
A Recursive Probabilistic Temporal Logic

Pablo F. Castro1,2(B), Cecilia Kilmurray1,2, and Nir Piterman3

1 Departamento de Computación,
FCEFQyN, Universidad Nacional de Ŕıo Cuarto, Ŕıo Cuarto, Argentina

{pcastro,ckilmurray}@dc.exa.unrc.edu.ar
2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET),

Ŕıo Cuarto, Argentina
3 Department of Computer Science, University of Leicester, Leicester, UK

nir.piterman@leicester.ac.uk

Abstract. In this paper we introduce recursive probabilistic computa-
tion-tree logic as a restriction of μpctl. We introduce the logic in detail
and show its usefulness for verifying systems. We illustrate this by means
of some examples. Roughly speaking, we include recursive operators
within pctl, which enable one to identify repeating patterns of prob-
ability. This new feature seems in particular useful for expressing prop-
erties regarding stability of system executions; such properties are usual,
for instance, in those scenarios where one is interested to verify whether
the system under verification stays in, or revisits, a subset of safe states.
Also, the logic makes it possible to reason about set of executions with
zero measure; something no possible in related logics.

1 Introduction

The increasing role of computing systems in critical activities has led to the use
of mathematical formalisms for producing error-free software as well as reducing
the occurrence of faults during the execution of systems. In the case of verifica-
tion of complex and large systems, automated techniques based on mathematical
formalisms have been proved to be essential. One of these techniques that has
received an increasing amount of attention in the last decades is model checking.
Model checking establishes whether a system satisfies a certain property in an
automated way. For that, a representation of a system M called model is con-
structed and contrasted with a property ϕ in temporal logic. Temporal logic can
be used to express properties about concurrent and reactive systems [1].

Tools that implement model checking algorithms for various temporal logics
have been applied to verify hardware components, software programs, and net-
work protocols among others. Many examples of applications are reported in the
literature, and we refer to [1,2] for in depth introduction to model checking.

This work was partially supported by FP7-PEOPLE-IRESES-2011 MEALS project,
EPSRC EP/L007177/1 project, PICT 2013-0080 project and PICT 2012-1298
project.

c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 336–348, 2015.
DOI: 10.1007/978-3-319-25423-4 22

A Recursive Probabilistic Temporal Logic 337

In the last years, several types of temporal logics incorporating probabili-
ties into the picture have been proposed. These formalisms provide the basis to
perform model checking in scenarios where probabilities are needed. This is the
case, for instance, of randomized algorithms and distributed protocols. Such log-
ics include, for example, pctl, the probabilistic counterpart of ctl, and pctl∗,
the probabilistic counterpart of ctl∗, to name a few. Tools such as PRISM [3]
and LiQuor [4] support probabilistic model checking. In particular, they allow to
check the validity of pctl and pctl∗ formulas over Markov chain models.

A few years ago, there was a major effort that led to standardization of tem-
poral hardware specification languages (cf. [5,6]). This effort was preceded by
much research about the constructs that should (and should not) be included in
such languages (e.g., [7,8]). Much care has been given to find the right balance
between ease of specification, expressive power, and complexity of model check-
ing. In this paper we would like to start a similar process for temporal logics
intended for reasoning about probabilistic systems. The standard language for
reasoning about such systems is pctl, whose expressive power is very limited.
Much effort has been recently dedicated to considering probabilistic μ-calculi
[9,10] and automata [11]. These are very expressive, however, neglect the issues
of usability and tractability.

We present a logic called rpctl, which, as mentioned, extends pctl with
recursive calls. This logic is a fragment of μpctl presented in [10]. The recursive
operator is, in fact, a greatest fixpoint. However, introducing it through recursion
takes advantage of the familiarity of the recursion concept to computer scien-
tists. By not allowing nesting of different recursion schemes (least and greatest
fixpoints) we bound the complexity of the logic. At the same time, our logic
extends pctl in expressive power and allows it to characterize repetition in the
probabilistic system.1

We cast expressiveness results from [10] in the context of rpctl and show
that rpctl is more expressive than pctl. We show that the complexity of model
checking matches that of pctl and is polynomial in the underlying Markov chain.
In fact, the algorithm repeatedly calls pctl model checking.

