
ar
X

iv
:1

40
8.

35
60

v2
 [

cs
.L

O
]

 2
3

A
ug

 2
01

4

Completeness of Kozen’s Axiomatization for the

Modal µ-Calculus: A Simple Proof

Kuniaki Tamura

15-9-103, Takasago 3-chome, Katsushika, Tokyo 125-0054, Japan

E-mail: kuniaki.tamura@gmail.com

August 26, 2014

Abstract

The modal µ-calculus, introduced by Dexter Kozen, is an extension of modal logic with fixpoint

operators. Its axiomatization, Koz, was introduced at the same time and is an extension of the

minimal modal logic K with the so-called Park fixpoint induction principle. It took more than a

decade for the completeness of Koz to be proven, finally achieved by Igor Walukiewicz. However, his

proof is fairly involved.

In this article, we present an improved proof for the completeness of Koz which, although similar

to the original, is simpler and easier to understand.

Keywords: The modal µ-calculus, completeness, parity games, parity automata.

1 Introduction

The modal µ-calculus originated with Scott and De Bakker [4] and was further developed by Dexter Kozen
[8] into the main version currently used. It is used to describe and verify properties of labeled transition
systems (Kripke models). Many modal and temporal logics can be encoded into the modal µ-calculus,
including CTL∗ and its widely used fragments – the linear temporal logic LTL and the computational tree
logic CTL. The modal µ-calculus also provides one of the strongest examples of the connections between
modal and temporal logics, automata theory and game theory (for example, see [6]). As such, the modal
µ-calculus is a very active research area in both theoretical and practical computer science. We refer the
reader to Bradfield and Stirling’s tutorial article [3] for a thorough introduction to this formal system.

The difference between the modal µ-calculus and modal logic is that the former has the least fixpoint
operator µ and the greatest fixpoint operator ν which represent the least and greatest fixpoint solution to
the equation α(x) = x, where α(x) is a monotonic function mapping some power set of possible worlds
into itself.1 In Kozen’s initial work [8], he proposed an axiomatization Koz, which was an extension of
the minimal modal logic K with a further axiom and inference rule – the so-called Park fixpoint induction
principle:

α(µx.α(x)) ⊢ µx.α(x)
(Prefix)

α(β) ⊢ β

µx.α(x) ⊢ β
(Ind)

The system Koz is very simple and natural; nevertheless, Kozen himself could not prove completeness for
the full language, but only for the negations of formulas of a special kind called the aconjunctive formula.
Completeness for the full language turned out to be a knotty problem and remained open for more than
a decade. Finally, Walukiewicz [15] solved this problem, but his proof is quite involved.2

The aim of this article is to provide an improved proof that is easier to understand. First, we outline
Walukiewicz’s proof and explain its difficulties, and then present our improvement.

The completeness theorem considered here is sometimes called weak completeness and requires that
the validity follows the provability; that is:

(a) For any formula ϕ, if ϕ is not satisfiable, then ∼ϕ is provable in Koz.

1 In the modal µ-calculus, the term state is preferred to possible world since it originated in the area of verification of
computer systems. However, we do not use this terminology since it is reserved for state of automata in this article.

2 The difficulties of the proof have been pointed out, e.g., see [3, 1, 2, 14, 9]

1

http://arxiv.org/abs/1408.3560v2

Here, ∼ ϕ denotes the negation of ϕ. Note that strong completeness cannot be applied to the modal
µ-calculus since it lacks compactness. The first step of the proof is based on the results of Janin and
Walukiewicz [7], in which they introduced the class of formulas called automaton normal form,3 and
showed the following two theorems:

(b) For any formula ϕ, we can construct an automaton normal form anf(ϕ) which is semantically
equivalent to ϕ.

(c) For any automaton normal form ϕ̂, if ϕ̂ is not satisfiable, then ∼ ϕ̂ is provable in Koz; that is, Koz
is complete for the negations of the automaton normal form.

The above theorems lead to the following Claim (d) for proving:

(d) For any formula ϕ, there exists a semantically equivalent automaton normal form ϕ̂ such that ϕ→ ϕ̂
is provable in Koz.

