next paragraph.

1The term “query” is (should be) reminiscent of the terminology used in finite model theory.

5

With every Kripke query�, one associates the mapping

� �� �� � �� � ��� �� � �� � (2)

conversely, with every mapping � � � �� ���� where ���� � �� , one
associates the Kripke query

���� �� � � � � � ����� � (3)

For notational convenience, we will not make a distinction between a Kripke
query (a subclasses of �) and its “mapping view” as explained above (in (2)).
In particular, a Kripke query may be defined as a mapping which assigns to every
Kripke structure � a subset of �� . Also, when � denotes a Kripke query, we
may write���� for �� � �� � ��� �� � ��.

2.1.2 Syntax

As stated above, modal �-calculus is a unimodal logic augmented by least and
greatest fixed points operators.

The formulas of modal �-calculus are built from the constant symbols � and
�, the symbols from � and their negations, using disjunction and conjunction,
the modalities � and �, and operators for least and greatest fixed points, � and �,
with some minor restriction on the use of the fixed point operators.2 Formally, the
set of all �� formulas is defined inductively as follows.

– The symbols � and � are �� formulas.
– For every � � �, � and �� are �� formulas.
– If � and � are �� formulas, then � � � and � � � are �� formulas.
– If � is an �� formula, then �� and �� are �� formulas.
– If � � � and � is an �� formula where � occurs only positive, then ��� and
��� are �� formulas.

The restriction on the application of the least and greatest fixed point operator ex-
pressed in the last rule above is imposed to justify the terminology: this restriction
ensures that the argument of a fixed point operator can be viewed as a monotone
function and that a fixed point actually exists (for details, see below).

Fixed point operators are viewed as quantifiers, and the standard terminology
and notation used with quantifiers is adopted. For instance, the set of all proposi-
tional variables occurring free in an �� formula � is denoted by 	
�����.

A fixed point formula is an �� formula where a fixed point operator is the
outermost connective, that is, a fixed point formula is an �� formula of the form
��� where � � � or � � �. The set of all fixed point formulas is denoted ��. This

2In this paper, no distinction is made between symbols for propositional constants and propo-
sitional variables.

6

set is partitioned into two sets according to the type of the outermost operator:
the set of all fixed point formulas starting with � is denoted ��, while the set of
all fixed point formulas starting with � is denoted �� . We also speak of �- and
�-formulas, respectively.

2.1.3 Substitution

Assume �� ��� � � � � ���� are �� formulas and ��� � � � � ���� are distinct predicate
symbols whose free occurrences in � are positive. Then

�������� � � � � ���������
 (4)

denotes the �� formula that is obtained from � by substituting in parallel each free
occurrence of �� by ��. As with predicate logic, a renaming of the bound variables
in � takes place. Note that it is necessary to require that the free occurrences of
the ��’s in � are positive because otherwise the resulting syntactic object will not
be an �� formula.

2.1.4 Semantics

The formulas of modal �-calculus are interpreted in Kripke structures. Induc-
tively, it is defined to which set of worlds an arbitrary �� formula is evaluated in
a given Kripke structure. More precisely, for every Kripke structure� and every
�� formula � a set ������ � �� is defined.

The semantics of the atomic formulas is determined by

������ � 	 � ������ � �� � (5)

������ � ����� � ������� � �� � ����� � (6)

Disjunction and conjunction are interpreted as union and intersection, respec-
tively,

���� � ����� � �������
 ������� � (7)

���� � ����� � ������� � ������� � (8)

The modal operators are interpreted in the usual way:

������� � �� � �� � Scs���� � ������� � (9)

������� � �� � �� � Scs���� � ������ �� 	� � (10)

Finally, we have to explain the semantics of the fixed point operators. This needs
a little preparation. When � is a Kripke structure, � is a propositional variable,
and � � �� , then��� ���
 denotes the Kripke structure defined by

��� �� �
 � ��� � ��� �� �� ���
�

7

where �� �� �� �
 is given by

�� �� �� �
���� �

�
� if �� � �,
������ if �� �� �,

(11)

that is, �� �� ���
 is identical to �� except at � where its value is � .
The semantics of the fixed point operators is now defined by

�������� �
�
�� � �� � �������� ��� � � �� � (12)

�������� �
�
�� � �� � �������� ��� � � �� � (13)

Let � be an arbitrary �� formula and � a Kripke structure. Then it is easy
to see that � �� �������� ��� � is a monotone function on ��

�

. Therefore, this
function has a least and a greatest fixed point (with respect to set inclusion). By
the Knaster/Tarski Theorem these fixed points are identical with the sets denoted
by the right-hand sides of (12) and (13), respectively.

The Knaster/Tarski Theorem also gives the following characterization. Let �
be the above function on ��

�

. For every ordinal �, let �� � �� be defined by
– �� � 	,
– ���� � �����,
– �� �

�
������� for every limit ordinal.

The set �� is called the �-approximant of the least fixed point of � . Then �����
is a monotone sequence that at some point becomes stationary and reaches the
least fixed point of � . A symmetric statement holds for the greatest fixed point
of � .

Given a pointed Kripke structure �, we will write ��� �� �� � for � �
������ .

2.1.5 Query-Based Semantics

It will be useful to have a different view of the semantics of ��. Clearly, when � is
an �� formula, then � �� ������ is a Kripke query, which we denote by �����. It
will be convenient to have operators on Kripke queries at hand which correspond
to the connectives and operators of ��.

Disjunction and conjunction are easy to deal with. Clearly,

��� � ��� � �����
 ����� � (14)

��� � ��� � ����� � ����� � (15)

for arbitrary �� formulas � and �.

8

For the modalities � and � we define two new operators on Kripke queries.
For every Kripke query �, we define

�� � � �� �� � �� � Scs���� ����� �� 	� � (16)

�� � � �� �� � �� � Scs���� � ����� � (17)

Then,

������ � ������ � ������ � ������ � (18)

for every �� formula �.
Similarly, we define operators on Kripke queries corresponding to the two

fixed point operators. For every Kripke query � and propositional variable � we
define Kripke queries ��� and ��� by

��� � � ��
�
�� � �� � ����� �� �
� � �� � (19)

��� � � ��
�
�� � �� � ����� �� �
� � �� � (20)

Then,

������� � ������� � ������� � ������� � (21)

for every �� formula �.
To conclude, let’s look at substitution, even though substitution is neither part

of the definition of the syntax of �� nor involved in the definition of its semantics.
But it will turn out to be useful to have a counterpart to substitution on the query
side. It will be enough to consider substitutions with one variable only.

Assume � and �� are Kripke queries and � is a propositional variable. The
query

��� �� ��
 (22)

is defined by

� �� ����� �� �����
� � (23)

Using a straightforward induction, one can now prove that if � is a proposi-
tional variable, � an �� formula positive in �, and � � ��, then

�������
�� � ������� �� �����
 � (24)

This is the analogue of the substitution principle in predicate logic. Note that it is
necessary to require that � be positive in � because otherwise the substitution is
not defined.

9

2.1.6 Fixed Point Alternation

There are several ways to define an appropriate concept of fixed point alternation.
The simplest one is to count syntactic alternations between least and greatest fixed
point operators. A more involved one, which was tailored specifically for the
purposes of efficient model-checking, was introduced by Emerson and Lei, [6].
It gives rise to a coarser hierarchy. The one that we will use here gives an even
coarser hierarchy and was introduced by Damian Niwiński, [14]. His definition
turned out to be the most useful one, and we use it here as well. There are actually
two ways of defining Niwiński’s hierarchy.