We believe that a main application of rpctl is the verification of proper-
ties related to fault-tolerance. A system is said fault-tolerant when it is able to
continue working in an acceptable way even under the occurrence of faults. The
grade of tolerance exhibited by a given system can be characterized by using col-
lections of safe states. For instance, a system is said fail-safe if it stays in a set of
safe states under the occurrence of faults [12], and it is classified as non-masking
tolerant when it revisits infinitely often a set of safe or desirable states [12].
In the case of probabilistic systems (and probabilistic temporal logics), the char-
acterization of such properties cannot be achieved in a direct way. This is mainly
because the probability of a system to stay in a set of safe states is 0 when the
occurrence of faults has a positive probability (i.e., the system will eventually
escape from this set of “good” states with probability 1). We illustrate this

1 We note that this extension is orthogonal to the power added by pctl∗, or other
mechanisms for describing regular path properties.

338 P.F. Castro et al.

point with some examples in Sect. 4. Instead of using the standard quantifier for
greatest fixed point we use a syntactic sugar pointing out its recursive character,
we believe this improves its usability when specifying and verifying systems, we
illustrate this with two examples.

The paper is structured as follows. In Sect. 2 we introduce the basic concepts
needed to tackle the ideas described in this paper. In Sect. 3 we describe the logic
in detail and show how it compares to ctl and pctl. We include two examples
and show the motivation for using this logic in Sect. 4. Then, we describe the
model checking algorithm in Sect. 5. Finally, we discuss some conclusions and
future work.

2 Preliminaries

In this section we briefly introduce some basic concepts. A Kripke structure over
a set AP of atomic propositions is a tuple 〈S,→, L, s0〉, where S is a (finite) set
of locations, →⊆ S × S is a relation, L : S → 2AP is a labeling function and
s0 ∈ S is an initial location. A Markov chain over a set AP of atomic letters is
a tuple 〈S, P, L, s0〉, where S is a (finite) set of locations, P : S × S → [0, 1] is
a stochastic matrix, L : S → 2AP is a labeling function and s0 ∈ S is an initial
location. For a location s ∈ S we denote by Ms the Markov chain obtained from
M by setting s to the initial location.

pctl formulas over a set AP are defined as follows:

J :: = {>,≥} × [0, 1]
Φ :: = � | ⊥ | pi | ¬pi | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | PJ(Ψ)
Ψ :: = XΦ | Φ U Φ | Φ W Φ

As usual we introduce the abbreviations F and G. The semantics and intuitions
of pctl formulas are as usual, see [2].

The logic μpctl extends pctl with the inclusion of fixpoint variables and
least and greatest fixpoint operators [10]. We now describe the syntax and
semantics of μpctl. Let AP be a set {p0, p1, . . . } of atomic propositions and
let V = {V0, V1, V2, . . . } be an enumerable set of variables; the sets Φ and Ψ
of location and path formulas, respectively, are mutually recursively defined as
follows:

J :: = {>,≥} × [0, 1]
Φ :: = � | ⊥ | pi | ¬pi | Vi | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | PJ(Ψ) | νVi.Φ | μVi.Φ (1)
Ψ :: = XΦ | Φ U Φ | Φ W Φ

We assume that in every formula there is no repetition of bound variables; it is
straightforward to see that every formula can be rewritten to satisfy this require-
ment. In general, we are interested in formulas in which all variables are bound.

A μpctl formula characterizes the set of states of a Markov chain in which
it holds. Consider a Markov chain M = 〈S, P, L, s0〉. The semantics of subfor-
mulas may depend on a valuation associating a set of states with every variable

A Recursive Probabilistic Temporal Logic 339

appearing in it. Formally, a valuation is a function τ : V → 2S . We denote
by τ [S′/V] the valuation such that τ(V) = S′ and for every V ′ �= V we have
τ [S′/V](V ′) = τ(V).

The semantics of a formula ϕ, denoted [ϕ]Mτ is defined as follows:

[pi]Mτ = L(pi)
[¬pi]Mτ = S \ L(pi)
[Vi]Mτ = τ(Vi)

[ϕ1 ∧ ϕ2]Mτ = [ϕ1]Mτ ∩ [ϕ2]Mτ
[ϕ1 ∨ ϕ2]Mτ = [ϕ1]Mτ ∪ [ϕ2]Mτ
[PJ(Ψ)]Mτ = {s ∈ S | measureM (s, Ψ)J}
[νVi.Φ]Mτ = gfp{S′ ⊆ S | S′ = [Φ]Mτ [S′/Vi]

}
[μVi.Φ]Mτ = lfp{S′ ⊆ S | S′ = [Φ]Mτ [S′/Vi]

}

We notice that 2S is a lattice and that all operators are monotonic. It follows
from the Knaster-Tarski Theorem that the greatest and least fixpoint indeed
exist.

