
Lecture 11: Safra’s Determinization Construction

In this lecture we shall see a construction due to S. Safra that turns a nondetermin-
istic Büchi automaton of size n into an equivalent deterministic Rabin automaton of size
2O(nlogn). As an immediate corollary we see that we can complement a nondeterministic
Büchi automaton into a deterministic Streett automaton of size 2O(nlogn).

Safra’s construction is one of the masterpieces of this area. There are a number of articles
that try to demystify and explain the construction [2, 4]. They try and explain why simpler
ideas do not work and lead you to Safra’s construction. At the risk of obfuscating matters
I shall not take this route and instead try to arrive at Safra’s construcion from an analysis
of the run-trees of nondeterministic Büchi automata. The attempt here is to explain the
special structure of the state space constructed as something that arises naturally from the
structure of accepting runs (rather than as a complicated structure obtained by a sequence
of refinements of simpler ideas that do not work).

A nondeterministic automaton has many runs on an input word. The deterministic
automaton must simulate all those runs (or all the “relevant” ones) in a single one. The set
of all runs of a NBA A on a word w would be an infinite tree in which each path is a run of
A on w. (This is similar to the run of a universal alternating automaton, i.e. one in which
all the states are ∧ states. Of course, the acceptance criterion is different. We only demand
that at least one path through this tree is accepting.) Here is NBA Af and its run on the
word ababa

a,b

a,b

a,b

a

b

p q

r

p

q

p
q

r

p

q

q

r

p

p

q
r

r

r

a ab b

We could deterministically simulate this automaton level by level. That is pretty much all
that we can do in a deterministic simulation. But the number of nodes in a level is not
bounded. So, we need approximate and maintain some bounded amount of information. In
the so called “power-set” construction, we approximate a level by the set of states that label
some vertex at the level. Thus, we have an automaton of size 2n. Next, we need to decide
on the acceptance condition.

Demanding that that infinitely many levels contain final states is too generous. In the
above run, the accepting state F appears in every level in the run tree, however there is no
path in this tree that visits F infinitely often (and hence ababab . . . is not accepted by the
above automaton). Thus the powerset automaton

Ap = (2Q, Σ, δp, {s}, {X | X ∩ F 6= ∅}) with δp(X, a) = {q | ∃p ∈ X. q ∈ δ(p, a)}

1

accepts more words than A. The power-set automaton constructed from Af accepts abab . . .

though A does not. Here is an accepting run:

p

q

r

p

qq

r

p

q

r

p p

q
aba b

For any two sets X,Y of states from Q and word u, let us write X
u

−→g Y if for each
q ∈ Y there is a q′ ∈ X such that there is a run from q′ to q on u that visits some state in

F . For example, in the automaton Af , {p, q, r}
ab

−→g {q, r}.

p

q

r

qq q

r

pa
b

a
b

We now describe a different acceptance criterion for the powerset automaton. Let S0
a1−→

S2
a2−→ . . . be the run of the powerset automaton on a1a2 We accept provided we can

decompose this run as S0
x1−→ Si1

a2−→ Si2 . . . such that for each q ∈ Sik+1
, there is a q′ ∈ Sik

such that q′
xk+1

−→g q.
We claim that acceptance under this criterion guarantees that A accepts w. We can see

this as follows: Construct a DAG whose nodes at level k are the states in Sik . An edge is

drawn from a node at q′ at level i to a node at level i + 1 if and only if q′
xi+1

−→g q. Label
this edge by such a good run from q′ to q. This finitely branching DAG has infinitely many
nodes reachable from the vertices at level 1. Thus, there must be an infinite path through
this DAG. The labels along the edges of this path gives an accepting run for A on w.

Can we translate this acceptance condition as a Büchi acceptance condition (by blowing
up the state space if necessary?) The idea is similar to the one used to translate ABAs into
NBAs. Let Am = (Qm, Σ, δm, ({s}, ∅), {(X,X) | X ⊆ Q} where

Qm = {(X,Y) | Y ⊆ X ⊆ Q}
δm((X,Y), a) = (δp(X, a), δp(Y, a) ∪ δ(X, a) ∩ F) if X 6= Y

δm((X,X), a) = (δp(X, a), δp(X, a) ∩ F)

We simulate the powerset automaton at one level. In the other level, we keep track of the
subset of states that have been reached via paths that visited F . When these two sets are
the same, we reset the second set and proceed. Thus we have a deterministic automaton Am

with L(Am) ⊆ L(A). In [2], the automaton Am is called the marked powerset automaton.
Quite clearly, L(Am) will not in general be the same as L(A). For instance, the marked

powerset automaton constructed from Af does not accept aaa . . . which is accepted by Af .