First approach. For every natural number
, sets �� and �� of �� formulas are
defined. �� and �� contain all modal �� formulas, that is, all formulas that do not
contain any fixed point operator.

The class���� is the smallest class of formulas which contains�� and is closed
under substitution (see Subsection 2.1.3) and application of the least fixed point
operator. Symmetrically, ���� is the smallest class of formulas which contains
�� and is closed under substitution and application of the greatest fixed point
operator.

Second approach, see [16]. First, we define for every fixed point formula � its
alternation number, denoted ����, by induction on the length of �.

For brevity in notation, we use � to denote the relation “is subformula of”.
Assume � � ��� is a fixed point formula. Let !	 be the set of all fixed point
subformulas " of � where � � 	
���"� and 	
���"� � 	
���"�� for every subfor-
mula "� of � which is a superformula of ". That is, !	 contains a formula "
if

" � � � " � �� � � � 	
���"� � �"��" � "� � � � 	
���"� � 	
���"��� �
(25)

Let

#� � ����� ��"� � " � !	 � ���
 ���� � (26)

#� � ����� ��"� � " � !	 � ���
 ���� � (27)

Finally, ���� is defined by

 ���� �

�
����#�� #� � �� if � � �,
����#� � #� � �� if � � �.

(28)

10

The alternation depth of a formula �, denoted ���, is the maximum of the al-
ternation numbers of its fixed point subformulas or else 0 if no fixed point operator
occurs, i. e.,

 ��� � ����� ���� � � � � � � � ���
 ���� � (29)

The relation of this notion of alternation depth with the classes �� and ��

defined above is as follows.

Remark 1 [16] Let $ be an arbitrary natural number and � an arbitrary ��

formula.
1. The alternation depth of � is � $ iff � � �������� � � � � ��������
 for some

formula � � �� and formulas �� � �

 �
.
2. The formula � belongs to �
 iff ��� � $ and there is no �-subformula �

of � with ���� � $.
3. The formula � belongs to �
 iff ��� � $ and there is no �-subformula �

of � with ���� � $.

2.2 Alternating Tree Automata

Alternating tree automata are used to define Kripke queries.

2.2.1 Informal Description

Alternating tree automata are finite-state devices designed to accept or reject poin-
ted Kripke structures. The computation of an alternating tree automaton on a
pointed Kripke structure proceeds in rounds. At the beginning of every round
there are several copies of the alternating tree automaton in different worlds of the
Kripke structure, each of them in its own state; some worlds might be occupied
by many copies, others might not accommodate a single one. During a round,
each copy splits up in several new copies, which are sent to neighbored worlds
and change their states, all this done according to the transition function. Initially,
there is only one copy of the alternating tree automaton; it resides in the distin-
guished world of the pointed Kripke structure and starts in the initial state of the
alternating tree automaton. To determine acceptance or rejectance of a compu-
tation of an alternating tree automaton on a pointed Kripke structure the entire
computation tree is inspected; acceptance is then defined via path conditions for
the infinite branches of the computation tree.

11

2.2.2 Formal Definition

Formally, an alternating tree automaton is a tuple

� � �%�� &�� � Æ
����� (30)

where
– %� is a finite set of states,
– &�� � % is an initial state,
– Æ� is a transition function as specified below, and
– �� � % � � is a partial priority function, which assigns a priority to some

states.
The transition function Æ� maps every state to a transition condition over %;

the set of all transition conditions over % is defined by:
– 0 and 1 are transition conditions over %,
– for every � � �, � and �� are transition conditions over %,
– for every & � %, &, �&, and �& are transition conditions over %,
– if� and � are transition conditions over%, then��� and��� are transition

conditions over %.
The transition graph of �, denoted ����, is the directed graph with vertex

set % and with an edge from a state & to a state &� if &� occurs in Æ�&�. The priority
function �� must have the property that inf��� � dom���� �� 	 holds for every
infinite path � through���� starting with &� .

2.2.3 Runs

The computational behavior of alternating tree automata is explained using the
notion of a run. Assume� is an alternating tree automaton and ��� ��� a pointed
Kripke structure. A run of� on ��� ��� is a �� � %�-vertex-labeled tree

� � �	 ��
�� ��� (31)

satisfying the “initial condition” and “local consistency” as described further be-
low. To phrase these conditions concisely, we need some more definitions.

For simplicity in notation, we will write ����� and &���� for the first and
second component of �����, respectively. For every vertex � of�, we define what
it means for a transition condition ' over % to hold in �, denoted ���� � �� ' .
This definition is by induction on the structure of ' :

– ���� � ��� � and���� � �� �,
– ���� � �� � if � � ��������� and���� � �� �� if � �� ���������,
– ���� � �� � � � if���� � �� � or���� � �� �,
– ���� � �� � � � if���� � �� � and���� � �� �,

12

– ���� � �� & if there exists �� � Scs���� such that ������ � ������� &�,
– ���� � �� �& if there exists �� � Scs���� such that &����� � & and
������ � Scs��������, and

– ���� � �� �& if for every � � Scs�������� there exists �� � Scs����
such that ������ � ��� &�.

Note that the above satisfaction relation is local in the sense that only vertices in
the neighborhood of � are inspected.

The two additional conditions that are required of a run now read as follows.
– Initial condition. Let �� be the root of�. Then

������ � ��� � &�� � (32)

– Local consistency. For every � � 	 �,

���� � �� Æ�&����� � (33)

So locally an alternating tree automaton can inspect the labeling of the world it
sits in; depending on its current state it can stay in this world and change its state,
it can proceed to any or all successors of this world and change its state, and it can
combine these options.

2.2.4 Acceptance

A run � is accepting if the state labeling of every infinite branch through� sat-
isfies the parity acceptance condition determined by ��. This is formalized as
follows.

Let � � � � � and �� � � � be partial functions. The function � is even
[odd] with respect to � if inf��Æ�� is nonempty and bounded and ����inf��Æ���
is even [odd].

Let� be a run of an alternating tree automaton�. An infinite branch � of�
is accepting if &� Æ � is even with respect to ��. A run � is accepting, if every
infinite branch through� is accepting.

In other words, for every infinite branch � we consider the sequence of nat-
ural numbers that is obtained from � by extracting the state component of the
labellings of the vertices and applying the valuation function ��; we require that
the maximum natural number occurring infinitely often is even.

Note that for every [accepting] run � there exists a minimal [accepting] run
which is a rooted subtree of�. Moreover, every minimal run has the property that
inf��� Æ &� Æ �� is nonempty for every branch � through�.

A pointed Kripke structure is accepted by � if there exists an accepting run
of� on the Kripke structure. The query recognized by�, denoted �����, contains
all pointed Kripke structures accepted by�.

13

2.2.5 Index

Similar to the notion of alternation depth for �� formulas we now define the notion
of index of an alternating tree automaton.

Let� be an alternating tree automaton and �� the set of all strongly connected
components of the transition graph of � reachable from &�� . For every (� ��,
let

#�
� � �������&�� ���&�� � &� &� � (� � (34)

The index of�, denoted ������, is defined by

������ � �����#� � �� � (� ���
 ���� � (35)

2.3 From �-Calculus to Alternating Tree Automata

As we will see, it is straightforward to construct for every �� formula an alternat-
ing tree automaton that recognizes the exact query that the formula defines. It is,
however, more complicated to prove the correctness of the construction.