3 RPCTL

In this section we present an extension of probabilistic computation tree logic
with recursive statements. We provide the fixed point operators that allow writ-
ing recursive formulas. We allow a formula to contain a recursive call by using
two novel operators rec and call which are syntactic sugar for the greatest fixed
point. Technically speaking, this introduces greatest fixed points in the logic,
effectively making it a subset of μpctl.

Let us start presenting the syntax of rpctl. Let AP be a set {p0, p1, . . . } of
atomic propositions; the sets Φ and Ψ of location and path formulas, respectively,
are mutually recursively defined as follows:

J :: = {>,≥} × [0, 1]
Φ :: = � | ⊥ | pi | ¬pi | calli | Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | PJ (Ψ) | reci.Φ

Ψ :: = XΦ | Φ U Φ | Φ W Φ

In general, we are interested in formulas in which all variables are bound. Note
the indexes appearing in rec and call statements, they serve mainly two pur-
poses; firstly, they provide an enumerable collection of variables for recursion
(call0, call1, call2, . . .); and secondly, they indicate which quantifiers bind which
variables, that is, calli is bound by reci, for every i.

We now describe the semantics of rpctl. An rpctl formula characterizes
the set of states of a Markov chain in which it holds. Consider a Markov chain
M = 〈S, P, L, s0〉. The semantics of subformulas may depend on a valuation
associating a set of states with every call statement appearing in it. Formally,

340 P.F. Castro et al.

a valuation is τ : {call0, call1, . . . } → 2S . We denote by τ [S′/calli] the valuation
such that τ(calli) = S′ and for every i �= j we have τ [S′/calli](callj) = τ(callj).
The semantics of a formula ϕ, denoted [ϕ]Mτ is defined as follows:

[pi]Mτ = L(pi)
[¬pi]Mτ = S \ L(pi)
[calli]Mτ = τ(calli)

[ϕ1 ∧ ϕ2]Mτ = [ϕ1]Mτ ∩ [ϕ2]Mτ
[ϕ1 ∨ ϕ2]Mτ = [ϕ1]Mτ ∪ [ϕ2]Mτ
[PJ(Ψ)]Mτ = {s ∈ S | measureM (s, Ψ)J}
[reci.Φ]Mτ = gfp{S′ ⊆ S | S′ = [Φ]Mτ [S′/calli]}

Let us illustrate the intuition behind the operators call and rec with some
examples, consider the following formula:

rec.p ∧ P>0(Xcall), (2)

where, for the sake of simplicity, we avoid the indexes in rec and call. This formula
holds in a location s if p holds in s, and the probability that formula 2 holds in
next locations is greater than 0. That is, p holds in s and s has a successor
satisfying p, which has a successor satisfying p, and so on. This property is in
fact equivalent to the ctl property EGp. The formula:

rec.P>0.5(call U p), (3)

holds in a location s if recursively, there is a probability of more than half to
continue to locations that satisfy the same property until p becomes true. That
is, every location encountered on the way to the satisfaction of p has more than
half of its successors satisfying the same property. As we show below this property
is not expressible in either ctl or pctl.

Intuitively, we have to treat each bound variable calli as a new proposition.
Each location labeled by one of the new propositions needs to satisfy the pctl
formula obtained from the appropriate recursive call, where calls are replaced by
the corresponding formula. We provide further intuitions with some examples
below.

3.1 Expressive Power

We show that rpctl is more expressive than pctl and incomparable with ctl.

Theorem 1. rpctl is more expressive than pctl. There are properties
expressed by rpctl that are not expressible in ctl.

Proof. We first note that pctl is syntactically included in rpctl. The property
rec.p ∧ P>0.5(X ∧ call) is not expressible in either pctl or ctl [10].

A Recursive Probabilistic Temporal Logic 341

We note that including existential and universal path quantification in rpctl
would not increase the complexity of model checking algorithms. This would
allow us to include ctl in rpctl, should we wish to do so.

