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Abstract. In this paper we present syntactic characterization of temporal formu- 
las that express various properties of interest in the verification of concurrent 
programs. Such a characterization helps us in choosing the right techniques for 
proving correctness with respect to these properties. The properties that we con- 
sider include safety properties, liveness properties and fairness properties. We 
also present algorithms for checking if a given temporal formula expresses any 
of these properties. 

1. Introduction 

In the verification of concurrent programs two kinds of properties are of primary 
importance and have been extensively investigated ([Lam77]): safety properties 
and liveness properties. Safety properties assert that something bad never happens, 
while liveness properties assert that something good will eventually happen. The 
classification of properties into safety properties and liveness properties allows us 
to choose the most appropriate proof method for proving correctness with respect 
to these properties. For example, methods based on global invariants have been 
extensively used for safety properties, while methods based on proof lattices or 
well-founded induction have been employed for liveness properties (see [OWL82]). 

1 This work is partly supported by NSF grant CCR-9212183. A preliminary version of this paper 
appeared in the Fourth ACM Symposium on Principles of Distributed Computing. 
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Temporal Logic has been proposed in [Pnu77] (also see [MAP92]) as an ap- 
propriate formalism in the specification and verification of concurrent programs. 
Since then, many different versions of temporal logics have been used in the verifi- 
cation of concurrent programs [MAP89, LPZ85, SIC85, CES86]. Due to this wide 
interest, it becomes important to present a syntactic classification of formulas in 
temporal logic that specify safety and liveness properties. 

Knowing whether a formula specifies a safety or a liveness property, helps us 
in choosing the right proof method for verifying that a given concurrent program 
satisfies the property specified by the formula. Additionally, it is well known 
that all fair executions 2 of a program satisfy a safety property iff all executions 
(fair or unfair) satisfy the property. This means that we need not be concerned 
about fairness for proving safety properties. On the other hand, fairness is often 
essential in proving general liveness properties. Thirdly, proving that a program 
satisfies a property may not always be feasible due to many reasons. In such cases, 
monitoring the executions of a program for violations of the property may be an 
alternative. It is possible, in principle, to monitor an execution of a concurrent 
program for violations of safety properties. In contrast, this is not possible for 
liveness properties. Thus, knowing if a formula expresses a safety property helps 
us determine whether we can monitor the execution of a program for violations 
of the property. Motivated by such concerns, in this paper, we investigate the 
possibility of syntactically characterizing safety, liveness and fairness properties 
in Propositional Linear Temporal Logic (PTL). 

Formally, a property is simply a set of infinite sequences of states. A definition 
of safety properties was first given by Lamport [Lam85] (we call these as L-safety 
properties), and a more general definition is given in [A1S85]. We focus on the 
later definition. A safety property is the same as a limit closure property defined 
in [Eme83]. In [ADS86], it has been shown that the L-safety properties are the 
same as the class of safety properties that are closed under stuttering. Intuitively, 
closure under stuttering requires that the property be insensitive to successive 
repetition of any state of a sequence. 

In this paper, we introduce a new class of properties called strong safety 
properties. A property C is a strong safety property if it is a safety property 
that is closed under stuttering, and is insensitive to deletion of states, i.e. from 
any sequence in C if we delete an arbitrary number of states, then the resulting 
sequence is also in C. The class of strong safety properties is a strict subset of 
the class of safety properties that are closed under stuttering. 

We give a syntactic characterization of PTL formulas that express safety 
properties, safety properties closed under stuttering and strong safety properties. 
Specifically, we show that all positive formulas formed using only ~// (unless) 
and (2) (nexttime) express safety properties, and all positive formulas formed 
using only q/ express safety properties that are also closed under stuttering. We 
go on to show that all positive formulas formed using only [] (always) express 
strong safety properties. In this case, we show the completeness result as well, i.e. 
every strong safety property expressible in PTL can be expressed using positive 
formulas that only use the [] modal operator. In fact, we prove a stronger result 
that shows that any strong safety property expressed by a finite state automaton 
can be expressed by a positive formula that only uses the [] temporal operator. 

2 We give a formal definition of  fairness properties, which may  be viewed as a special class of  liveness 
properties. 
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We also consider liveness properties. Here again we use the definition of 
[A1S85]. Intuitively, a property is a liveness property if every finite sequence 
can be extended to an infinite sequence that satisfies the property. We introduce 
a new class of properties called absolute liveness properties. A property is an 
absolute liveness property if it is a liveness property, and is insensitive to addition 
of prefixes, i.e. for any sequence in the property if we add an arbitrary prefix 
to it then the resulting sequence is also in the property. We give a simple 
characterization of PTL formulas that express absolute liveness property. We 
also give a formal definition of stable properties and fairness properties. A stable 
property is a property that is insensitive to deletion of prefixes, i.e. it is closed 
under suffixes. A fairness property is a property that is insensitive to addition 
or deletion of prefixes. Fairness properties play an important role in verifying 
liveness properties of concurrent programs. We characterize the formulas that 
express both of the above types of  properties. 

In addition to presenting syntactic characterizations, we also present al- 
gorithms for recognizing formulas that express safety properties and liveness 
properties. Finally, we show that the set of formulas that express safety proper- 
ties is PSPACE-complete. We present a double exponential time algorithm for 
recognizing formulas that express liveness properties. 

The paper is organized as follows. Section 2 contains the definitions of  the 
temporal logic that we use, and the definitions of the different properties that 
we consider in the paper. Section 3 presents the results on safety and strong 
safety properties. Section 4 considers characterization of  absolute liveness and 
other properties. Section 5, gives the decision procedures for detecting if a given 
formula expresses a safety property or a liveness property. Finally, section 6 
contains the concluding remarks. The results of the paper are summarized in 
Tables 1 and 2. 