2.3.1 The Conversion

Given a formula �, we define an alternating tree automaton �	 as follows. The
subformulas of � build the states of�	; the formula � itself is the initial state, the
transition function reflects the structure of the formula, and the priority function
reflects the alternation structure of the formula. This is explained in detail in what
follows.

An �� formula is in normal form if every propositional variable � is only
quantified at most once and if in this case all occurrences of � are in the scope
of this quantification. Clearly, every formula is equivalent to a formula in normal
form of the same size. So, henceforth, we will—without loss of generality—
assume that all formulas are in normal form.

Given an�� formula� in normal form and a propositional variable � occurring
in �, exactly one of the following two conditions is true.

1. Every occurrence of � in � is free.
2. Every occurrence of � in � is quantified by the same fixed point operator,

that is, it is bound in the same subformula ���.
In the second case, we denote the formula ��� by �
.

Let � be an �� formula in normal form. The alternating tree automaton�	 is
defined by

�	 � �%� &� � Æ��� (36)

where

14

– % is the set which contains for each subformula � of � (including � itself)
a state denoted ���,

– the initial state is given by &� � ���, and
– the transition function is defined by

Æ����� � � � Æ����� � � � (37)

Æ����� �

�
� if � � 	
�����,
��
� if � �� 	
�����,

Æ������ � �� � (38)

Æ��� � "�� � ��� � �"� � Æ��� � "�� � ��� � �"� � (39)

Æ������ � ���� � Æ������ � ���� � (40)

Æ������� � ��� � Æ������� � ��� � (41)

– the priority function is defined as follows.
The priority function � is defined very much like �. The only difference is that
�-formulas get odd values and �-formulas get even values. Also, we want the
valuation to start with 0 if possible.

– For every formula � � ��, the priority ������ is the smallest odd number
greater or equal to ����� �.

– For every formula � � �� , the priority ������ is the smallest even number
greater or equal to ����� �.

Clearly, � will meet the requirement specified earlier, because in every infinite
path through the transition graph of �	 at least one fixed point formula occurs
infinitely often.

The main theorem of this section is the following.

Theorem 1 Let � be an arbitrary �� formula. Then

����� � ������ � (42)

2.3.2 Proof of Correctness

The proof of the above theorem goes by induction on the alternation depth of �.
As a preparation, we prove a series of lemmas, which show how the operators and
connectives of �� can be modeled by automata.

Disjunction and Conjunction. We start with disjunction and conjunction.

Lemma 2 Let �� and �� be alternating tree automata with disjoint state sets.
Further, let &� be some new state and�� and�� be defined by

�� � �%�
 %�
 �&��� &� � Æ
�
 Æ�
 ��&�� &

�
� � &

�
�����

�
 ��� � (43)

�� � �%�
 %�
 �&��� &� � Æ
�
 Æ�
 ��&�� &

�
� � &

�
�����

�
 ��� � (44)

15

Here, %� stands for %��, %� stands for %�� , and so on. Then

������ � ������
 ������ � ������ � ������ � ������ � (45)

Proof. We only prove the claim for
; the proof for � is similar. First, assume
��� �� is accepted by��. Let � be a minimal accepting run of �� on ��� ��.
Then, by definition of the transition function of��, the root of� has exactly one
successor �, which is labeled with ��� &��� or ��� &���. Clearly,�
� (the subtree of
� rooted at �) is an accepting run of�� or��. So ��� �� � ������
 ������.

For the converse containment, assume � is an accepting run of �� or ��

on some pointed Kripke structure ��� ��. Consider the following tree. It has a
root � labeled ��� &�� with exactly on successor � � and the subtree rooted at �� is
identical with �. Then this tree is an accepting run of �� on ��� ��. Hence,
��� �� � ������. �

The requirement that the state sets of �� and �� be disjoint is very strong.
Clearly, the following would be enough. The transition functions of �� and ��

as well as their priority functions agree on every joint state. So, overlapping state
spaces can be tolerated to a certain extent.

Modal operators. Next, we consider the modal operators.

Lemma 3 Let � be an alternating tree automaton. Further, let &� be some new
state and�� and�� defined by

�� � �%�
 �&��� &� � Æ
�
 ��&� ��&

�
� ����

�� � (46)

�� � �%�
 �&��� &� � Æ
�
 ��&� ��&

�
� ����

�� � (47)

Then

������ � ������ � ������ � ������ � (48)

Proof. We only prove the claim for �; the proof for � is analogous.
Let ��� �� be an arbitrary pointed Kripke structure. First, assume ��� �� is

accepted by ��. Let � be a minimal accepting run of �� on ��� ��. Then, by
definition of the transition function of��, the root of� has exactly one successor
� with &���� � &�� and ����� � Scs����. Clearly, the subtree of � rooted at
this vertex is an accepting run of� on ��� &�����. So ��� �� � ������.

For the converse containment, assume ��� �� � ������. Then there exists
�� � Scs���� such that ��� �� � �����. Let � be an accepting run of � on
��� ���. Consider the following tree. It has a root � labeled ��� &�� with exactly
one successor �� and the subtree rooted at �� is identical with�. Then this tree is
an accepting run of�� on ��� ��. Thus, ��� �� � ��. �

16

Composition. An alternating tree automaton � is positive in the propositional
variable � if �� does not occur in any transition condition Æ��&�. Observe that
whenever� is such an alternating tree automaton, then

��������� �� �
� � ��������� ��� �
� (49)

for every Kripke structure� and sets � , � � with � � � � � �� .
Let � be an arbitrary propositional variable, � an alternating tree positive in

�, and �� an arbitrary alternating tree automaton. We define the alternating tree
automaton������
 by

������
 � �%�
 %�
�

� &�� � Æ��
�
 ��

�

� (50)

where the state sets are made disjoint beforehand and where Æ is obtained from
Æ�
 Æ�

�

by replacing � in every transition condition Æ��&� by &�
�

� . In fact, just as
above it is not really necessary to make the state sets disjoint—it suffices to make
them disjoint where the transition functions or the priority functions do not agree.

Lemma 4 Let � be a propositional variable, � an alternating tree automaton
positive in �, and�� an arbitrary alternating tree automaton. Then

����������� � ����� �� �� ������
 � (51)

Proof. Let ��� �� be a pointed Kripke structure and assume ��� �� is accepted
by������
. Let� be a minimal accepting run of this alternating tree automaton
on ��� ��. Let 	 � be the set of all vertices � of � with &���� � &�

�

� and � � �
������ � � � 	 ��.

Let � � � � 	 �. By construction, this tree is an accepting run of � on the
pointed Kripke structure ���� �� 	 �
� ��. Since� is positive in �, it is enough to
show that � � � ���������. But this is trivial, as for every � � 	 �, the tree �
�
is an accepting run of�� on ��� ������.

For the converse, assume ��� �� � ����� �� �� ������
. Then ���� �� �
� ��
� ����� where � � ��� � �� � ��� ��� � �������. For every �� � � , let
��� be a minimal accepting run of �� on ��� ���. Further, let � be a minimal
accepting run of� on ���� ���
� ��.

Consider the tree �� � � � ����������� � �
���� � ��. Clearly, this tree is

an accepting run of������
 on ��� ��. �

Fixed point operators. Finally, we model least and greatest fixed point oper-
ators. Let � be an arbitrary propositional variable and � an alternating tree au-
tomaton positive in �. We want to construct an alternating tree automaton that

17

recognizes �������. This only difficult part in the construction is the definition of
the priority function. This needs some preparation.