In Sect. 4 we use properties similar to the property in the proof of Theorem1.
That is, these properties enforce a repetition of a certain pattern of probability
even if that pattern occurs in a set whose measure is zero. It would be possible
to show that these properties are not expressible neither in ctl nor in pctl. It
is worth noting that this “repetition” feature of rpctl that reasons about sets
of paths of measure zero is the main novelty that is afforded by rpctl.

4 Motivating Examples

In this section we describe two examples with the aim of illustrating the use of
rpctl in practice.

4.1 A Token Ring Network

Our first example consists of a simple system composed of three connected nodes,
whose activities are regulated via a token ring protocol. The three nodes are
connected to each other via a network with a ring topology; in this setting, a
token is passed through by the nodes in such a way of guaranteeing the access
to a particular resource to the actual owner of the node, e.g., permission to send
information across the network.

Let us state a few properties which might be thought of as requirements for
this system. One of these properties is: there is always exactly one node that has
the token, and whenever a node hold onto a token, it eventually passes it to the
next node in the ring. A simple fault that can be conceived in this context is one
in which, due to the unreliability of the medium, the token is lost while it is being
sent from one node to another one, we assign some probability to the occurrence
of this event. A probabilistic abstraction of this situation, including the fault
detection, is depicted in Fig. 1. In this model, the proposition ni becomes true
when the token is passed to node i. While n ′

i represents the situation in which
the token stays in node i, before passing to the next one. It is simple to see that
the probability that a token reaches node 1 when it is sent by node 0 is 1

2 . Note
that for the other cases similar probabilities are obtained. Simple calculations
show the following: P(n1 . . . n2) = P(n2 . . . n0) = 1

2 .
It is interesting to investigate the properties that hold in the non-faulty part

of the system, an example is the following one.

Example Property 1. When no faults are observed, the token could stay in a
given state or move to the next one, the probability of doing this is at least one
half, and this pattern can be repeated an unbounded number of times.

Note that in this property we have an implicit notion of stability, which in
some sense characterizes the normative (or expected) behavior of the system. A
natural candidate to express this property is the following formula:

342 P.F. Castro et al.

n1n ′
0 n ′

1

n0start n2

E n ′
2

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3
1

3

1

3

1

3

1

3

1

3

1

3

1

Fig. 1. A model of a token ring of nodes, where tokens can be lost.

rec.

⎡
⎣

(n0 → P≥ 1
2
(F(n1 ∧ call))) ∧

(n1 → P≥ 1
2
(F(n2 ∧ call))) ∧

(n2 → P≥ 1
2
(F(n0 ∧ call)))

⎤
⎦ (4)

Roughly speaking, this formula expresses that, if the token is held by node i,
then the probability that the token reaches node i + 1, and that this pattern is
repeated, is one half.

If we consider the set of states that satisfy the first occurrence of call to be
the state labeled by n1, the set of states that satisfy the second appearance of
call to be the state labeled by n2, and the set of states that satisfy the last
occurrence to be the state labeled by n0, then, the pctl property obtained by
replacing bound variables by propositions denoting these sets of states, holds for
states n0, n1, and n2.

Let us introduce a variant of the scenario presented above. Now, when the
token is held by node 2, it could stay in that state or move to node 1 or node 0,
that is, now we have the possibility of returning the token to the previous node
or passing it to the next one; this may be the case, for instance, in a scenario
where the channel connecting node 2 with node 1 is corrupt, and the token has to
be returned to the original sender. This new situation is depicted in Fig. 2. The
probability of the token going from node 2 to node 0 is: P(n2 . . . n0) = 0.3636.

The formula does not hold for this last model, note that state n2 in the model
does not satisfy the subformula (n2 → P≥ 1

2
(F(n0 ∧call)). That is, rpctl makes

possible to distinguishing different patterns of repetition.
One may try to capture this property using the following pctl formula:

ϕ =

⎡
⎣

(n0 → P≥ 1
2
(F(n1))) ∧

(n1 → P≥ 1
2
(F(n2))) ∧

(n2 → P≥ 1
2
(F(n0)))

⎤
⎦ (5)

A Recursive Probabilistic Temporal Logic 343

n1n ′
0 n ′

1

n0start n2

E n ′
2

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

Fig. 2. Another model of a token ring of nodes, where tokens can be lost.

n0start n ′
0 n1

1

2

1

2

1

2

1

2

1

Fig. 3. Another model that satisfy ϕ.