2. Notation and Definitions 

2.1. Linear Temporal Logic 

The language of Propositional Linear Temporal Logic (PTL) uses the modalities 
Q) (nexttime), ql (unless) together with symbols for atomic propositions drawn 
from a finite set F, the propositional connectives A, ~ and parenthesis. The set of 
well formed formulas in PTL is the smallest set satisfying the following conditions: 
every atomic proposition from F is a well formed formula; true and false are well 
formed formulas; if f and g are well formed formulas then so are f / ' ,  g, -~f, Q)f 
and f ~// g. 

A state is a mapping from F into the set {true, false}. We let 2 denote the set 
of all states. Since F is a finite set, Z is also a finite set. An interpretation is a 
pair (s, i) where s = so, Sl, ..., si, ... is a co-sequence of  states and i is a non-negative 
integer. We define a satisfiability relation, ~,  between an interpretation and a 
PTL formula f inductively on the structure of f as follows. 

* s, i ~ true and s, i g=false for every s ~ E ~ and i > 0, 

�9 s, i ~ P for P 6 F / f f  so(P) = true, 

�9 s , i ~ f i f f s ,  i~=f,  

�9 s , i ~ f A g i f f s ,  i ~ f a n d s ,  i ~ g ,  
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�9 s, i ~ f q/ g iff either for all k > i s, k ~ f ,  or there exists some j > i, s, j ~ g 
and for every k, i < k < j, s, k ~ f .  

�9 s , i ~ G f i f f s ,  i §  

Note that f q/ g does not imply that g is eventually satisfied. The operator 
q/ is also called weak  until in the literature. We say that an infinite sequence of 
states s satisfies a formula f if s, 0 ~ f .  We say that a PTL formula f is satisfiable 
if there exists some s 6 Z ~ that satisfies f .  

In addition to the above temporal operators, we also use the derived unary 
operators [] and ~ and the derived propositional connectives v, ~ and ~ defined 
as follows: DT = f o g  false,  <>f = ~t2-~f ,  f V g ==- ~ ( ~ f  A -~g), f --o g =_ -~f V g, 
f ~ g = ( f  -o g) A (g -0 f) .  Notice that s, i ~ Elf iff for all j > i, s, j ~ f ,  and 
s, i ~ ~ f  iff for some j >__ i s, j ~ f .  Although, we have defined [] and ~ in terms 
of  the 0// operator, we treat them as separate operators. 

For a set M of  temporal  modal  operators, the set of  positive formulas using 
these operators are exactly those that are formed using the modalities from M and 
the propositional connectives A, v, ~ with none of  the modalities of  M appearing 
in the scope of ~. 

2.2. Safety Properties and Liveness Properties 

Now, we give the definitions of  different properties that we intend to characterize. 
We use the following notation throughout the paper. For any set A, A* and N ~ 
denote the set of  all finite sequences and the set of  all infinite sequences, i.e. 
co-sequences, over A. For any co-sequence t = (to, q,...) 6 Z ~~ and non-negative 
integers i and j such that j > i, we define the sequences t(i) and t(i, j )  as follows: 
t(i) = (to, q , . . . , t i )  and t ( i , j )  = (ti, t i+b.. . , t j) .  Note that t(i) is the prefix of  t 
consisting of  the first i § 1 elements and t(i, j )  is the sequence of elements in t 
between the i § 1st and j § 1st elements. We define t(i, ~ )  to be the co-sequence 
ti, ti+l .... ; this is the suffix of  t starting from the i + 1st state of  t. A property 
is a subset of  2% For a PTL formula f the property expressed by f is the set 
{ t E Z  ~' : ( t , O ) ~ f } .  

2.2.1. Safety  Properties 

The following definition of  safety property is given in [A1S86]. A property C is a 
safety property iff the following condition is satisfied for all t E Z ~ : 

if Vi >_ 0, 3u 6 Z ~ such that t(i)u c C then t 6 C. 

Note that the limit closure properties of  [Eme83] are exactly the safety properties. 
According to this definition, if C is a safety property and t is an co-sequence each 
of whose prefixes can be extended to an co-sequence in C then t is also in C. 
Stated differently, if C is a safety property and t is not in C then for some prefix 
of  t none of its extensions to an co-sequence is in C. 

A property C is said to be closed under stuttering if t = to, tl, .., ti, ti+l, ... is in 
C then the sequence to, tl ,  ..., ti, ti, ti+l, ... is also in C. I f  C is closed under stuttering 
and t E C then if we successively repeat any state of  t an arbitrary finite number  
of  times then the resulting sequence will also be in C. 

Lampor t  had proposed a different definition of safety properties. We will refer 
to these properties as L-safety properties. A property C is a L-safety property iff 
the following condition is satisfied: 



Safety, Liveness and Fairness in Temporal Logic 499 

Vt = (to, ..., ti, ...) C y?o, t C C iff u > O, t(i)t~ E C. 

Let us say that an extended prefix of a sequence of states t is an co-sequence of  
states obtained by taking a prefix of t and extending it by repeating its last state 
infinitely many times. If  C is a L-safety property and t is any co-sequence of states 
all of  whose extended prefixes are in C then t is also in C. It has been shown in 
[AIS86] that a property which is closed under stuttering is a L-safety property iff 
it is a safety property. We will refer to such properties as safety properties with 
stuttering. A property C is a strong safety property iff 

�9 (a) C is a safety property with stuttering and 

�9 (b) Vt = to, tl... E C, Vi > 0 the sequence to, tl, ..., t i-b ti+l .... E C, i.e., if t E C 
and we delete any state other than the initial state from t then the resulting 
sequence should also be in C. 

The motivation for condition (b) in the above definition is that if we don't 
observe the system at certain times then the observed behavior should still satisfy 
the property(it is assumed that the initial state is always observed). 

Invariant properties are properties that are expressed by the formulas of  
the form []f  where f is a propositional formula. Clearly, the class of invariant 
properties is a subclass of  strong safety properties. 