Indeed, for any unsatisfiable formula ϕ, Claim (d) tells us that ∼ ϕ̂→∼ϕ is provable; on the other hand,
from Theorem (c) we obtain that ∼ ϕ̂ is provable; therefore ∼ϕ is provable in Koz as required. Hence,
our target (a) is reduced to Claim (d).

Another important tool is the concept of a tableau, which is a tree structure that is labeled by some
subformulas of the primary formula ϕ and is related to the satisfiability problem for ϕ. Niwinski and
Walukiewicz [11] introduced a game played by two adversaries on a tableau (called tableau games in this
article) and, by analyzing these games, showed that:

(e) For any unsatisfiable formula ϕ, there exists a structure called the refutation for ϕ which is a
substructure of tableau.

Importantly, a refutation for ϕ is very similar to a proof diagram for ϕ; roughly speaking, the difference
between them is that the former can have infinite branches while the latter can not. Walukiewicz shows
that if the refutation for ϕ satisfies a special thin condition, it can be transformed into a proof diagram
for ϕ. In other words,

(f) For any unsatisfiable formula ϕ such that there exists a thin refutation for ϕ, ∼ ϕ is provable in
Koz.

Note that Claim (f) is a slight generalization of the completeness for the negations of the aconjunctive
formula in the sense that the refutation for an unsatisfiable aconjunctive formula is always thin, and
Claim (f) can be shown by the same method as Kozen’s original argument.

The proof is based on confirming Claim (d) by induction on the length of ϕ, using (b) and (f). The
hardest step of induction is the case ϕ = µx.α(x). Suppose ϕ = µx.α(x) and that we could assume, by
inductive hypothesis, α(x) → α̂(x) is provable in Koz where α̂(x) is an automaton normal form equivalent
to α(x). For the inductive step, we want to discover an automaton normal form ϕ̂ equivalent to µx.α(x)
such that µx.α(x) → ϕ̂ is provable. Note that since α(x) → α̂(x) is provable, µx.α(x) → µx.α̂(x) is also
provable. Furthermore, µx.α(x) and µx.α̂(x) are equivalent to each other. Set ϕ̂ := anf(µx.α̂(x)). Then,
it is sufficient to show that µx.α̂(x) → ϕ̂ is provable, and thus, from the induction rule (Ind), α̂(ϕ̂) → ϕ̂
is provable. To show this, Walukiewicz developed a new utility called tableau consequence, which is a
binary relation on the tableau and is characterized using game theoretical notations. The following two
facts were then shown:

(g) Let α̂(x) and ϕ̂ be formulas denoted above. Then the tableau for ϕ̂ is a consequence of the tableau
for α̂(ϕ̂).

(h) For any automaton normal forms β̂(y) and ψ̂, if the tableau for ψ̂ is a consequence of the tableau

for β̂(ψ̂), then we can construct a thin refutation for ∼(β̂(ψ̂) → ψ̂).4

3 In the original article [7], this class of formulas was called the disjunctive formula; however, the term automaton

normal form is the currently used terminology, to the author’s knowledge.
4 More precisely, this assertion must be stated more generally to be applicable in other cases of an inductive step, see

Lemma 6.8.

2

The real difficulty appeared when proving Claim (g). To establish this claim, Walukiewicz introduced
complicated functions across some tableaux and analyzed the properties of these functions very carefully.
Finally, Claims (f), (g) and (h) together immediately establish that α̂(ϕ̂) → ϕ̂ is provable in Koz. Thus,
he obtained a proof for Claim (d), confirming completeness.

This article’s main contribution is the simplification of the proof of Claim (g). For this purpose, we will
introduce a new tableau-like structure called a wide tableau and provide a more suitable re-formulation of
the concept of tableau consequence to prove Claim (g). This re-formulation will be defined similarly to the
concept of bisimulation (instead of the game theoretical notations), which is one of the most fundamental
and standard notions in the model theory of modal and its extensional logics. Consequently, although our
proof of completeness does not include any innovative concepts, it is far more concise than the original
proof.

The author hopes that the method given in this article may assist investigation of the modal µ-calculus
and related topics.

1.1 Outline of the article

The remainder of this article is organized as follows: in the following subsection 1.2, we will define some
terminologies used within the article. Section 2 gives basic definitions of the syntax and semantics of the
modal µ-calculus. Section 3 and 4 introduce well known results concerning parity automata and parity
games, respectively. Section 5 contains the principle part of this article – the proof of Claim (g). For
this proof, Claim (b) and the techniques used for proving (b) are fundamental. Therefore, we recount
the argument of Janin and Walukiewicz [7] in detail. In Section 6, we prove the completeness of Koz by
showing Claim (d).