In fact ϕ distinguishes the two models analyzed above, note that it is true in
the model of Fig. 1, and false in the model presented in Fig. 2. However, notice
that this pctl formula does not capture the notion of repetition. Formula 5 is
true in structures where the pattern of repetition is not available; an example is
shown in Fig. 3, where we have n0 � ϕ.

Another possible way of capturing recursive properties like this one using
pctl is by using a globally operator of the kind: P>0(Gϕ) (where ϕ is the prop-
erty presented above). But the set of paths that satisfy these kinds of properties
has measure 0; so in this model it is equivalent to P=0(Gϕ), which prevents us
from analyzing these traces.

4.2 A Mutual Exclusion Problem

Let us now consider a standard example in concurrency and fault-tolerance: the
mutual exclusion problem for two processes (namely P1 and P2). We introduce
faults in this model by allowing processes to go into an error state, in this
particular case they may be down for an undetermined amount of time. The
basis of this example is introduced in [13], here we add probabilities to be able
to perform a quantitative analysis of this system.

In every state the probabilities of moving to its successors are distributed in
a uniform way. The model that captures this scenario is shown in Fig. 4. The
region M1 (enclosed by a dashed line) contains those states that can be reached
either, during the normal behavior of the system, or when P1 is down but with

344 P.F. Castro et al.

a positive probability of recovering. In order to simplify the analysis, we only
consider failures in process P1, once P1 fails, P2 may fail too. The transitions
corresponding to the failure of P2 followed by the failure of P1 are similar to
the ones shown in that figure. In this model, the proposition Ni becomes true
when process Pi is in the non-critical region, propositions Ti and Ci represent
the situation in which the process Pi moves into its trying section, or critical
region, respectively. Finally, the proposition Di indicates that the process Pi is
down, denoting the occurrence of a fault. Note that, for the sake of clarity, we
have gathered the states into regions, and transitions were added from these sets
of states to failure regions. Let us state some properties of this model.

N1 N2

start

T1 N2 N1 T2

C1 N2 T1 T2 N1 C2

C1 T2 T1 C2

D1 N2 D1 T2 D1 C2

D1 D2

D1 N2 D1 T2 D1 C2

D1 D2

1

3

1

3

1

3

1

3
1

3

1

3

1

3 1

3

1

3

1

3

1

3

1

3

1

2

1

2

1

5

1

5

1

4
− ε

ε

1

4

1 − ε

ε

1 − ε

ε

1 − ε

ε

1

M1 M2

Fig. 4. Two-process mutual exclusion (Color figure online).

Example Property 2. When there are no faults, the process P1 stays in its
safe region (N1, T1 or C1) with probability greater than or equal to one half.

This property can be expressed in RPCTL using the following formula:

rec.
[
¬D1 ∧ P≥ 1

2
(X call)

]

Observe that this formula characterizes the idea of staying in a safe set of states,
we can think of this collection of states as representing the normal behavior of

A Recursive Probabilistic Temporal Logic 345

the system (i.e., the green states in Fig. 4), the recursive part of the formula
expresses that those states will be revisited with certain probability.

As we explain in Example 1, these kinds of properties cannot be captured
in pctl. One could mix ctl and pctl operators to express properties of traces
with measure 0. Consider for instance:

P≥ 1
2
[(N1 ∨ T1 ∨ C1) U D1] ∧ EG(N1 ∨ T1 ∨ C1) (6)

This formula says that the probability of keeping the system in the safe zone
until the process is down is at least to 1

2 , while the ctl subformula says that
there exists an execution where the process is always up. However, note that the
probability of repeating that pattern is not reflected in this formula.

Furthermore, we spice up this model with the possibility that process P1 stays
down forever, this new scenario is also depicted in Fig. 4, the region labeled M2

represents a collection of states where process P1 cannot recover from failures.
Note that, in this modified model, we have a probability 0 < ε ≤ 0.05 represent-
ing the chance that Pi stays down forever. Another desirable property of this
model is the following one.

Example Property 3. The probability that the process P1 is down with the
possibility of getting up at some point is greater than or equal to one fifth.

This property can be characterized with the following RPCTL formula:

rec.
[
D1 ∧ P≥(1−ε)(F¬D1) ∧ P≥ 1

5
(X call)

]
(7)

Intuitively, this formula characterizes the region of the system where the
process P1 fails, but there is a positive probability of returning to the safe zone.
Graphically, it represents the notion of staying and revisiting infinitely often the
set of red states in the M1 part of the model, shown in Fig. 4.