2

q

q q q

p

q

p p p

qq

p

q

a aa a

q

In general, if there is a dead state d(a nonaccepting state with a self-loop on all letters
which is further not reachable from any accepting state) is reachable via some prefix of w

then Am will not accept w. This is because the state d appears in every level of the runtree
beyond a finite prefix on every word and there is NO path in the automaton to reach d via
an accepting state. How do we get around this? The naive idea would be somehow modify
the construction of Am to drop some elements of Q from the current state (so that any
dead-states are dropped.) But that is what a nondeterministic automaton does! It simply
drops all the states except the one that appears on the accepting path. So we need a better
idea.

It turns out that what we need to do is to start the automaton L(Am) not right at the
beginning, but instead start it after some initial prefix has been read. In some sense, we wait
for all the useless paths to branch off and run the Am on a “core” of the runtree. Of course,
we have to do all this deterministically.

Consider the following figure. It describes a runtree of an NBA A on a word w = a1a2 . . .

which is accepted by A. In the figure, we have marked one accepting path in this runtree,
and indicated the states of F that appear along this path by darkened circles.

x0

p0

p1

p2

p3

S0

S1

S2

S3

x1 x2 x3y0 y1 y2y

s

Here p0, p1, . . . are the states from F reached along the marked accepting run. We have
placed slices S0, S1, . . . on the sub-runtree rooted at p0, p1, S0 is the set of nodes reached

3

from p0 on reading the segment x0, S1 is the set of nodes reached from p1 on reading the
segment x1 and so on. w = yx0y0x1y1 . . . (The segment yi is the suffix obtained when we
drop xi from the word that takes pi to pi+1.)

Notice that Si

yixi+1

−→g Si+1. This might lead us to believe that we simply have to start the
automaton Am at p0. Unfortunately, S1 need not be set of states visited by the automaton A

started at state p0 (on x0y0x1), i.e. δp(p0, x0y0x1) could be a strict superset of S1 = δp(p1, x1).
As indicated in the figure below, the state q may appear in δp(p0, x0y0x1) but not in S1.

S
0

S
1

p
1p

0

q

But then is δp(p1, x1y1x2) the same as δp(p2, x2) (i.e. can we start the Am automaton at
p2?) Well, once again δp(p1, x1y1x2) could be a strict superset of δ(p2, x2). Note that if
δp(pi, xiyiu) = δp(pi+1, u) for some u then δp(pi, xiyiuv) = δp(pi+1, uv) for all extensions v.

p
i+1p

i

Now, let us say that pi and pi+1 merge if there is an u such that δp(pi, xiyiu) = δp(pi+1, u).
We can easily extend this notion of merging to pi and pj for any pair of occurances of
accepting states (along the accepting path under consideration.) If pi merges with pi+1 and
pi+1 merges with pi+2 then clearly pi and pi+2 also merge. It is easy to check that merges is
an equivalence relation that divides p0, p1 . . . into segments (p0, . . . pi), (pi+1 . . . pj), Also
note that if pi and pi+1 do not merge, then for any extension u of xiyi, δp(pi, xiyiu) is a strict
superset of δp(pi+1, u). But the set δ(pi, u) is a subset of Q and hence finite. Thus, merge is
an equivalence relation of finite index. Thus there is an equivalence class of merge consisting
of {pj | j ≥ N0} for some N0.

p
1

p
i

p
0

p
N0

s

u w’

Suppose, that w = uw′ where s
u

−→ pN0
, then we claim that the marked subset automaton

started at state p ∈ F labelling pN0
accepts the word w′. That is, the automaton Ap

m =

4

(2Q × 2Q, Σ, δm, ({p}, ∅), {(X,X) | X ⊆ Q} where δm is as before, accepts the word w′. Let
(X1, X2) be the state reached after some prefix v of w′. Hence there is some j run has gone
past pj but not pj+1. The states pN0

and pj+1 must merge at some prefix w′

1 of w′. At
that point the state of Ap

m would be (Y, Y) for some Y . Thus, the automaton Ap
m visits the

accepting set infinitely often on w′.
Thus, our deterministic automaton must (deterministically!) guess a path in the runtree

and a F labelled position in this path (corresponding to PN0
) and run the marked subset

automaton (which is a deterministic automaton) Ap
m from there on. Thus, in a manner quite

reminiscent of the proof of McNaughton’s theorem, we have shown that nondeterminism
is needed only in a finite prefix of the run. The question is how to get rid of the initial
nondeterminism.