Let���� � �%��
� be the transition graph of�. Consider the graph

� � �%�
 �&���

 ��&�� &
�
� ��

�� (52)

where &� is a new state and
 � contains an edge �&� &�� for every & where � occurs
in Æ�&�. Let (be the strongly connected component of � the state &� belongs to
and # � ��������&� � & � (� dom������. Further, let #� and #� be an
arbitrary odd respectively even number greater or equal to #.

The alternating tree automata��
 and��
 are defined by

��
 � �%�
 �&��� &�� Æ��
�
 ��&� � #

���� � (53)

��
 � �%�
 �&��� &�� Æ��
�
 ��&� � #

���� � (54)

where Æ is as Æ�
 ��&�� &�� �� except that every occurrence of � is replaced by &� .

Lemma 5 Let � be a propositional variable and� an alternating tree automaton
positive in �. Then

���	��� � ������� � ���
��� � ������� � (55)

Proof. Let� be an arbitrary Kripke structure. Let � � ��
�

� ��
�

be defined
by

� � � �� ��������� �� �
� � (56)

We want to show that ���	������ and ���
������ are, respectively, the least and
greatest fixed point of � . We denote these fixed points by�� and�� , respectively.

We first show that �� and �� are fixed points of � and consider only �; the
argument is similar for �. Clearly, (accepting) runs of��
 and����
��
 are in a
natural one-to-one correspondence. Thus,

�� � ���	������ (57)

� �����	��������� (58)

� ������� �� �� ���	������
� (59)

� ������� �� ����
� (60)

� ����� � (61)

where (57) and (60) use the definition of ��, (58) is due to the above observation,
(59) is Lemma 4, and (61) is just the definition of � .

So for the rest it is enough to show:

18

1. Every element of �� belongs to some approximant for the least fixed point
of � .

2. Whenever ��������� ���
� � � for some � � �� , then � � �� .
First, assume � � ��. Let� be a minimal accepting run for��
 on ��� ��

and � the set of all vertices � with &���� � &� . For every ordinal �, let �� be
defined as explained in Lemma 1. Since � is assumed to be accepting, only a
finite number of elements from � occur on every branch through �. Lemma 1
then implies that for every � � � there exists an ordinal �� such that � � ��.
Using transfinite induction, it is easy to show that for every ordinal � and every
� � ��, ����� is in the �-approximant of � from below. In particular, � is in the
��-approximant of � from below where � is the root of�.

Second, suppose � is a fixed point of � . Just as above, we can argue that for
every � � � there exists an accepting run of � on ���� �� �
� ��. Pick such
an accepting run for every � � � and denote it by ��. Further, assume all the
��’s are minimal.

Fix an arbitrary� � � . We define a sequence � ��� �� � � � of trees where each
tree � � is a subgraph of � ���. The limit of this sequence, which we denote by � ,
will be an accepting run of�� on ��� ��.

The inductive definition of the � �’s is as follows. First, for every �� � �
let ��

�� be the tree that results from ��� by adding a new root labeled ���� &��.
Second, let � � � ��

�. Third, assume � � has already been defined and let)� �
�� � 	 �� � ������ � ��. Then � ��� is defined by

� ��� � � � � �����
�
������� � � �)�� � (62)

Clearly, � is a run of�� on ��� ��. We only need to show that it is accepting.
Assume � is an infinite branch of � . We distinguish two cases. First, suppose

� is a branch of some tree � �. Then, just as before, there is some �� � � such
that a suffix of � is an infinite branch of ��� and is therefore accepting. Second,
suppose � is not a branch of any ��. Then &� occurs infinitely often on �, but
���&�� is the maximum priority and even. So � is an accepting branch. �

Inductive argument. As stated above, the proof of Theorem 1 goes by induc-
tion.

Clearly, ������ � ����� whenever � is of the form �, �, �, or ��. If � is a
composite formula, we distinguish several cases according to the outermost con-
nective or operator.

If the outermost connective is disjunction or conjunction, the claim follows
from Lemma 2. Similarly, if the outermost operator is a modal operator, the claim
follows from Lemma 3. The only interesting case is when the outermost connec-

19

tive is a fixed point operator, say � � ���. Then �	 � ��	�. So the claim
follows from Lemma 5. The case where � is of the form ��� is analogous. �

3 Model-Checking

In this section, we look at a first application of the main theorem of the last section:
we investigate the complexity of the model checking problem for ��. This is the
following problem.

MODELCHECKING: given a finite pointed Kripke structure ��� �� and an ��

formula �, determine whether or not ��� �� �� �.
Now that we know that for every �� formula there exists an equivalent alter-

nating tree automaton, the model checking problem can be reduced to the “word”
problem for alternating tree automata, which is the following problem.

ACCEPTS: given a finite pointed Kripke structure ��� �� and an alternating
tree automaton�, determine whether� accepts ��� ��.

The word problem for alternating tree automata itself will be reduced to the
winner problem for parity games.

In the first subsection, the fundamentals about parity games are briefly re-
called. In the second subsection, the reduction from the model checking problem
for the modal �-calculus to the winner problem for parity games is described.
This also yields the desired upper bound for the complexity of the model check-
ing problem for modal �-calculus.

3.1 Parity Games

Parity games are a special form of two-player infinite games on graphs.

3.1.1 Informal Description

A parity game is played by two players, the male Player 0 and the female Player 1.
It is played on a game board which shows circles, Player 0’s locations, and boxes,
Player 1’s locations. The circles and boxes are connected by arrows. One of
the locations is a distinguished initial location, and every location is assigned a
number from a finite set of natural numbers, its priority.

A parity game is played using a pebble, which during a play of the game is
moved by the players from location to location along the arrows on the game
board.

A play of a game proceeds in rounds. At the beginning of each round, the
pebble is in some location, the current location. In the first round, the current
location is the initial location. The rules for playing a round are as follows. If the

20

current location is a dead end, then the play is over and the player who owns the
locations looses. If the current location is no dead end the player who owns the
current location moves the pebble from this location along an arrow to another
location and thereby completes the round. (Note that there is no restriction on
the arrows. So it can very well be that there are self arrows and the new current
location will be the old current location and the same player goes again in the next
round.)

If a play does not stop after a finite number of rounds an infinite number of
locations is visited during the course of the play and the play can be viewed as an
infinite sequence of locations. In this case, the winner is determined as follows.
One considers (the bounded) sequence of natural numbers that is obtained by
replacing every location of the above sequence by its priority. Player 0 wins if the
maximum number occurring infinitely often in this sequence is even, else Player 1
wins.

3.1.2 Formal Definition

Formally, a parity game is a tuple

� � ��� � ��� � �
�
� � *

�
� ��

� ��� � (63)

where
– �� is a set of locations,
– ��� and ��� partition �� into Player 0’s and Player 1’s locations, respec-

tively,
– *�� � ���
 ��� is an initial location,
– �� � ����
 ��� �� ����
 ��� � is a set of moves, and
– �� � ���
�

�
� � � is a partial priority function assigning to some locations

a priority.
It is required that there exists a natural number + such that �� �*� � + holds for
all * � ���
 �

�
� , and there is a requirement on the domain of �� , which is stated

further below.
Let � be a game as above. Clearly, the ordered pair ��� ��� � is a directed

graph, which is denoted�� and called the game graph of � .
A partial play of � is a path through �� starting with *�� . A play of � is a

maximum path through�� starting with *�� . A play , is winning for Player 0 if it
is infinite and even with respect to �� or if it is finite and ,��� � ��� . Symmetri-
cally, a play is winning for Player 1 if it is infinite and odd with respect to �� or
if it is finite and ,��� � ��� .