1.2 Notation

Sets: Let X be an arbitrary set. The cardinality of X is denoted |X |. The power set of X is denoted
P(X). ω denotes the set of natural numbers.

Sequences: A finite sequence over some set X is a function π : {1, . . . , n} → X where 1 ≤ n. An infinite
sequence over X is a function π : ω \ {0} → X . Here, a sequence can refer to either a finite or
infinite sequence. The length of a sequence π is denoted |π|. Let π be a sequence over X . The set
of x ∈ X which appears infinitely often in π is denoted Inf(π). We denote the n-th element in π by
π[n] and the fragment of π from the n-th element to the m-th element by π[n,m]. For example, if
π = aabbcddd, then π[5] = c and π[2, 6] = abbcd. Note that when π is a finite non-empty sequence,
π[|π|] denotes the tail of π.

Alphabets: Suppose that Σ is a non-empty finite set. Then we may call Σ an alphabet and its element
v ∈ Σ a letter. We denote the set of finite sequences over Σ by Σ∗, the set of non-empty finite
sequences over Σ by Σ+, and the set of infinite sequences over Σ by Σω. As usual, we call an
element of Σ∗ a word, an element of Σω an ω-word, a set of finite words L ⊆ Σ∗ a language and, a
set of ω-words L′ ⊆ Σω an ω-language. The notion of the factor on words is defined as usual: for
two words u, v ∈ Σ∗ ∪ Σω, u is a factor of v if v = xuy for some x, y ∈ Σ∗ ∪ Σω.

Graphs: In this article, the term graph refers to a directed graph. That is, a graph is a pair G = (V,E)
where V is an arbitrary set of vertices and E is an arbitrary binary relation over V , i.e., E ⊆ V ×V .
A vertex u is said to be an E-successor (or simply a successor) of a vertex v in G if (v, u) ∈ E.
For any vertex v, we denote the set of all E-successors of v by E(v). The sequence π ∈ V ∗ ∪ V ω

is called an E-sequence if π[n + 1] ∈ E(π[n]) for any n < |π|. E∗ denotes the reflexive transitive
closure of E and E+ denotes the transitive closure of E.

Trees: The term tree is used to mean a rooted direct tree. More precisely, a tree is a triple T = (T,C, r)
where T is a set of nodes, r ∈ T is a root of the tree and, C is a child relation, i.e., C ⊆ T × T such
that for any t ∈ T \ {r}, there is exactly one C-sequence starting at r and ending at t. As usual, we
say that u is a child of t (or t is a parent of u) if (t, u) ∈ C. A node t ∈ T is a leaf if C(t) = ∅. A
branch of T is either a finite C-sequence starting at r and ending at a leaf or an infinite C-sequence
starting at r.

3

Unwinding: Let G = (V,E) be a graph. An unwinding of G on v ∈ V is the tree structure UNWv(G) =
(T,C, r) where:

• T consists of all finite non-empty E-sequences that start at v,

• (π, π′) ∈ C if and only if; |π|+ 1 = |π′|, π = π′[1, |π|] and (π[|π|], π′[|π′|]) ∈ E, and

• r := v.

This concept can be extended naturally into a graph with some additional relations or functions.
For example, let S = (V,E, f) be a structure where G = (V,E) is a graph and f is a function with
domain V . Then we define UNWv(S) := (UNWv(G), f ′) as f ′(π) := f(π[|π|]) for any π ∈ V +. Note
that we use the same symbol f instead of f ′ in UNWv(S) if there is no danger of confusion.

Functions: Let f be a function from some set X to some set Y . We define the new function ~f from
X+ ∪Xω to Y + ∪ Y ω as:

~f(π) := f(π[1])f(π[2]) · · ·

where π ∈ X+ ∪Xω. It is obvious that for any π ∈ X+ ∪Xω, we have |π| = |~f(π)|.

2 The modal µ-calculus

We will now introduce the syntax, semantics and axiomatization Koz of the modal µ-calculus, and then
present some additional concepts and results for use in the following sections.