A formula is a safety formula iff it expresses a safety property and is a strong 
safety formula iff it expresses a strong safety property. 

2.2.2. Liveness Properties 

Now, we give the definition of a liveness property. A property C is a liveness 
property iff the set {t(i) : t E C} is Z*. A formula is a liveness formula iff it 
expresses a liveness property. Intuitively, a formula is a liveness formula iff every 
finite sequence can be extended to satisfy the formula. A property C is an absolute 
liveness property iff C is non-empty and Vt E C, Vu E Z*, ut E C. Note that every 
absolute liveness property is also a liveness property. 

A property C is a stable property if for every sequence in C all it's suffixes 
are also in C, i.e. C is closed under suffixes. If  f expresses a stable property and 
if t, 0 ~ f then Vi _> 0, t, i ~ f .  

Lemma 2.1. For a property C ~ Z ~, C is a stable property iff the complement 
of  C is an absolute liveness property. 

Proof Let D = Z ~~ - C. Assume that C is a stable property. We like to show that 
D is an absolute liveness property. Now, let t E D and u be any finite sequence in 
Z*. If  ut c C then it would imply that t E C (because C is closed under suffixes) 
which contradicts the assumption that t E D. Hence, Yu E Z*, ut E D. Hence D is 
an absolute liveness property. 

Now assume that D is an absolute liveness property. We like to show that 
C is a stable property. Let t E C and t' be any suffix of t. If  t' E D then from 
the definition of  an absolute liveness property it would immediately follow that 
t c D, which is a contradiction. Hence t' E C and C is closed under suffixes and 
is a stable property. [] 

Fairness properties form another important class of  properties. Usually a 
fairness property only talks about the infinite behavior of computations. For this 
reason we use the following definition. A property C is a fairness property iff C is 
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a stable property and is an absolute liveness property. See [Fra86] for a discussion 
of various fairness properties. Also [EmL87] considers various fairness properties 
expressed in temporal logic. They do not, however, give a semantic definition of 
fairness properties. 

Examples 
Now, we give some simple examples of different safety and liveness properties 

that we defined above. Let a, b E E. Then abe ~ which is the set of sequences 
starting with a and immediately followed by b, is a safety property. However, it 
is not a safety property with stuttering. This is due to the fact that if we repeat 
the first state twice then the resulting sequence is not in C. The set a+b+E ~ is 
a safety property with stuttering, but is not a strong safety property. Here a + is 
one or more occurrences of a. The set a*b*Z ~ is a strong safety property. Here 
a* denotes zero or more occurrences of a. 

The set (E - {a}) '~ U (E - {a})*aY?bE ~ is a liveness property which is not an 
absolute liveness property. It is the set of sequences that have an occurrence of b 
following some time after the first occurrence of a. The set E*aE ~, which is the 
set of all strings that contain at least one a is an absolute liveness property. 

Below, we present some practical examples. 
The simple safety property for resources is that the resource is never allocated 

unless there is a request for it. Let request,alloc be atomic propositions indicating 
requesting of the resource and allocation of the resource, respectively. Let REQ 
denote the set of states that assign value true to the proposition request. Similarly, 
let ALLOC denote the set of states that assign value true to the proposition alloc. 
Formally, the simple safety property for resources, denoted by sa fe ,  is the set 
of sequences in which every occurrence of an ALLOC state is preceded by a REQ 
state. This property is expressed by the following formula: 

-~alloc ~ request 

The safety property for continuous resource allocation, denoted by con-safe, 
is the set of sequences in which every occurrence of an ALLOC state is precede 
by a REQ state, and in addition between every two ALLOC states there is a REQ 
state. This is expressed by the following formula: 

(-~alloc ~1 request)AO(alloc--~ @[-~alloc ~ request]) 

The bounded safety property for resources, denoted by bounded-safe, is the 
set of sequences in which, whenever a state from REQ occurs then with in the 
next two states a state from ALLOC also occurs. This is expressed by the following 
formula: 

[2(request -~ (alloc V 0 alloc V 0 (~) alloc)) 

From the definition of safety properties, it can be shown that both safe , 
con-safe and bounded-safe are all safety properties. In addition, safe is closed 
under stuttering while con-safe and bounded-safe are not. Thus, safe is also a 
safety property with stuttering. 

Let monotone-p be the set of sequences t satisfying the following condition: 
either P is satisfied in all states of t, or if P is not satisfied in any state of t then 
P is not satisfied in all future states from that point onwards, monotone-p is a 
strong safety property. This is expressed by the following formula: 

t2(P V ~--P)  
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A simple invariant property is the absence of dead locks. Let no-deadlock be 
an atomic proposition that indicates the absence of dead locks in a state. The 
formula [no-deadlock asserts dead lock never in a computation. 

Now, we present some examples of  liveness properties. Let live-resource be the 
set of sequences in which every occurrence of  a REQ state is eventually followed 
by an ALLOC state, live-resource is a liveness property. It is not an absolute 
liveness property due to the following reason. Consider a sequence t that does 
not contain any REQ or ALLOC states. This sequence is in live-resource. However 
the sequence rt, where r is a state in REQ , is  not in live-resource, live-resource is 
expressed by the following formula. 

[](request ~ �9 

Let terminate be an atomic proposition that indicates the termination of  a 
program. Also, let TERM be the set of  states in which terminate is assigned the 
value true. The set of  all sequences of  states that contain a state from TERM is an 
absolute liveness property. This property is expressed by the formula �9 

An example of  a stable property is an invariance property. Now we give an 
example of a fairness property. Let send and receive be atomic propositions that 
denote sending and receiving of any message on a channel. Let SEND be the set 
of  states that assign the truth value true to the proposition send, and RECEIVE be 
the set of states that assign true to the proposition receive. Let channel-fairness be 
the set of  all sequences t satisfying the following property: if t contains an infinite 
number of occurrences of  SEND states then it also contains an infinite number 
of  occurrences of RECEIVE states, channel-fairness is a fairness property. It is 
expressed by the following formula: 

[ � 9  send --~ D�9 receive 

3. Characterization of Safety Properties 

In this section we consider syntactic characterization of PTL formulas that express 
different safety properties. The results are summarized in Table 1. 