Finally, a key feature of this model is the possibility of moving between
normal regions (when no faults are present) and the idea that this behavior can
be repeated an unbounded number of times with a probability greater than or
equal to 1

3 .

Example Property 4. When there are no faults, the probability that the
process P2 moves to the next region is greater or equal to one third.

This property is expressed by the following RPCTL formula

rec.

⎡
⎣

(N2 → [P≥ 1
3
(XT2) ∧ P≥ 1

3
(X call)]) ∧

(T2 → [P≥ 1
3
(XC2) ∧ P≥ 1

3
(X call)]) ∧

(C2 → [P≥ 1
3
(XN2) ∧ P≥ 1

3
(X call)])

⎤
⎦ (8)

346 P.F. Castro et al.

Algorithm 1. Algorithm for rpctl Model Checking.
let ∀ i . Wi = ∅;
let ∀ i . Si = S;
do {

let ∀ i . Wi = Si;

let ∀ i . Si =
{ s | M(S1, . . . , Sn), s |= reci . ϕi(callj ← cj | j ∈ [1..n]) };

}
} while (∃ i . Si �= Wi);

if (M(S1 , . . . , Sn), s |= ϕ((recj . ϕj) ← cj |j ∈ [1..n])) print ‘‘Yes!’’;

else print ‘‘No!’’;

5 Model Checking

In this section we consider model checking of rpctl. We give an algorithm for
model checking rpctl on finite-state Markov chains that is polynomial in the
Markov chain and the size of the formula. The algorithm is the restriction of the
algorithm in [10] to the usage of just greatest fixpoints. We include it here for
the sake of completeness.

Consider a Markov chain M = 〈S, P, L, s0〉 and an rpctl formula ϕ. Suppose
that the set of calls appearing in ϕ is {call1, . . . , calln}, and let {S1, . . . Sn} be
sets of states of M . That is, for every 1 ≤ i ≤ n we have Si ⊆ S. We denote
by M(S1, . . . , Sn) the structure over AP ∪ {c1, . . . , cn} obtained from M by
setting L(ci) = Si. For the formula reci.ϕi, let reci.ϕi(callj ← cj |j ∈ [1..n])
be the formula obtained from ϕi, where every reference to callj is replaced by
cj . Finally, let ϕ(recj .ϕj ← cj |j ∈ [1..n]) denote the formula obtained from
ϕ by replacing every occurrence of recj .ϕj by cj . Then, Algorithm 1 computes
whether a state s of M satisfies ϕ. The algorithm calls pctl model checking as
a subroutine.

Theorem 2. For a rpctl formula φ, Algorithm1 answers “yes” iff s ∈ [φ]Mτ ,
where τ is an arbitrary valuation.

Proof. The proof follows from the approximation of greatest fixpoints. The algo-
rithm computes the greatest fixpoints by initializing their approximation by the
set of all states and removing all states that cannot satisfy the obligation. When
the fixpoint terminates the sets are the actual fixpoints.

Theorem 3. Algorithm1 can be computed in time polynomial in the size of M
and ϕ.

Proof. We rely on the fact that pctl model checking is polynomial both in
the size of the formula and in the size of the model. We note that the propo-
sitions cj appear positively in ϕ(recj .ϕj ← cj) and in reci.ϕi(call ← cj) Let
ψ be one of these formulas. From monotonicity it follows that if Si ⊆ S′

i then
{s | M(S1, . . . , Si, . . . , Sn), s |= ψ} ⊆ {s | M(S1, . . . , S

′
i, . . . , Sn), s |= ψ}. Hence,

A Recursive Probabilistic Temporal Logic 347

the sets Si are monotonically decreasing. If follows that after at most n · |S|
iterations through the loop the loop exits.

We conclude that the algorithm calls a polynomial number of times the model
checking procedure for pctl and is polynomial.