2.1 Syntax

Definition 2.1 (Formula). Let Prop = {p, q, r, x, y, z, . . .} be an infinite countable set of propositional
variables. Then the collection of the modal µ-formulas is defined as follows:

ϕ ::= (⊤), (⊥), (p) | (¬p) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (✸ϕ) | (�ϕ) | (µx.ϕ) | (νx.ϕ)

where p, x ∈ Prop. Moreover, for formulas of the form (σx.ϕ) with σ ∈ {µ, ν}, we require that each
occurrence of x in ϕ is positive; that is, ¬x is not a subformula of ϕ. Henceforth in this article, we will
use σ to denote µ or ν. A formula of the form p or ¬p for p ∈ Prop, ⊤ and ⊥ is called literal. We use the
term Lit to refer to the set of all literals, i.e., Lit := {p,¬p,⊥,⊤ | p ∈ Prop}. We call µ and ν the least
fixpoint operator and the greatest fixpoint operator, respectively.

Remark 2.2. In Definition 2.1, we confined the formula to a negation normal form; that is, the negation
symbol may only be applied to propositional variables. However, this restriction can be inconvenient,
and so we extend the concept of the negation to an arbitrary formula ϕ (denoted by ∼ϕ) inductively as
follows:

• ∼⊤ := ⊥, ∼⊥ := ⊤.

• ∼p := ¬p, ∼¬p := p for p ∈ Prop.

• ∼(ϕ ∨ ψ) := ((∼ϕ) ∧ (∼ψ)), ∼(ϕ ∧ ψ) := ((∼ϕ) ∨ (∼ψ)).

• ∼(✸ϕ) := (�(∼ϕ)), ∼(�ϕ) := (✸(∼ϕ)).

• ∼(µx.ϕ(x)) := (νx.(∼ϕ(¬x))), ∼(νx.ϕ(x)) := (µx.(∼ϕ(¬x))).

We introduce implication (ϕ→ ψ) as ((∼ϕ)∨ψ) and equivalence (ϕ↔ ψ) as ((ϕ→ ψ)∧ (ψ → ϕ)) as per
the usual notation. To minimize the use of parentheses, we assume the following precedence of operators
from highest to lowest: ¬, ∼, ✸, �, σx, ∨, ∧, → and ↔. Moreover, we often abbreviate the outermost
parentheses. For example, we write ✸p→ q for ((✸p) → q) but not for (✸(p→ q)).

As fixpoint operators µ and ν can be viewed as quantifiers, we use the standard terminology and
notations for quantifiers. We denote the set of all propositional variables appearing free in ϕ by Free(ϕ),
and those appearing bound by Bound(ϕ). If ψ is a subformula of ϕ, we write ψ ≤ ϕ. We write ψ < ϕ
when ψ is a proper subformula. Sub(ϕ) is the set of all subformulas of ϕ and Lit(ϕ) denotes the set of

4

all literals which are subformulas of ϕ. Let ϕ(x) and ψ be two formulas. The substitution of all free
appearances of x with ψ into ϕ is denoted ϕ(x)[x/ψ] or sometimes simply ϕ(ψ). As with predicate logic,
we prohibit substitution when a new binding relation will occur by that substitution.

The following two definitions regarding formulas will be used frequently in the remainder of the article.

Definition 2.3 (Well-named formula). The set of well-named formulas WNF is defined inductively
as follows:

1. Lit ⊆ WNF.

2. Let α, β ∈ WNF where Bound(α)∩Free(β) = ∅ and Free(α)∩Bound(β) = ∅. Then α∨β, α∧β ∈ WNF.

3. Let α ∈ WNF. Then ✸α,�α ∈ WNF.

4. Let α(x) ∈ WNF where x ∈ Free(α(x)) occurs only positively, moreover, x is in the scope of some
modal operators. Then σx1. . . . σxk.α(x1, . . . , xk) ∈ WNF where α(x) = α(x1, . . . , xk)[x1/x, . . . , xk/x],
x /∈ Sub(α(x1, . . . , xk)) and x1, . . . , xk /∈ Sub(α(x)).

The formula σx1. . . . σxk.α(x1, . . . , xk) which is mentioned above clause 4 is sometimes abbreviated
σ~x.α(~x). If ϕ is well-named and x is bounded in ϕ, then there is exactly one subformula which binds x;
this formula is denoted σxx.ϕx(x).