3.1. Safety Properties in PTL 

The following theorem shows that all positive formulas express safety properties. 

Theorem 3.1. Every propositional formula is a safety formula and if f , g  are 
safety formulas, then so are f A g, f V g, @f ,  f ~// g and Df. 

Proof It is easily seen that every propositional formula expresses a safety prop- 
erty. Assume that f and g express safety properties. It is straightforward to see 
that f / x  g expresses a safety property. Now consider f V g. Let t E Z ~~ be such 
that every prefix t r of  t can be extended to satisfy f V g. It is easily seen that either 
infinitely many prefixes of  t can be extended to satisfy f and hence all prefixes 
of  t can be extended to satisfy f ,  or all prefixes of  t can be extended to satisfy g. 
From this observation and the the assumption that f and g are safety formulas, 
it follows that either t, 0 ~ f or t, 0 ~ g. Hence t, 0 ~ f V g. From this, it follows 
that f V g is a safety formula. It is easy to see that O f  expresses a safety property. 
Now we like to show that f ~// g expresses a safety property. Let t E Z C~ be such 
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that Vi > O, qu E Z ~~ such that t(i)u ~ f ql g. Now we have the following two 
cases: 

�9 Case 1 : Vi, Vj such that 0 _< i _< j < oo 3u 6 y~o such that t(i, j)u, 0 ~ f .  Since 
f expresses a safety property it follows that Vi > 0, t(i, oo), 0 ~ f .  Recall that 
m our notation t(i, oo) denotes the suffix of t starting from the state t~. Thus 
Vi > 0, t, i ~ f .  Hence t, 0 ~ f q/ g. 

�9 Case 2: Assume that case 1 does not hold. That is, 3i, j such that 0 _< i _< j < oo 
and Vu ~ E ~, t(i, j)u, 0 ~ -~f. Let k be the smallest value of i for which the 
above condition holds and k' be the corresponding value of j. We know that 
Vi _> 0~u ~ 2 '~ such that t(i)u, 0 ~ f o-# g. Now, consider any i > k' and 
some u E Z ~ such that t(i)u, 0 ~ f q/ g. From our assumption it is the 
case that t(k, i)u, 0 ~ f and hence t(i)u,k g= f .  Hence, we see that 3m < k 
such that t(i)u, m ~ g, and Vp such that 0 <_ p < m t(i)u, p ~ f .  This implies 
that t(m, i)u, 0 ~ g and Vp such that 0 <_ p < m t(p, i)u, 0 ~ f .  From this, it 
follows that 3m ___ k such that for infinitely many values of n > m, 3u E Z ~, 
such that t(m, n)u,O ~ g and Vp such that p < m t(p, n)u, 0 ~ f .  From this 
and the assumption that f and g are safety formulas, it easily follows that 
t(m, oo), 0 ~ g and Vp < m t(p, oo), 0 ~ f .  Hence t, m ~ g and Vp < m, t, p ~ f .  
Thus it is seen that t, 0 ~ f q/ g. 

From the above argument, it clearly follows that f q/g expresses a safety property. 
rnf expresses a safety property since Df ~ f q/ false. [] 

Note that all the formulas expressing the different safety properties s a f e ,  
con-safe and bounded-safe, given in section 2.2 are positive. 

It is the case that any PTL formula that is expressively equivalent to a positive 
formula is also a safety specification. Consider any complete axiomatization for 
PTL. Let F f indicate that f is theorem in this deductive system. Let SAF be the 
set of PTL formulas generated by the following rules. 

�9 If f is a positive formula then f E SAF; 
�9 If~- (f  ~ g) and g E SAF then f E SAF. 

It is easily seen that all members of SAF are safety formulas. 

3.2. Safety with Stuttering 

The following theorem shows that all positive formulas formed using q/ express 
safety properties with stuttering. 

Theorem 3.2. Every positive formula using only the operator q/ expresses a 
safety property with stuttering. 

Proof It can easily be shown by induction on the structure of the formula that 
every formula that only uses the modality ~ expresses a property that is closed 
under stuttering. The proof of the lemma follows from the above observation and 
theorem 3.1. [] 

Note that the formula expressing the simple safety property safe ,  which is a 
safety property with stuttering, only uses the temporal operator q/ . 

Consider a complete axiomatization for the set of valid formulas in PTL. It 
can easily be shown that all the formulas belonging to the set T generated by the 
following rules express safety properties with stuttering. 
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�9 Every positive formula built using only the modality 

�9 I f b f * - , g a n d g E T t h e n f E T .  
#/ i s in  T; 
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3.3. Strong Safety Properties 

In this section, we give an exact characterization of strong safety properties 
expressible in PTL. We prove a stronger result showing that the class of strong 
safety properties definable by finite state automaton are exactly the class of 
properties expressed by positive formulas that only use the temporal operator c?. 
First, we need the following definitions. 

A finite state automaton A on infinite strings is a 5-tuple (A, Q, 8, I, F) where 
A is the alphabet, Q is the set of automaton states, ~ : (Q • A) ~ 2 Q, I __ Q is 
the set of start states, F ___ Q is the set of final states. Let t E A% A run of A on 
t is a co-sequence of states q0, ql .... such that q0 E I and Vi > 0, qi+l E 6(qi, ti). 
The sequence t is said to be accepted by A iff there exists a run of A on t that 
contains a state from F repeated infinitely often. Consider an automaton A whose 
alphabet is the set Z. From now onwards, we only consider such automata. We 
say that a property C is defined by A if C is exactly the set of infinite strings 
accepted by A. We let L(A) denote the property defined by A. 