6 Related Work

Over the years there have been several suggestions of probabilistic μ-calculi.
Notably, the work of Huth and Kwiatkowska [14] and McIver and Morgan [15]
both suggest quantitative μ-calculi that replace the Boolean interpretation of the
classical μ-calculus with a quantitative interpretation. That is, the semantics of a
formula instead of being a set of locations is a function associating a value with
each location. These logics, however, fail to capture pctl and do not have a
means to get formulas back to the Boolean domain. Mio [9] extends these logics
with different interpretations of quantitative conjunction. In order to reason
about different types of conjunction he introduces parity games with independent
products and tree games. Mio’s quantitative μ-calculus does capture pctl and
has a fragment for which certain subformulas live in the Boolean domain and
others in the quantitative domain [16]. Unfortunately, the complexity of model
checking for Mio’s logic is very high.

In our work [10] we introduced a well behaved subset of Mio’s probabilistic
μ-calculus, called μp-calculus. Its advantage is that its model checking procedure
is in NP just like the μ-calculus. We then further suggested μpctl, that incor-
porates fixpoint operators in pctl. The disadvantage, as we have learned from
the μ-calculus, is that fixpoint alternation are very hard for users to understand.
A fragment of μpctl is considered also in [17].

7 Final Remarks

In this paper we have introduced rpctl, an extension of pctl with recursive
statements. It allows to specify properties describing possible “repetitions” in the
Markov chain and the probability of events occurring within these repetitions.
The extra expressive power comes at a very low price as model checking for this
logic is by repeated calls to a pctl model checker.

One of the main benefits of rpctl is that it allows one to capture properties
of internal regions of models. This is useful for instance in the case of systems
where it is needed to reason about the repetition of a certain pattern with a
given probability. This is the case, for example, of fault-tolerant systems where
one needs to reason about the pattern of faults and the probability of avoiding
them or recovering from them. We have presented some examples that show the
application of this logic in practice. We leave as further work the implementation
of a model checker for this logic, and the investigation of more complex case
studies. We also intend to consider extensions to the types of regular properties
that can be included within probability quantification.

348 P.F. Castro et al.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

4. Ciesinski, F., Baier, C.: LiQuor: a tool for qualitative and quantitative linear time
analysis of reactive systems. In: QEST, pp. 131–132. IEEE Computer Society
(2006)

5. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, New York (2006)
6. Cohen, B., Venkataramanan, S., Kumari, A., Piper, L.: System Verilog Assertions

Handbook. VhdlCohen Publishing (2010)
7. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver,

A., Mador-Haim, S., et al.: The ForSpec temporal logic: a new temporal property-
specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, p. 296. Springer, Heidelberg (2002)

8. Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Campenhout, D.V.: The def-
inition of a temporal clock operator. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 857–870. Springer,
Heidelberg (2003)

9. Mio, M.: Game Semantics for Probabilistic μ-Calculi. Ph.D. thesis, University of
Edinburgh (2012)

10. Castro, P.F., Kilmurray, C., Piterman, N.: Tractable probabilistic μ-calculus that
expresses probabilistic temporal logics. In: 32nd International Symposium on The-
oretical Aspects of Computer Science. LIPIcs, Garching, Germany, pp. 211–223
(2015)

11. Huth, M., Piterman, N., Wagner, D.: p-automata: new foundations for discrete-
time probabilistic verification. Perform. Eval. 69, 356–378 (2012)

12. Arora, A., Gouda, M.: Closure and convergence: a foundation of fault-tolerant
computing. TOSEM 19, 1015–1027 (1993)

13. Attie, P., Arora, A., Emerson, A.: Synthesis of fault-tolerant concurrent programs.
TOPLAS 26, 125–185 (2004)

14. Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: 12th
IEEE Symposium on Logic in Computer Science, pp. 111–122. IEEE Computer
Society (1997)

15. McIver, A., Morgan, C.: Results on the quantitative qmμ. ACM Trans. Comput.
Log. 8 (2007)

16. Mio, M., Simpson, A.: �Lukasiewicz μ-calculus. In: FICS (2013)
17. Liu, W., Song, L., Wang, J., Zhang, L.: A simple probabilistic extension of model μ-

calculus. In: 23rd International Joint Conference on Artificial Intelligence, Buenos
Aires, Argentina. AAAI Press, pp. 882–888 (2015)

	A Recursive Probabilistic Temporal Logic
	1 Introduction
	2 Preliminaries
	3 RPCTL
	3.1 Expressive Power

	4 Motivating Examples
	4.1 A Token Ring Network
	4.2 A Mutual Exclusion Problem

	5 Model Checking
	6 Related Work
	7 Final Remarks
	References