The domain of the priority function �� must have the property that �
 � ,�
� �
dom��� �� is infinite for every infinite play ,. This is very similar to the require-
ment for the priority function of alternating tree automata of previous section.

21

A Player 0 wins a game (as opposed to a play) if he has a way to move such
that regardless of how his opponent moves he wins each of the resulting plays.
This is formalized as follows.

Let � be a parity game. A strategy tree for Player 0 in � is a rooted subtree
of

– The root of � � is labeled *�� .
– Every � � 	 � with �� ��� � ��� has a successor in � labeled with a

successor of �� ��� in�� , that is, Player 0 must move when it is his turn.
– Every � � 	 � with �� ��� � ��� has, for every successor * of �� ��� in��

a successors in � labeled *, that is, all options for Player 1 have to be taken
into account.

A branch � of a strategy tree � is winning if its labeling, which is a play, is
winning. A strategy tree � for Player 0 is winning if every branch through � is
winning. Player 0 wins a game � if there exists a winning strategy tree for him.
Symmetrically, it is defined what it means for Player 1 to win a play or a game.

3.1.3 Determinacy and Complexity

There are two basic questions about games that we need to answer before we can
try to solve the model-checking problem.

1. Does every game have a winner?
2. How difficult is it to determine who wins a finite game (if there is a winner

at all)?
The first question has a positive answer, which is usually phrased using the

notion of determinacy. A game is said to be determined if one of the two players
wins it.

Theorem 2 [7] Every parity game is determined.

The decision problem of determining the winner of a parity game is formally
defined as follows.

WINS: given a finite parity game � , determine whether or not Player 0 wins
the game � .

To describe the actual complexity of solving WINS, we need some more defi-
nitions; we need to define a notion of index for a parity game.

The index of a finite parity game � is determined as follows, very similar
to the index of an alternating tree automaton. Let �� be the set of all strongly
connected components of the game graph of � reachable from *�� . For every
(� �� , let #�

� � ������ �*� � �� �*�� � *� *� � (�. The index of � , denoted
����� �, is defined by

����� � � �����#�
� � (� �� �
 ���� � � � (64)

22

The best known upper bounds for the time complexity of WINS are:

Theorem 3 [8, 9]
1. WINS, the winner problem for finite parity games, is solvable in time

�

�
#

�
��

+

�������
(65)

where# is the number of moves in a given game, � the number of locations,
and + its index, that is, � � ��� �, # � ��� �, and + � ����� �.

2. WINS is in UP � co-UP.

WINS is easily seen to be P-hard.

3.2 Reduction of the Word Problem

The objective of this subsection is to solve ACCEPTS as specified earlier. This is
done by a reduction from ACCEPTS to WINS.

Given an alternating tree automaton� and a pointed Kripke structure ��� ���
we want to construct a game � ����� ��� that Player 0 wins if and only if� ac-
cepts ��� ���. The basic idea is that the choices Player 0 makes correspond to
the choices � has to make when in a transition condition it has to satisfy a dis-
junction or a� requirement. Symmetrically, the moves for Player 1 correspond to
conjunctions and � requirements. Remember that a winning strategy for Player 0
has to make sure that whatever Player 1 does in a play, it will be a win for Player 0.

Formally, the game � ����� ��� associated with � and ��� ��� is defined
by

� ����� ��� � ��� � -� ��� ��� ��
�
� � &

�
� ������ (66)

where the individual components are as follows.
The set - is the set of all subformulas occurring in some formula Æ��&� aug-

mented by all states from�. (So - is a finite set of transition conditions.) The set
�� is the set of all pairs ��� '� where ' is of the form �, � with � �� �����, ��
with � � �����, '�� '�, or�' �. This also determines ��. A pair ���� '�� ���� ' ���
is a move, that is, an element of � , if one of the following conditions holds.

– ' � &, � � ��, and ' � � Æ��&�.
– ' � '� � '� or ' � '� � '�, � � ��, and ' � � '� or ' � � '�.
– ' � �& or ' � �&, ' � � &, and �� � Scs����.

Finally, the priority function � maps ��� '� to ���'� if ' � % and ���'� is
defined.

The desired theorem is the following.

23

Theorem 4 Let ��� �� be a pointed Kripke structure and � an alternating tree
automaton. The alternating tree automaton � accepts ��� �� if and only if
Player 0 has a winning strategy in the game � ����� ��.

Proof. We will convert accepting runs into winning strategy trees for Player 0
and vice versa.

As a preparation, we extend our notion of a run so that runs also provide
information why they are locally consistent. Formally, a �� � - �-labeled tree
� is an extended run of an alternating tree automaton � on a pointed Kripke
structure ��� ��� if the root is labeled ��� � &

�
� � and for every vertex � labeled

��� '� the following holds true, analogous to local consistency defined earlier.
– If ' � � � �, then � has one successor, labeled with ��� �� or ��� ��.
– If ' � � � �, then � has a successor labeled ��� �� and a successor labeled
��� ��.

– If ' � &, then � has a successor labeled ��� Æ��&��.
– If ' � �&, then � has a successor labeled ���� &� for some �� � Scs����.
– If ' � �&, then � has a successor labeled ���� &� for every �� � Scs����.

An extended run� is accepting if pr�Æ��Æ� is even with respect to �� for every
infinite branch � through�.

Clearly, every [accepting] run can be extended to an [accepting] extended run,
and every [accepting] extended run can be reduced to an [accepting] run.

We can now turn to the proof of the theorem. Assume� accepts ��� ��� and
let � � � ����� ��� be defined as above. Since� accepts ��� ���, there exists
an accepting extended run of � on ��� ���. Let � be a minimal such run. We
show that the tree� is a winning strategy tree for Player 0.

Let’s first show that � is a strategy tree at all. Assume ��� '� is the label of
some vertex �. If � � ��� , then

– ' � �,
– ' � � and � �� �����,
– ' � �� and � � �����,
– ' � '� � '�, or
– ' � �' �.

The first three cases cannot occur, as � is assumed to be an extended run and
therefore satisfies the modified rules about local consistency as stated above. In
the other two cases, the same rules guarantee that � has a successor in �. If
� � ��� , then

– ' � �,
– ' � � and � � �����,
– ' � �� and � �� �����,
– ' � '� � '�, or

24

– ' � �' �.
In all cases, the modified rules about local consistency guarantee that all succes-
sors of � in�� are also successors of � in�.

It remains to show that every branch of � is winning. First, let � be a finite
branch through� and assume � ends in a vertex labeled ��� '�. Then, because�
is a run,

– ' � � and � � �����,
– ' � �� and � �� �����, or
– ' � �.

All such vertices are dead ends in the game graph of � ����� �� and belong to
Player 1. So all these branches are winning for Player 0. Next, let � be an infinite
branch through�. Then, because� is an accepting run, pr� Æ�� Æ� is even with
respect to ��. Thus, � is winning for Player 0. So � is a winning strategy tree
for Player 0.