For a finite sequence s of elements, we let length(s) denote the number of  
elements in s, and for an infinite sequence s we define length(s) to be oo. Given 
two sequences s = (so, Sl, ...) and t = (to, ta, ...), we say that t is a subsequence of s 
if there exists integers i0 < il < ... such that for all p such that 0 _< p < length(t), 
tp =Sip. 

The following theorem characterizes the class of strong safety properties 
definable by finite state automata. 

Theorem 3.3. The class of strong safety properties defined by finite state automata 
is exactly the class of properties expressed by positive formulas using only the 
temporal operator [] .  

The above theorem follows from the lemmas 3.4 and 3.6 established below. 
Lemma 3.5 shows that every positive formula that only uses the operator [] 
expresses a strong safety property. Lemma 3.6 shows that, for every strong safety 
property definable by an automaton, there is a positive formula using the [] 
operator that expresses the property. 

It is well known ( see [Sis83] ) that for every property expressed by a PTL 
formula there exists an automaton on infinite strings that defines the property. 
From this and lemma 3.6, it follows that every strong safety property expressed 
by a PTL formula is also expressed by a positive formula using the [] operator. 
This give us the following corollary. 

Corollary 3.4. The class of strong safety properties expressed by PTL formulas 
is exactly the class of properties expressed by positive formulas using only the 
temporal operator D. 

Lemma 3.5. Every positive formula formed using only [] expresses a strong safety 
property. 

Proof. Let f be a positive formula formed using [] . It follows from theorem 3.2 
that f expresses a safety property with stuttering. We have to prove that for any 
t, if t, 0 ~ f and t p is a sequence obtained by deleting any non-initial state then 
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t', 0 ~ f .  We prove this by induction on the structure of f .  This is trivially true if 
f does not have [] .  The induction step is easily seen for the case when f is of the 
form g Ah or is of the form g vh .  Now let f --- []g. In this case, Vj > O,t, j  ~ g. 
Using this fact and the induction hypothesis for g, it is easily seen that t, 0 ~ f .  

[] 

Note that the formula that expresses the property monotone-p, given in section 
2.2, only uses the [] operator. 

Now, we want to show that every strong safety property definable by a finite 
state automaton on infinite strings can be expressed by a positive formula using 
the [] operator. From this result, it would follow that the class of strong safety 
properties that can be expressed in PTL is exactly those properties that are 
expressed by positive formulas using the [] operator. 

Lemma 3.6. If  C is an automaton definable strong safety property then there 
exists a positive formula built using [] that expresses C. 

Proof Let A = (2, Q, 6, I, F) be an automaton that accepts C. Corresponding to 
A, we define a directed graph G = (V ,E)  as follows: V = (Q x ~.) u {vo} and 
E = {((q,a),(q',a')) : q' E 6(q,a')} U {(Vo,(q',a')) : q' E g)(q,a') for some q E I}. 
Notice that the vertex vo is a source vertex, i.e. no edges enter the vertex. Each 
vertex other than Vo corresponds to a state of the automaton and an input from 
Z. Each edge in E corresponds to a transition of the automaton on an input 
symbol. Let p = Po, Pl, ... be an infinite sequence of nodes of G where po = vo and 
Vi > O,p~ = (% ai). Define a sequence t(p) = (to, q, ...) E E ~~ where Vi > 0, t~ = ai+l. 
The sequence p is a path if Vi >_ 0, (pi,pi+l) E E. p is said to be accepting iff there 
exist infinitely many values of i such that qi E F. Let L(G) = {t(p) E Z ~ : p is 
an accepting path in G starting from Vo}. It is easily seen that L(A) = L(G). If 
C is empty then any unsatisfiable propositional formula expresses C. So, assume 
that C is non-empty. Let V ~ be the set of nodes in G such that for each node in 
V r there exists an accepting path starting from vo that passes through this node. 
Note that vo c V'. Let G' = (V ' , U)  where E t = {(r,s) : r , s  E V' and (r,s) E E}. 
It is easily seen that L(G') = L(G) = L(A) = C. Since C is a safety property the 
following claim is easily seen. 

Claim 3.1. C = {t(p) : p is a path in G' starting from v0}. 

Claim 3.2. If  p = p0, pl .... is any infinite sequence of nodes in G' such that P0 -= v0, 
(vo, pl) E E' and every prefix o fp  is a subsequence of an infinite path in G' starting 
from v0 then t(p) E C. 

Proof  Let p be as defined in the statement of the claim. Clearly, every prefix of 
t(p) is a subsequence of  t(q) for some infinite path q in G' starting from v0. Since 
C is a strong safety property it is easily seen that every prefix of t(p) is a prefix 
of some sequence in C. Since C is a safety property, it follows that t(p) ~ C. [] 

Let G" = (V" ,E")  be a directed graph where V" is the set of strongly 
connected components 3 of G' and (C1, C2) ~ E" iff there exists an edge in G r 

3 Recall that a strongly connected component is maximal set of vertices such that every two vertices 
in it lie on a cycle, or is singleton set containing a node that has a self loop and does not lie on any 
other cycle, or is a singleton set containing a node which does not lie on any cycle. 
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from some node in C1 to some node in C2. Since v0 is a source vertex, it is 
the case that the singleton {v0} is a strongly connected component and is in V". 
Clearly, G" is acyclic. Hence there are only a finite number of  paths in G". Let 
e = (q, a) E V' - {v0}. With c we associate a propositional formula g(c) = gl A g2 
where gl is the conjunction of  all atomic propositions P such that a(P)  = true 
and g2 be the conjunction of all ~P  such that a(P) = false (recall that a E E). 
For any C 6 V", let g(C) be the disjunction of  all g(c) such that c E C. Let 
d = Co, C1, ..., Cm be a path in G". We define temporal formulas hm, hm-1, ..., h0 
inductively as follows: 

�9 hm = Dg(Cm), 
�9 hi = [](g(Ci) vhi+l) for 0 < i < m. 