As in the proof of McNaughton’s theorem, the idea would be to “run all possible copies”
instead of guessing which copy to run and merge copies whenever possible. That is, at each
point in the run if the word read so far leads s to some final state p we fork off a copy of
Ap

m at this point. We also merge copies that are at the same state. Let us examine the
correspondence with the construction in Lecture 8 closely:

1. The simple powerset automaton Ap will play the role of AU . Its role is to identify the
prefixes at which copies of the deterministic Büchi automata are to be forked off.

2. The role of the deterministic Büchi automaton AV will be played by a collection of
deterministic Büchi automata {Ap

m | p ∈ F}. After reading a finite word w, if the
automaton Ap has reached the state X then, for each p ∈ X ∩F a copy of Ap

m is to be
forked off.

3. Observe that if p 6= p′ then Ap
m and Ap′

m differ only in the start state. That is, the state
space of all the Ap

m is that of Am. Thus the operation of merging different copies still
makes sense. In particular, if two different copies are at the same state we merge them
together.

4. The number of states in Ap
m is 22n. At each step, we could fork upto |F | copies

(depending on which states in F appear in the current state). To ensure that if a copy
at slot j merges (with a lower numbered copy) down then slot j is empty (i.e. it carries
the state ⊥) in the next state, it suffices to keep 22n + |F | slots. This ensures that any
slot that becomes vacant (because it has merged with some other copy) stays vacant
at least for one move.

5. A run is accepting precisely when there is some slot j which is ⊥ only finitely often
(so that the copy j simulates some Ap

m on some suffix of w) and automaton at slot j

visits the final state infinitely often (i.e. the state in the jth slot is of the form (X,X)
infinitely often).

This leads us to the following construction of the (double exponential sized) deterministic

5

automaton Ad accepting L(A). Let K = 22n + |F |.

Qd = 2Q × (2Q × 2Q ∪ {⊥})K

sd = ({s},⊥,⊥, . . .⊥)

Let (S,W1,W2, . . . WK) be a state. To compute δd((S,W1,W2 . . . ,WK), a), first compute
the tuple V = (δp(S, a), δm(W1, a), δm(W2, a) . . . δm(WK , a)) with the understanding that
δm(⊥, a) = ⊥. Suppose {p1, p2, . . . , pl} = δ(S, a) ∩ F . We need to fork a copy of Api

m for
each i. Pick the l lowest numbered slots in V that are occupied by ⊥ and replace them
by ({p1}, ∅), ({p2}, ∅) . . . ({pl}, ∅) respectively. Now, if two or more slots are occupied by
the same state of Am, then replace all but the lowest numbered such slot by ⊥. This V ′ is
δd((S,W1,W2, . . . WK), a).

Finally, the acceptance condition is a Rabin acceptance condition consisting of K pairs
(Fi, Ii). Fi contains all the tuples where the ith coordinate is ⊥. Ii contains all the tuples
where the ith coordinate is an accepting state of Am, that is it is of the form (X,X) for
some X. It is quite easy to check, using the same ideas as in the proof in Lecture 8, that
this automaton accepts a word precisely when it is accepted by L(A).

How to transform this double exponential sized automaton to a single exponential sized
automaton is the topic of the next section.

1 Safra’s Construction

Safra’s construction incorporates the structure of the runtree into the state space of the
deterministic automaton. We shall illustrate this using the following complex automaton
which accepts the set of all words with infinitely many bs:

sr p t

u q

v

a

aa

a
bb

b
b

b

a,b a,b

a,b

a,b

a,b

Here is a prefix of the runtree of this automaton on the input abab

6

s

s

s

s s

r

r

r

r

r

p

t

t

t

q

q

qq

q q

u

u u

v

t

v

a

b

a

b

a

There are seven occurances of accepting states in the run on the word ababa. As an when
these states are encountered copies of Am is forked out. The state reached by these seven
copies is marked next to these states. Moreover the state reached by complete powerset
automaton is marked next to the root.

s

s

s

s s

r

r

r

r

r

p

t

t

t

q

q

qq

q q

u

u u

v

t

v

a

b

a

b

a

{s,q,v,r,t}

({q,s},{q,s})

({t},{})

({s,q,v},{s,q})