For the converse, assume � is a winning strategy tree for Player 0 in the game
� ����� ��. Similar to above, it is easy to see that � is an accepting extended
run for� on ��� ���. �

In view of Theorem 3, this yields the following about the complexity of the
word problem for alternating tree automata.

Theorem 5 1. ACCEPTS, the word problem for alternating tree automata, is
solvable in time

�

�
$*

�
�$�

+

�������
(67)

where $ is the number of worlds of the Kripke structure, * is the size of the
accessibility relation, � is the number of subformulas of transition condi-
tions, and + is the maximum value in the priority function.

2. ACCEPTS is in UP � co-UP.

As a consequence, we obtain the following complexity bounds on the model
checking problem for modal �-calculus.

Theorem 6 ([8, 19, 12]) 1. MODELCHECKING, the model-checking problem
for modal �-calculus, is solvable in time

�

�
$*

�
�$�

+

�������
(68)

where $ is the number of worlds of the Kripke structure, * is the size of the
accessibility relation, � is the number of subformulas of the formula, and +
is the alternation depth.

2. MODELCHECKING is in UP � co-UP.

25

4 Satisfiability

In this section, we consider another application of the main theorem of Section 2:
we investigate the complexity of the satisfiability problem, which is the following
problem.

SATISFIABILITY: given an �� formula �, determine whether or not there ex-
ists a pointed Kripke structure ��� �� such that ��� �� �� �.

We will attack this problem just as the model-checking problem. Since we
know that every �� formula � is equivalent to the alternating tree automaton�	,
we only need to check whether or not�	 accepts some pointed Kripke structure,
that is, we can reduce SATISFIABILITY to the following problem.

NONEMPTINESS: given an alternating tree automaton �, determine whether
or not� recognizes some pointed Kripke structure.

This problem is reducible to the winner problem for parity games, which we
already know from the previous section. A direct reduction is, however, quite
complicated. To make the reduction more transparent an intermediate problem is
introduced, namely the winner problem for parity games with extended winning
condition (extended parity games). The emptiness problem can then be reduced
to the winner problem for extended parity games, which, in turn, can be reduced
to the winner problem for ordinary parity games.

In the first subsection, it is shown—using a deep theorem from game theory—
that we can use a much less complicated object than a run to describe acceptance
of an alternating tree automaton. This will later help us to solve the emptiness
problem for alternating tree automata. The second subsection is meant as a prepa-
ration for the third subsection, where extended parity games are introduced and
studied. The fourth subsection presents the reduction from the emptiness problem
for alternating tree automata to the winner problem for extended parity games and
thus completes the construction.

4.1 Memoryless Strategies and Accepting Witnesses

A game won by Player 0 is called memoryless if the moves Player 0 has to make
in order to win the game are independent of the history of the game, that is, if
Player 0 does not need to remember anything about the past of a play in order
to be able to take the right decision. This can be easily described formally by
looking at strategy trees. A memoryless strategy tree for Player 0 is a strategy tree
� satisfying the following additional condition. Whenever �� � � � 	 � are such
that �� ��� � �� ���� � ��, then there is a bijection between Scs� ���� and Scs� ����
which preserves the labeling. This obviously implies that if �� ��� � �� ���� � ��,
then �
� and �
�� are isomorphic.

26

Theorem 7 [5] For the winner of a parity game, there exists a memoryless win-
ning strategy. �

Next, we define the notion of an accepting witness. Let � be an alternating
tree automaton and ��� ��� a pointed Kripke structure. An accepting witness for
� and ��� ��� is a graph

	 � �	� �
� � (69)

with 	 � � � % such that
– ��� &�� � 	 ,
– every vertex is reachable from ���� &��,
– �	�
�� ��� &� �� Æ�&� for every ��� &� � 	 ,
– pr� Æ � is even with respect to �� for every infinite path � through 	

starting in ��� � &��.
In the above, �� is defined exactly as in Subsection 2.2.3 where it is assumed that
a vertex ��� &� is labelled with ��� &�.

From Theorem 7 we can now conclude.

Corollary 1 Let� be an alternating tree automaton and ��� �� a pointed Kripke
structure. The automaton� accepts ��� �� if and only if there exists an accepting
witness for� and ��� ��.

Proof. Reconsider the proof of Theorem 4. Assume ��� �� is pointed Kripke
structure accepted by some alternating tree automaton �. Then there exists a
winning strategy tree for Player 0 in � ����� ��. By Theorem 7, there exists
a memoryless winning strategy tree for Player 0 in this game. Without loss of
generality, we can assume this tree is minimal. Consider the run that corresponds
to this strategy tree: it can be viewed as an accepting witness. �

In the rest of this subsection, we develop an alternative definition of local
consistency for accepting witnesses, which will be useful later.

Let� be an alternating tree automaton and � the set of all propositional vari-
ables occurring in Æ�. Assume �� � �, %� � %, %� � %, and %� � %. We define
a transition condition by

'���� %�� %�� %�� �
�

���

� �
�

��	��

�� �
�
����

& �
�
����

�& �
�
����

�& � (70)

Assume	 is an accepting witness for some Kripke structure ��� ���. Let �
be an arbitrary world in�, �� � �� ���, and & such that ��� &� � 	� . Since	
is an accepting witness, we know there exist sets %�, %�, %� such that

'���� %�� %�� %�� �� Æ�&� (71)

27

(that is, '���� %�� %�� %�� implies Æ�&�) and

��� &� �� '���� %�� %�� %�� � (72)

This can also be rephrased as follows. Let % � � �& � ��� &� � 	� �. Then
there exist functions � � % � � ��

�

, �� � % � � ��, and �� � % � � �� such that

'���� ��&�� ���&�� ���&�� �� Æ�&� (73)

and

��� &� �� '���� ��&�� ���&�� ���&�� (74)

for every & � %�.

4.2 Gadgets

Let % be an arbitrary set and 	% a disjoint copy. A gadget over % is a subset of
%� �%
 	%� and should be viewed as a small directed graph on % with some edges
leading to copies of elements from %. The set of all gadgets over % is denoted by
Gdg�%�.

For every gadget) � Gdg�%�, let
) � �& � �&��&� &�� �)�
 �&� � �&�&� &�� �)� � (75)) � �&� � �&�&� 	&�� �)� � (76)

Let . be a sequence of gadgets over %. Imagine you collate all gadgets in .
in such a way that elements from 	% occurring in one gadget are identified with
the respective elements of % in the next gadget. The you obtain the graph of .,
denoted��.�, and formally defined as follows.

The vertex set of��.� is given by�
��
�

��
� &� � & ��.�
��
 �
��
�

��
� �� &� � & ��.�
�� � (77)

the edge set is given by�
��
�

���
� &�� �
� &��� � �&� &�� � .�
��

�
��
�

���
� &�� �
� �� &��� � �&� 	&�� � .�
�� �

(78)

A branch of . is a maximum path through ��.� starting with ��� &� for some
& � %. Let �� % � � be some priority function. The sequence . is even if
pr� Æ � is even with respect to � for every infinite branch � of ..

We show next that there exists an exponential size deterministic parity �-
automaton that accepts all even sequences of gadgets.

28

Proposition 1 Let % be a finite set and �� % � � some priority function. There
exists a deterministic parity �-automaton
 with ���
�
� ��	
�
� states and priori-
ties bounded by ���%��� that recognizes the set of all even infinite sequences of
gadgets over %.