Assume Co, the first node in d, has the property that Co ~ {v0) and there is 
an edge in G' from v0 to at least one node in Co. We call such a path a required 
path. Let D be the set of all nodes x in Co such that there is an edge from v0 
to x. Let g(d) = g(D) A ho. Let f be the disjunction of all g(d) such that d is a 
required path in G". 

Claim 3.3. For any t E Z ~ t, 0 ~ f iff t E C. 

Proo f  Assume that t E C. From claim 1, it follows that there exists a path p in 
G' starting from v0 such that t = t(p). From this and the way we constructed 
the formula f ,  it follows that t, 0 ~ f .  Now, let t, 0 ~ f .  It is easily seen that 
there exists a p = po, pl .... which is an infinite sequence of nodes in G' such that 
p0 = v0, (v0, pl) 6 E' and every prefix of p is a subsequence of an infinite path in 
G' and that t = t(p). From claim 2, it follows that t E C. 

It is clear that the formula f defined above is a positive formula using only 
the modality [ ] .  [] 

It is to be noted the proof of Lemma 3.6 is constructive. The formula f 
generated above has a special form. It is a disjunction of clauses of  the form p A h 
where p is a propositional formula and h is of  the form h0 given in the proof  of 
lemma 3.6. This establishes a normal form for strong safety formulas. 

4. Liveness Properties in Temporal Logic 

4.1. Absolute Liveness 

Lemma 4.1. A formula f in PTL expresses an absolute liveness property iff f is 
satisfiable, and f and O f  are expressively equivalent. 

Proo f  Assume that f expresses an absolute liveness property. By definition, f is 
a satisfiable formula. We will show that f and O f  are expressively equivalent. 
Clearly, any infinite sequence of states that satisfies f also satisfies Of.  Now, 
consider any t E Z ~ that satisfies Of.  For some i > 0, t, i ~ f .  Since, the property 
expressed by f is an absolute liveness property, it is the case that t = t ( i -  1)t(i, m) 
also belongs to this property. Hence, t also satisfies f .  

Now, assume that f is satisfiable, and f and O f  are expressively equivalent. 
Consider any t ~ Z ~~ that satisfies f ,  and u be any finite sequence in Z*. Clearly, 
the sequence ut satisfies Of.  Since, f and O f  are expressively equivalent, it follows 
that ut also satisfies f .  From this, we see that the property expressed by f is an 
absolute liveness property. [] 
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The formula ~terminate expresses the program termination property. Note 
that the formula expressing the liveness property for resources live-resource , 
defined in subsection 2.2, satisfies lemma 4.1. 

4.2. Fairness Properties 

The following lemma characterizes stable properties. It trivially follows from the 
definition of stable properties. 

Lemma 4.2, A formula f in PTL expresses a stable property iff f and cJf are 
expressively equivalent. 

Some examples of formulas that express stable properties are []P, D(P V []Q) 
and D~P.  

We have already shown that f expresses an absolute liveness property iff f is 
satisfiable and the formulas f and ~ f ,  are expressively equivalent. The following 
lemma, i.e. LEMMA 4.3, follows from the above results and the definition of 
fairness properties. Recall that a fairness property is defined to be a property that 
is both an absolute liveness property as well as a stable property. 

Lemma 4.3. A formula f expresses a fairness properties iff f is satisfiable and 
f ,  ~ f  are expressively equivalent and f ,  Df are expressively equivalent. 

Note that the formula, given in section 2.2, which expresses the channel 
fairness property, satisfies the above lemma. 

The property channel-fairness is usually called a strong fairness property. 
A weaker notion of channel fairness, usually called weak channel fairness, is 
expressed by the following formula: 

~[2send -+ [2�9 

Another important fairness property is process fairness. If the atomic propo- 
sition ex asserts that the present state is reached by the execution of a step of 
process 1, then Q~ex asserts that process 1 is executed infinitely often. This is 
process fairness for process 1. 

5. Complexity and Other Issues 

So far, we have considered syntactic characterization of formulas that express 
safety and liveness properties. In this section, we present simple decision proce- 
dures for recognizing safety formulas and liveness formulas. Table 2 summarizes 
the results of this section. 

We first consider non-deterministic automata that define safety properties and 
give some simple properties of such automata. 

Theorem 5.1. Let A be any non-deterministic automaton then L(A) is a safety 
property iff the following condition is satisfied: There exists a partition {good, 
bad} of the set of states of A such that any t is accepted by A iff there exists a 
run of A starting from an initial state such that the run contains only good states. 

Proof Let good be the set of states such that there exists an accepting run starting 
from this state on some input. Let the set bad consist of the remaining states. It 
should be straightforward to verify the theorem for these sets of states. [] 
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Next, we present an algorithm that decides if a given PTL formula is a safety 
formula. For a given PTL formula f ,  we define SF(f )  to be the set consisting of  
the subformulas of  f or the negations of subformulas of  f .  A subset e c_ SF( f )  
is said to be complete if  the following two conditions are satisfied: (i) for each 
g E SF(f) ,  exactly one of  g and -,g is in c; (ii) for g = gt /x g2 E SF(f) ,  g E c 
iff gl E c and g2 E c. The algorithm that we present constructs a directed graph, 
tab(f) = (V,E), where V is the set of all complete subsets of SF(f) .  The set of  
edges E is defined as follows. The pair (c, d) E E iff the following conditions are 
satisfied: 

�9 for every g = gl ~// g2 E SF(f) ,  g c c iff either g2 @ C, or gl E c and g E d; 
�9 for every g = (Dgl E SF(f) ,  g E c i f f  gl E d. 