({s},{})

({q},{}) ({q},{})

({s},{})

In the autmaton Ad this would have been represented by a tuple

({s, q, v, r, t}, ({q, s}, {q, s}), ({t}, ∅), ({s, q, v}, {s, q}), ({s}, ∅), ({q}, ∅))

(with a large number of ⊥s interspersed which we have omitted to avoid clutter).
Safra’s construction stores more information. It records relationships between these var-

ious copies. For example, the three copies corresponding to the p at level 2, and the qs at

7

level 3 and 4 are working on independent subtrees. There are two copies working in the
subtree corresponding to the copy started w.r.t. the q at level 3 and so on. It would record
these dependencies and store the state as a tree.

({s,q,v,r,t},{s,q,v,t})

({s,q,v},{s,q})({q,s},{q,s}) ({t},{})

({s},{})({q},{})({s},{}) ({q},{})

It also uses a copy of Am instead of Ap for the automaton that forks out deterministic
automata. This allows for a uniform treatment of all the nodes in the tree. (We have not
eliminated duplicate copies here. We will get down to that soon.)

In Ad we maintained the state as a tuple and so the index i allows us to refer to a
particular copy of Am. To do this here, we assume that there is a an infinite ordered set of
nodes n1 < n2 . . . and each time we add a node in the tree, we pick the next node from this
sequence and use it. For example, with this the above tree would look like:

n1

n2n3 n4

n5 n7 n8n6

({s,q,v,r,t},{s,q,v,t})

({s,q,v},{s,q})({q,s},{q,s}) ({t},{})

({s},{})({q},{})({s},{}) ({q},{})

Notice that the nodes are numbered in the order in which the nodes were introduced into the
tree (We assume some fixed ordering on Q so when multiple children are added to a node in
a single step, the order is determined by the ordering on Q). To understand the behaviour
of this automaton let us see what happens to this state when the next input letter, say a is
read:

1. First, we simulate this move in each of the copies of Am (one per node in the tree).

2. Then, we need to introduce new copies of Am for each state in f ∈ F that is reached at
this state. Where do we introduce these copies? Notice that each such f appears along
some set of paths starting at the root (since the set of states labelling a parent of a
node is always a superset of that labelling a child). For each such path, find the highest
level such node on that path and add a a child labelled ({f}, ∅). In this example, it
turns out that all these highest level nodes are leaves and so we add children to these
leaves. But this need not always be the case. For the above automaton this gives:

8

n1

n2n3 n4

n5 n7 n8n6

n9 n10 n11 n12

({q,u,v,r,t},{q,u,v,t})

({t},{})({q,u,v},{q,u,v})

({q,u,v},{q})({q,v},{q})

({q,u,v},{q,u,v})

({q,u,v},{q}) ({q,u},{q})

({q},{})

({q},{}) ({q},{})

({q},{})

3. If the sets labelling a node and its child are of the form (X,Y1) and (X,Y2) this indicates
that the copies of Am started at the node and its child have merged and so we simply
delete the child and transfer all its children to the parent. In the above example, doing
this we get:

n1

n2n3 n4

n5 n7 n8n6

n9 n10 n11 n12

({q,u,v,r,t},{q,u,v,t})

({t},{})({q,u,v},{q,u,v})

({q,u,v},{q})({q,v},{q})

({q,u,v},{q,u,v})

({q,u,v},{q}) ({q,u},{q})

({q},{})

({q},{}) ({q},{})

({q},{})

Thus, unlike in Ad we do not actively merge any pair of copies that have reached the
same state but only parent-child pairs that have reached the same state. Notice that
this ensures that along any path in the tree the number of states in the first component
of the node labels decreases strictly. Thus any path in such a tree is of length bounded
by |Q|. On the other hand, there is no bound on the number of children of a given
node.

(Observation 1: Note that whenever a child of n merges with n, n must be labelled
by a state of the form (X,X), i.e. an accepting state of Am. This is because if a node
labelled (X,Y) has children with labels (X1, Y1) . . . (Xk, Yk) then Y = X1 ∪X2 . . . Xk.)

The initial state of the automaton is the tree with a single node n1 with the state ({s}, ∅).
The transition relation described above guarantees that in any reachable state, if the node
ni is the parent of nj and the labels of ni and nj are (Xi, Yi) and (Xj, Yj) respectively, then

9

Xj is a strict subset of Xi. We take our set of states to be trees over n1, n2 . . . labelled by
states of Am that further satisfy this property. Thus the trees constituting states have depth
bounded by |Q|. However, since we have an infinite set of labels the automaton we have
constructed has infinitely many states.