Proof. We first construct a nondeterministic �-automaton � accepting the in-
finite sequences of gadgets that are not even. This automaton will then be trans-
formed into the deterministic �-automaton we are looking for.

Let) be some gadget. We write �� for the set of all pairs �&� &�� such that
there exists a path from & to 	&� in �%
 	%�)�. Further, we write %� for set of all
states & � % such that there exists an infinite path through the graph �%
 	%�)�
which starts with & and is odd with respect to �.

Consider the nondeterministic parity �-automaton

� � ��
� %
 ���� %������

where � and �� are given by

� � ��&�)� &�� �) � Gdg�%� � �&� &�� � ���

 ��/�)��� �) � Gdg�%� � / � %�
 ���� (79)

and

���/� �

�
��/� � � if / � %,
� if / � �.

Clearly, this �-automaton accepts the set of all infinite sequences of gadgets that
are not even with respect to �.

The automaton
 is constructed as follows.
1. � is converted into an equivalent nondeterministic Büchi automaton� �.
2. �� is converted into an equivalent deterministic Rabin automaton� �.
3. �� is transformed into the deterministic Streett automaton dual �
. It rec-

ognizes the complement of what�� recognizes.
4. �
 is converted into an equivalent deterministic parity automaton
 .

Clearly,
 recognizes the set of all even infinite sequences over �
 .
Let � be the number of states of �. The first step is simple and yields an

automaton with ����� states. The second step can be carried out using Safra’s
construction, [18], and thus yields an automaton with ����� ��	 �� states and �����
accepting pairs. The third step neither changes the number of states nor the num-
ber of pairs. The fourth step can be implemented using Büchi’s index appearance
record with hit, [20], and yields an automaton with a larger number of states but
still with ����� ��	 �� many states and priorities bounded by �����. �

29

4.3 Parity Games with Extended Winning Condition

A parity game with an extended winning condition is very similar to an ordinary
parity game. The only difference is that Player 1 can follow several options at
the same time, and for Player 1 to win it is sufficient that one of the options she
follows is winning. More precisely, a move by Player 1 corresponds to choosing a
gadget and the sequence of moves of Player 1 will determine an (infinite) sequence
of gadgets; Player 1 wins if one of the branches of the corresponding graph is not
even.

4.3.1 Formal Definition

A parity game with extended winning condition (an extended parity game) over %
is a tuple

� � �%� �
� �
� � �

� � *

� ��

��
� (80)

where
– �� is a set of locations,
– ��� and ��� partition �� into Player 0’s and Player 1’s locations, respec-

tively,
– �
� is a set of gadgets over %,
– *�� � ���
 ��� is an initial location,
– �� � ����
 ��� �� ����
 ��� � is a set of moves, and
– �� � % � � is a partial priority function assigning to some locations a

priority.
The domain of �
 must have the property that inf����dom��
� is nonempty for
any branch � of any sequence of gadgets from �
� .

The notion of a play is the same as in ordinary parity games. Player 0 wins
a play , if the subsequence of , consisting of the elements of �
� is even with
respect to �
 .

4.3.2 Reduction to Ordinary Parity Games

We show how the winner in an extended parity game can be determined by looking
at a related parity game. The idea of the reduction is very simple. Since Player 0
only wins a play if all infinite branches through the corresponding graph are win-
ning he uses a deterministic �-automaton to keep track of all those branches. In
fact, he uses the automaton that we already know from Proposition 1.

Let� be an extended parity game and �� % � � defined by

��&� �

�
�
�&� if & � dom��
�,
� otherwise.

(81)

30

Assume that
 from Proposition 1 is given as

 � ��
� �� �� � Æ��
�� �

Using
, we can now easily transfer a finite extended parity game � into an
ordinary parity game � ���:

� ��� � ��
 ����
� ����
� ��� �*
� � �������� (82)

where

� � ���*� ��� �*�� Æ��� *��� � �*� *�� �� � * � �
� �

 ���*� ��� �*�� ��� � �*� *�� �� � * � �
� � (83)

and �� �*� �� �� �����.

Theorem 8 Let � be a finite extended parity game.
1. The number of locations of � ��� is ��
� � ����� ��	 �� where � � �%
�.
2. The priority function of � ��� is bounded by 0�� for some constant 0.
3. Player 0 wins � if and only if Player 0 wins � ���.

Proof. The first two claims follow immediately from Proposition 1.
For the third claim first observe that there is a one-to-one correspondence

between minimal strategy trees for � and � ���: a strategy tree for � can be
obtained from a strategy free for � ��� by forgetting the second component of
labellings of the vertices; given a strategy tree for �, there is exactly one way to
extend it to a strategy tree for � ��� by adding appropriate states from
 to the
labellings of the vertices.

The construction of
 now guarantees that the correspondence between strat-
egy trees for � and � ��� preserves winning branches. Observe that � was
defined in such a way that the elements from % that don’t get assigned a value
through �
 cannot interfere, see (81). �

4.4 Reduction of the Emptiness Problem

We can now solve the emptiness problem for alternating tree automata by reducing
it to the winner problem for extended parity games. Given an alternating tree
automaton �, we will construct an extended parity game ���� that Player 0
wins if and only if� accepts some pointed Kripke structure.

The idea behind the construction described below is that Player 0 guesses an
accepting witness for some Kripke structure and Player 1 checks that all branches
are accepting.

31

Let� be an arbitrary alternating tree automaton and � the set of propositional
variables occurring in Æ�. The parity game ���� with extended winning condi-
tion is defined by

���� � �%� �� ��� ��� *� ������

where �� consists of tuples of the form

���� % �� �� ��� ��� (84)

as in Subsection 4.1 such that '���� ��&�� ���&�� ���&�� �� Æ�&� for every & � %�.
The initial location *� is defined by

*� � ��&� � 	&��� � (85)

The set � contains a pair ����� % �� �� ��� ����)� if there exists & � % � and &�� �
���&� such that

) � ��&� 	&�� � & � % � � &� � ���&��

 ��&� &�� � & � % � � &� � ��&��
 ��&� 	&���� � (86)

Further, � contains �)� ���� % �� �� ��� ���� if) � % �.

Theorem 9 Let� be an arbitrary alternating tree automaton.
1. The number of locations of ���� is �� � ���� ��	 �� where 1 is the number

of propositional variables occurring in Æ and � � �%��.
2. The maximum priority of ���� is the same as in�.
3. Player 0 wins the extended parity game���� if and only if� accepts some

Kripke structure.

Proof. The first two claims are trivial. For the third claim, let � � ����.
Let � be a minimal winning strategy tree for Player 0 in �. We construct a

pointed Kripke structure ��� ��� and accepting witness for� and ��� ���.
Observe that because of the minimality of � , every vertex of � labelled with

an element from �� has exactly one successor, that is, there exists exactly one
edge starting from such a vertex. The Kripke structure � is obtained from � by
simply contracting these edges. Formally, the worlds and the accessibility relation
of� are defined by

�� � �� � 	 � � �� ��� � ��� � (87)

�� � ���� ���� � ��� � Scs� �����
�� � Scs� ��

���� � (88)

32

The labelling of � is defined as follows. If � � �� (as defined above) and
if �� ��� � ���� % �� �� ��� ���, then ����� � ��. The distinguished world �� of
��� ��� is the unique successor of the root of � .