The construction of tab(f) has been given in many of  the earlier works (see 
[Sis83, LPZ85] for details). For any c E V, we say that c is a good node if the 
conjunction of  all subformulas in c is satisfiable. Also, for any c E V, define n(c) 
to be the state 4 such that for any atomic proposition P ~ SF(f) ,  n(c)(P) =true 
iff P 6 c. For a finite or infinite path p = po, pl .... in tab(f), we let n(p) to be 
the sequence of  states n(po), n(pl), .... Consider a finite path p = (p0, Pl, ..., Pk) in G 
such that the node p0 contains a subformula g of  the form ~(gt ~// g2). We say 
that g is fulfilled on p if for some i, such that 0 < i < k, ~g~ E Pi. An infinite 
path in tab(f) is said to be accepting if for every node c on the path and for 
every subformula of the form g = ~(gl og g2) E c, either --'gl E c or there exists 
a future node d after c on the path such that ~ga E d. The following lemma has 
been proved in many of  the earlier works (see [Sis83, LPZ85]). 

Lemma 5.2. tab(f) satisfies the following properties: 
(a) For any node c, the conjunction of all subformulas in c is satisfiable iff there 
exists an accepting infinite path starting from c; 
(b) For any t E E ~~ t, 0 ~ f iff there exists a node c such that f a c and there is 
an infinite accepting path p starting from c such that t = n(p). 

Lemma 5.3. For every t E E ~~ satisfying the property Vi _> 03u ~ Z ~~ such that 
t(i)u, 0 ~ f ,  there exists an infinite path p in tab(f) starting from a node that 
contains f and that contains only good nodes and such that n(p) = t. 

Proof Let t E Z ~ satisfy the property that Vi > 03u E Z ~ such that t(i)u, 0 ~ f .  
From lemma 5.2, it follows that for each i > 0, there exists an accepting path ~i in 
tab(f) starting from a node that contains f and such that ~c(ei(i)) = t(i). Clearly, 
for each i, cq only contains good nodes. By simple induction, it can be shown 
that there exists an infinite sequence of finite paths /30, /~l,...,/?j .... of  increasing 
lengths and each starting from a node that contains the formula f and satisfying 
the following properties: for each j > 0,/~j is a prefix of cq for infinite number 
of values of i; each/~j is a prefix of/~j+l. Now, consider the infinite path which 
is the limit of  the above sequence of finite paths. This path satisfies the required 
property. [] 

From the definition of tab(f), it should be clear that tab(f) is identical to 
tab(-~f). Let tab(f) = (V, E). Now, we define another directed graph, called cross- 
tab(f) which is a cross product of  tab(f) with itself. This graph will be used in the 
decision procedure for recognizing safety formulas. Since tab(f) and tab(-~f) are 

4 Recall that a state maps the set of atomic propositions to the set {true, false} 
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identical, it is the case that cross-tab(f) is the cross product of tab(f) and tab(--,f). 
Formally, cross-tab(f) = (V ' ,U)  where V' = {(c,c') c V x V : n(c) = n(c')} , 
E' = {((p,q),(p',q')) : (p,p'),(q,q') E E}. Let (po, qo) ..... (Pk,qk) be a finite path in 
cross-tab(f). Then, it should be easy to see that P0, Pl, ..Pk and q0, ..., qk are finite 
paths in tab(f). We say that the above path in cross-tab(f) is fulfilling iff the 
path p0, Pl ..... pk is a fulfilling path in tab(f), i.e. for every formula of the form 
~(gl ~t' g2) in P0 there exists a node (pi, qi), 0 <_ i <_ k, such that -~gl is in pt. 
Note that the fulfillment of  a path in cross-tab(f) is defined with respect to its 
projection on the first component of each node. 

Lemma 5.4. A formula f is not a safety formula iff there exist nodes (p, q) and 
(p', q~) in V ~ such that the following conditions are satisfied: 

�9 (a) -~f E p , f  E q, and (p',q') is reachable from (p,q) in cross-tab(f); 
�9 (b) (p~, q') lies on a fulfilling cycle; 

�9 (c) q and q' are good nodes. 

Proof The proof  of the reverse implication is easily seen from the following 
argument. Assume (a),(b),(c). There exists a path of the form ~fl~o in cross-tab(f) 
starting from (p, q) where fl is the cycle on which (p', q') lies. Let 7 and ~' be the 
projections of the above path on the first and second components respectively. 
Clearly, ~ is an accepting path in tab(~f) and starts from a node that contains 
~f ,  and hence from lemma 5.2 (b), it is the case that n(7),0 ~ -~f. Since q' is a 
good node, it is the case that all the nodes on 7 ~ are good nodes of tab(f). This 
is due to the fact in tab(f) any node that has a path to a good node, is also a 
good node. Since 7 ~ starts from a node that contains f and all the nodes on 7' are  
good nodes, it follows from lemma 5.2 that each prefix of n(7) can be extended 
to an infinite sequence that satisfies f .  Since n(7) = n(7'), it follows that f is not 
a safety formula. 

Assume that f is not a safety formula. There exists t E E ~~ such that t satisfies 
-~f and every prefix of t can be extended to an infinite sequence to satisfy f .  
For each i _> 0, let ri be the set of subformulas of f or their negations that are 
satisfied by t(i, oe). Let r = r0, rl ..... It can easily be seen that r is an accepting 
infinite path in tab(~f) and -~f ~ r0. Using lemma 5.3, we see that there exists 
an infinite path s -- so, sl .... in tab(f) such that f E so, n(s) = t and s contains 
only good nodes. Note that while r is an accepting path, s need not be one. Now, 
it should be easy to see that the sequence (r0, so), (rbs~), . . . ,  ( r i ,  s i ) ,  ... is an infinite 
path through cross-tab(f). From this and the properties of the paths r and s, it 
should be easy to see that there exist integers i, j such that j > i, rt = r j, st = s j, 
and for every subformula of the form ~(gl e# g2) in rt 3k such that i _< k _< j and 
~gl E rj. Now take p = r0, q = so, p' = rt and q' = st. It should be easy to see 
that p, q,p' and q' satisfy (a),(b) and (c). [] 

Theorem 5.5. The set of safety formulas in PTL is PSPACE-complete. 