Finally, we have to define the acceptance condition. It accepts a word w, if there is a
node ni such that along the unique infinite run on w ni appears in all the states in some
infinite suffix and moreover ni is labelled by an accepting state of Am infinitely often. The
correctness of this construction is quite obvious: It simply maintains the state of Ad in a
more complicated form (and with some redundancy) and so its correctness follows from the
correctness of Ad.

So it seems like we have taken a step in the wrong direction: From a simple double
exponential automaton to a complex infinite state automaton. But one brilliant observation
of Safra takes us all the way to a 2O(nlogn) construction. His observation is the following:
If q ∈ Q appears in the sets labelling multiple paths in the tree (i.e. a state of the Safra
automaton), then we can drop it from all but one! (By this we mean that if a node ni is
not along the chosen path for q and its label is (X,Y) then we may replace this label by
(X \ {q}, Y \ {q})). This choice of which path is to keep track of q has to be made carefully.
Children of any node are ordered from left to right in the order in which they were inserted
into the tree. Given two paths starting at the root, the one that moves left at the point of
their branching is said to be to the left of the other. Safra’s idea is to keep the state q in
the left most path from the root (along which q appears). With this idea, the above state
becomes:

n1

n3 n4

n5 n6

n9 n11

n10 n12

n2

({q,u,v,r,t},{q,u,v,t})

({q,u,v},{q,u,v})

({q,v},{q})

({q},{})

({},{})

({t},{})

({},{})

({},{}) ({},{})

({},{})

We can delete nodes labelled ({}, {}) since they play no further role in the run. Thus the
state reached on ababa would actually look like:

n1

n3

n5

n2

n9

({q,u,v,r,t},{q,u,v,t})

({q,u,v},{q,u,v})

({q,v},{q})

({q},{})

({t},{})

The modified automaton As, has as its set of states trees over the set nodes n1, n2 . . .

labelled by states of Am in such a way for any q ∈ Q, there is at the most one path (starting

10

at the root) whose labels contain q. The transition relation is computed as above with the
following additional step:

4. If q appears along labels along multiple paths starting at the root, delete it
from all but the left-most path.

The acceptance criterion continues to be the same.
Why does this modified automaton As accept the same language as A (and Ad)? Every

word accepted by As is accepted by A. This is because, dropping some states from the sets
labelling the tree corresponds to running copies of Am in such a way that occasionally we
drop some states from the sets. This does not increase the family of words accepted as shown
by the following exercise.

Exercise: Let A′

m be the automaton defined as follows:

Am = (Qm, Σ, δ′m, ({s}, ∅), {(X,X) | X ⊆ Q}

where

Qm = {(X,Y) | Y ⊆ X ⊆ Q}
δ′m((X,Y), a) = {(δp(X, a) \ Z, δp(Y, a) ∪ δ(X, a) ∩ F \ Z) | Z ⊆ Q} if X 6= Y

δ′m((X,X), a) = {(δp(X, a) \ Z, δp(X, a) ∩ F \ Z | Z ⊆ Q})

Show that L(A′

m) ⊆ L(Am).
Hint: Simply show that if (X,X ∩ F)

u
−→ (Z,Z) in this automaton then for each z ∈ Z

there is some x ∈ X such that x
u

−→g z.

So we are left with showing that any word accepted by A is also accepted by the modified
automaton As. Let ρ = q0

a1−→ q1
a2−→

...
−→ be an accepting run. Let T0

a1−→ T1
a2−→ . . . be

the corresponding run in As. We associate a sequence of nodes N1, N2 . . ., Ni ∈ Ti with the
state qi of ρ. In Ti, set Ni to be the node at the highest level number containing qi (This
node need not be a leaf.) Notice that at each step one of the following things may happen:

1. Ni+1 is a child of Ni. This happens if qi+1 ∈ F and the path from root Ni+1 is the
left-most path with qi+1.

2. Ni+1 is an ancestor of Ni. This happens of Ni and several of its ancestors have the
same label as Ni+1 and they all get merged with Ni+1.

3. Ni+1 is reached via a “left jump”.

Observation 2: If the associated node reaches a node n from its descendents (by this we
mean Ni+1 = n and it is reached using case 2 above) then n must be labelled by an accepting
state of Am. This follows from Observation 1 and the condition for merging states.
Observation 3: By Observation 1, we do not need to keep the second component of the

11

labels of the trees as this can be computed from the first component of the children. (Safra’s
construction uses this optimization.)