An accepting witness	 for ��� ��� can be extracted directly from � . First,
a pair ��� &� belongs to 	� if �� ��� � ���� % �� �� ��� ��� and & � % �. Second,
the edges of 	 are determined as follows. Let �, � �, and ��� be vertices of �
such that �� ��� � 	� , �� � Scs� ��� and ��� � Scs� ����. Assume �� ��� �
���� % �� �� ��� ��� and �� ���� �).

– For every �&� &�� �),
� contains ���� &�� ��� &���.
– For every �&� 	&�� �),
� contains ���� &�� ����� &���.

Clearly,	 is an accepting witness for� and ��� ���.
For the converse, assume � accepts some pointed Kripke structure. Then �

accepts some pointed Kripke structure which is a tree. (Unravel the Kripke struc-
ture that it accepts.) Let ��� ��� be such a Kripke structure and	 an accepting
witness for � and �. We will use 	 to construct a strategy tree � winning for
Player 0 in the game����.

The construction of � goes by induction. Along with � we define a partial
function 2 � 	 � � 	� that associates with every vertex � � �
� a vertex of	 .

For the induction base, choose some vertex �� as the root of � . Add a child �
to � and set 2��� � �� . Recall that ��� � &�� must be a vertex of	 .

For the induction, assume � is a vertex already added to � which has not been
labeled yet. Let � � 2���, �� � �����, and % � � �& � ��� &� � 	� �. Since	
is a witness, there exist � , ��, and �� such that

'���� ��&�� ���&�� ���&�� �� Æ�&� (89)

and

��� &� �� '���� ��&�� ���&�� ���&�� (90)

for every & � %�. We label � with ���� % �� �� ��� ��� and add children to � accord-
ing to the rules of the game, that is, we add a child � � with label) if there exists
& � % � and &�� � ���&� such that (86) holds. To each such vertex � �, we add exactly
one child ��.

Let �� and ��� be two such vertices. Since 	 is an accepting witness there
exists a world �� �� such that) is a subgraph of the subgraph of	 restricted
to all vertices of the form ��� &� or ���� &�. We set 2����� � ��. This completes
the description of the inductive step.

Clearly, � is a strategy tree for Player 0. Further, every vertex labelled with
a location of Player 0 has a successor. If , is a path through � and � an infinite
branch through��,�, then 2 determines a path � � through	 with the same state

33

labelling. Since	 is an accepting witness, we know � � is even, and, hence, � is
even. So � is a strategy tree winning for Player 0. �

Corollary 2 [4]
1. NONEMPTINESS, the nonemptiness problem for alternating tree automata,

is in Exp.
2. SATISFIABILITY, the satisfiability problem for modal �-calculus, is in Exp.

Proof. From Theorems 9 and 8 we can conclude that for every alternating tree
automaton� one can construct a parity game � with the following properties.

– The number of locations of � is �� � ����� ��	 �� where 1 is the number of
propositional variables occurring in Æ� and � � �%��.

– The priority function of � is bounded by 0�� for some constant 0.
– Player 0 wins � if and only if� accepts some pointed Kripke structure.

Further, � can easily be constructed, that is, in time polynomial in its size. The
first claim now follows from Theorem 3. The second claim is an immediate con-
sequence of the first claim in view of Theorem 1. �

References

[1] Julian C. Bradfield. The modal mu-calculus alternation hierarchy is strict. In Ugo
Montanari and Vladimiro Sassone, editors, CONCUR ’96: Concurrency Theory, 7th
International Conference, volume 1119 of LNCS, pages 232–246, Pisa, Italy, 1996.

[2] Julian C. Bradfield. The modal mu-calculus alternation hierarchy is strict. Theoret-
ical Computer Science, 195(2):133–153, 1998.

[3] Julian C. Bradfield. Simplifying the modal mu-calculus alternation hierarchy. In
Michel Morvan, Christoph Meinel, and Daniel Krob, editors, STACS ’98: 15th
Annual Symposium on Theoretical Aspects of Computer Science, volume 1373 of
LNCS, pages 39–49, Paris, France, 1998.

[4] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and
logics of programs (extended abstract). In 29th Annual Symposium on Foundations
of Computer Science, pages 328–337, White Plains, New York, 1988.

[5] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and deter-
minacy. In 32nd Annual Symposium on Foundations of Computer Science, pages
368–377, San Juan, Puerto Rico, 1991.

[6] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of
the propositional mu-calculus (extended abstract). In 1st IEEE Symposium on Sym-
posium on Logic in Computer Science, pages 267–278, Cambridge, Massachusetts,
1986.

[7] Yuri Gurevich and Leo Harrington. Trees, automata, and games. In 14th ACM
Symposium on the Theory of Computing, pages 60–65, San Francisco, 1982.

34

[8] Marcin Jurdziński. Deciding the winner in parity games is in UP � co-UP. Infor-
mation Processing Letters, 68(3):119–124, 1998.

[9] Marcin Jurdziński. Small progress measures for solving parity games. In Horst
Reichel and Sophie Tison, editors, STACS 2000, 17th Annual Symposium on The-
oretical Aspects of Computer Science, volume 1770 of Lecture Notes in Computer
Science, pages 290–301, Lille, France, 2000.

[10] Dexter Kozen. Results on the propositional �-calculus. Theoretical Computer Sci-
ence, 27:333–354, 1983.

[11] Giacomo Lenzi. A hierarchy theorem for the �-calculus. In F. Meyer auf der Heide
and B. Monien, editors, Automata, Languages and Programming: 23rd Intern. Col-
loquium, ICALP ’96, volume 1099 of LNCS, pages 87–97, Paderborn, Germany,
1996.

[12] David E. Long, Anca Browne, Edmund M. Clarke, Somesh Jha, and Wilfredo R.
Marrero. An improved algorithm for the evaluation of fixpoint expressions. In
David L. Dill, editor, Computer Aided Verification, 6th International Conference,
CAV ’94, volume 818 of Lecture Notes in Computer Science, pages 338–350, Stan-
ford, California, 1994.

[13] Kenneth L. McMillan. Symbolic Model Checking. Kluwer, Boston, 1993.
[14] Damian Niwiński. On fixed point clones. In Laurent Kott, editor, Automata, Lan-

guages and Programming: 13th International Colloquium, volume 226 of Lecture
Notes in Computer Science, pages 464–473, Rennes, France, 1986.

[15] Damian Niwiński. Fixed point characterization of infinite behavior of finite-state
systems. Theoretical Computer Science, 189:1–69, 1997.

[16] Damian Niwiński and Helmut Seidl. On distributive fixed-point expressions. RAIRO
Informatique Théorique, 33(4/5):427–446, 1999.

[17] Michael Ozer Rabin. Decidability of second-order theories and finite automata on
infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

[18] Shmuel Safra. On the complexity of �-automata. In 29th Annual Symposium on
Foundations of Computer Science, pages 319–327, White Plains, New York, 1988.

[19] Helmut Seidl. Fast and simple nested fixpoints. Information Processing Letters,
59(6):303–308, 1996.

[20] W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg,
editors, Handbook of Formal Languages, volume 3, Beyond Words, pages 389–455.
Springer-Verlag, Berlin, 1997.

[21] Moshe Y. Vardi. Reasoning about the past with two-way automata. In Kim Guld-
strand Larsen, Sven Skyum, and Glynn Winskel, editors, Automata, Languages and
Programming: 25th International Colloquium, volume 1443 of Lecture Notes in
Computer Science, pages 628–641, Aalborg, Denmark, 1998.

35