Proof  Let f be a PTL formula. We give an algorithm which checks if f is a safety 
formula or not. The algorithm builds cross-tab(f) and checks for conditions (a), 
(b), (c) of lemma 5.4. Such an algorithm will take time exponential in the length of 
f .  This algorithm also uses exponential space. Instead of  building cross-tab(f), the 
algorithm can guess a path through cross-tab(f), and using an approach similar 
to the satisfiability algorithm for PTL given in [SIC85] it can check if f is a safety 
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property or not. The resulting algorithm uses space which is only polynomial in 
the length of f. 

The set of safety formulas is PSPACE-hard due to the following reduction 
from the set of valid formulas in PTL. Any formula f is valid iff f V ~Q is a 
safety formula where Q is an atomic proposition that does not appear in f .  [] 

We describe below an algorithm which given a formula f decides if f expresses 
a liveness property. First build tab(f). From tab(f) delete all those nodes from 
which there is no infinite accepting path. Let the resulting structure be the 
reduced-tab(f). Consider an non-deterministic automaton A(f) on finite strings 
defined as follows. The states of A(f) include all the nodes of reduced-tab(f) 
together with an additional special state init. The input alphabet is E. There is 
a transition from state s to s' on input a if there is an edge in reduced-tab(f) 
from s to s' and for any atomic proposition P, a(P) = true iff P E s'. There is 
a transition from from init to a state s on input a iff f E s and a(P) = true iff 
P E s. All states excepting the start state init are final states of A(f). It is easily 
seen that f expresses a liveness property iff A(f) accepts all the strings in E*. 
The later problem can easily be decided in time exponential in the size of A(f) 
and space polynomial in the size of A(f). Thus, the above algorithm takes time 
double exponential in the length of f and space exponential in the length of f .  

Theorem 5.6. The above algorithm decides if a given formula expresses a liveness 
property. 

6. Conclusions 

In this paper, we have considered the problem of characterizing safety and liveness 
properties in temporal logic. We have shown that all the positive formulas formed 
using 0g and C) express safety properties and those formed using just only ~r 
express safety properties with stuttering. We have shown that the properties 
expressed by positive formulas using only the operator [] is exactly the set 
of strong safety properties that can be expressed in PTL. We have also given 
such characterizations for absolute liveness and fairness properties. In addition, 
we have also presented decision procedures for recognizing safety and liveness 
formulas. 

Although we have not given completeness results for safety properties, we 
believe that the set of safety properties expressible in PTL are exactly those 
expressed by positive formulas using o// and (2). The proof of this result is 
rather complex, and for this reason we have not stated this result as part of 
this paper. The major steps of this proof can be stated as follows. Let f be an 
arbitrary safety formula in PTL and P be the property that f expresses. We like 
to show that there exists a positive formula that expresses the same property. 
Let Pre(P) be the set of prefixes of the sequences in P. Pre(P) is a set of finite 
sequences, and from known results (see [SCFM] for references), it can easily 
be shown that Pre(P) is a star-free regular set. Again, from known results it 
follows that there exists a cascade product A of reset automata (see [SCFM] 
for definitions) that recognizes Pr(P). The automaton A is deterministic and the 
set of finite sequences it recognizes is prefix closed. Therefore, we can obtain a 
partition {good, bad} of the states of A such that the initial state is a good state, 
and A accepts a finite sequence iff it always remains in good states when run on 
that input. The acceptance condition of A can be trivially extended to infinite 
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Table 1. Table of properties and type of formulas that express them 

Property Type of Formulas 

Safety 
Safety with Stuttering 
Strong Safety 
Invariant 
Absolute Liveness 
Stable 
Fairness 

Positive formulas using q/ and Q) 
Positive formulas using only 0g 
Positive formulas using only [] 
[]f where f is propositional 
Satisfiable f such that b f ~ ~ f  
All f such that F f ~ � 9  
Satisfiable f such that F f ~ (>f 

and F f ~ <>f 

A. Prasad Sistla 

Table 2. Table of properties and complexity of the recognition algorithms 

Property Complexity of Recognition Alg 

Safety PSPACE-complete 
Liveness Double Exponential 

sequences. We say that A accepts an infinite string iff it always remains in good 
states when run on this input. It is easy to see that the set of infinite sequences 
accepted by A is the set P. The second step of the proof shows that we can obtain 
a positive PTL formula that expresses the set of infinite sequences accepted by A. 
This part of the construction is very complex. Using the same approach as above, 
we believe that one can show that the set of safety properties with stuttering that 
can be expresses in PTL are exactly those expressed by positive formulas using 
only the q/ operator. It will be interesting to investigate if one can give simpler 
proofs of these results. 

The logic that we have used in this paper is the future logic. It only uses 
the future temporal operators. It is shown in [LPZ85] that there is a simple 
characterization of safety properties if we use past operators. There, it was shown 
that all safety properties expressible in PTL are expressible by formulas of the 
form Dq~ where q) is a formula that only uses past operators. In [MaPg0], 
a hierarchy of other interesting temporal properties have been presented. The 
problems of recognizing safety and liveness properties given by automata were 
considered in [A1S86] and algorithms for these problems were presented there. 

In [MAP89], a complete proof method for proving safety properties of pro- 
grams expressed in past temporal logic has been given. It will be interesting to 
investigate such proof methods for safety properties expressed in future temporal 
logic without converting the formula into a formula that uses past operators. 
Also, giving a characterization of liveness properties in full PTL is still an open 
problem. 
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