First we observe that if n0 appears as Ni for infinitely many i then the node n0 is labelled
by an accepting state of Am infinitely often. This is because, each time the path visits an
qj ∈ F , the node Nj would move to a child of n0. But it returns to n0 in the future. But
this happens only when some child of n0 merges with it. But, by Observation 2, n0 must
be labelled by an accepting state whenever this happens. Otherwise, there is a point j such
that Ni 6= n0 for all i ≥ j. At the last point, say Ni, when the associated node moved from
n0 it must have moved to a child of n0. Moreover there are only finitely many children of the
root and in particular only finitely many to the left of Ni. So whenever the associated node
returns to level 2 (i.e. the level of children of the root) there are only finitely many choices
(it cannot ever reach a child of the root that appears to the right of Ni without visiting the
root, but we have already moved beyond the last visit to the root). Thus, the only way to
get to any of these is either by a merge from below or by a left jump. But left jumps to nodes
at level 2 can happen only finite number of times (since there are only finitely many of these
vertices that lie to the left of Ni at this level). Thus, there is point beyond which no vertex
at level 2 is reached by a left jump. Beyond this point either some vertex at level 2 is visited
infinitely often via merges from below, which (by Observation 2) guarantees that this node
is labelled by accepting states of Am infinitely often or else there is a point beyond which
the run never returns to level 2. We may then repeat this argument with vertices at level
3 and so on. But since the depth of the tree is bounded by N it follows that some node is
reached infinitely often by merges from below which guarantees that this node is labelled by
accepting states of Am infinitely often. Thus the run is an accepting run of the automaton
As.

Now we turn this into a finite state automaton. First of all observe that the first com-
ponent of the label of any child of n is a subset of the first component of the label of n.
Further the first components of the children are all disjoint. Thus if we focus just on the
first component, we start at the root and as we go down, we keep partioning the set into
finer and finer parts. Thus, the total number of nodes in the tree is bounded by 2 ∗ n where
|Q| = n. At each step, we will add at the most |F | ≤ n new nodes. Thus, if we have a set
of 3n + 1 nodes (following the ideas in Lecture 8 or the construction of Ad above) we are
guaranteed that any node that is dropped does not appear in the following state. With this
we get a finite state automaton, with a Rabin accepting condition with 3n + 1 pairs. In the
ith pair (Fi, Ii), Fi consists of all the trees where ni does not appear and Ii consists of all
the trees where ni is labelled by an accepting state of Am.

What is the size of this automaton? How many trees of the kind described above can be
formed of size 2 ∗ n from a set of 3n + 1 distinct nodes. By Cayley’s theorem the number
of trees over O(n) nodes is of the order of 2O(nlogn). We have ordered trees (i.e. different
ordering of the children of any node yields differnet trees). From each unordered tree we may
generate upto n! different labelled trees. Thus the total number of ordered trees continues to
be of the order of 2O(nlogn). Given such a tree how many different ways can we label the nodes
with subsets of Q satisfying the “partioning” property? Note that each q ∈ Q appears (if at

12

all) along one unique path. Thus, if we determine the tail (i.e. the highest numbered node)
for each q ∈ Q, the labelling of the tree is uniquely determined. The number of functions
from Q to the set of nodes is n3n+1. Thus the total number of Safra trees is O(2(O(nlogin)).

Our presentation of Safra trees is somewhat different from the one used by Safra in his
paper. This is because of our attempt to arrive from an analysis of the run-tree. We shall
outline the original construction briefly at the beginning of the next lecture.

References

[1] Christof Löding: Optimal Bounds for Transformations of ω-automata, Proceedings of
the International Conference on Foundations of Software Techonology and Theoretical
Computer Science (FSTTCS) 1999, Springer Lecture Notes in Computer Science 1738,
1999.

[2] Madhavan Mukund: Finite Automata on Infinite Words, Inter-
nal Report, SPIC Science Foundation, TCS-96-2, 1996. Available at
http://www.cmi.ac.in/ madhavan/papers/ps/tcs-96-2.ps.gz

[3] S. Safra: On the complexity of ω-automata, Proceedings of the 29th FOCS, 1988.

[4] Wolfgang Thomas: Languages, automata, and logic In the Handbook of Formal Lan-
guages, volume III, pages 389-455. Springer, New York, 1997.

13