Definition 2.4 (Alternation depth). Given a formula ϕ,

1. Let �−
ϕ be a binary relation on Bound(ϕ) such that x �−

ϕ y if and only if x ∈ Free(ϕy(y)). The
dependency order �ϕ is defined as the transitive closure of �−

ϕ .

2. A sequence 〈x1, x2, . . . , xK〉 ∈ Bound(ϕ)+ is said to be an alternating chain if:

x1 �−
ϕ x2 �−

ϕ · · · �−
ϕ xK

and σxk
6= σxk+1

for every k ∈ ω such that 1 ≤ k ≤ K − 1. The alternation depth of ϕ (denoted
alt(ϕ)) is the maximal length of alternating chains in ϕ. That is, the alternation depth of ϕ is the
maximal number of alternations between µ- and ν-operators in ϕ.

Example 2.5. For a formula ϕ = µx.νy.(✸x ∨ (µz.(✸z ∧�y))), we have alt(ϕ) = 3 since x �−
ϕ y �−

ϕ z
with σx 6= σy and σy 6= σz . Note that although x /∈ Free(ϕz(z)), we have x �ϕ z.

2.2 Semantics

Definition 2.6 (Kripke model). A Kripke model for the modal µ-calculus is a structure S = (S,R, λ)
such that:

• S = {s, t, u, . . . } is a non-empty set of possible worlds.

• R is a binary relation over S called the accessibility relation.

• λ : Prop → P(S) is a valuation.

Definition 2.7 (Denotation). Let S = (S,R, λ) be a Kripke model and let x be a propositional variable.
Then for any set of possible worlds T ∈ P(S), we can define a new valuation λ[x 7→ T] on S as follows:

λ[x 7→ T](p) :=

{
T if p = x,
λ(p) otherwise.

Moreover, S[x 7→ T] denotes the Kripke model (S,R, λ[x 7→ T]). A denotation [[ϕ]]S ∈ P(S) of a formula
ϕ on S is defined inductively on the structure of ϕ as follows:

• [[⊥]]S := ∅ and [[⊤]]S := S.

• [[p]]S := λ(p) and [[¬p]]S := S \ λ(p) for any p ∈ Prop.

• [[ϕ ∨ ψ]]S := [[ϕ]]S ∪ [[ψ]]S and [[ϕ ∧ ψ]]S := [[ϕ]]S ∩ [[ψ]]S .

5

• [[✸ϕ]]S := {s | ∃t ∈ S, (s, t) ∈ R ∧ t ∈ [[ϕ]]S}.

• [[�ϕ]]S := {s | ∀t ∈ S, (s, t) ∈ R =⇒ t ∈ [[ϕ]]S}.

• [[µx.ϕ(x)]]S :=
⋂
{T ∈ P(S) | [[ϕ(x)]]S[x 7→T] ⊆ T }.

• [[νx.ϕ(x)]]S :=
⋃
{T ∈ P(S) | T ⊆ [[ϕ(x)]]S[x 7→T]}.

In accordance with the usual terminology, we say that a formula ϕ is true or satisfied at a possible world
s ∈ S (denoted S, s |= ϕ) if s ∈ [[ϕ]]S . A formula ϕ is valid (denoted |= ϕ) if ϕ is true at every world in
any model.

Example 2.8. Let S = (S,R, λ) be a Kripke model. A formula ϕ(x) such that x ∈ Free(ϕ(x)) can be
naturally seen as the following function:

P(S) P(S)
∈ ∈
T [[ϕ(x)]]S[x 7→T].

//

✤ //

This function is monotone if x is positive in ϕ(x). Thus, by the Knaster-Tarski Theorem [13], [[µx.ϕ(x)]]S
and [[νx.ϕ(x)]]S are the least and greatest fixpoint of the function ϕ(x), respectively.

Under this characterization of fixpoint operators, we find that many interesting properties of the
Kripke model can be represented by modal µ-formulas. For example, consider the formula ϕ1 = µx.(✸x∨
p). For every Kripke model S and its possible world s, we have S, s |= ϕ1 if and only if there is some
possible world reachable from s in which p is true. Consider the formula ϕ2 = νy.µx.((✸y∧p)∨(✸x∧¬p)).
Then S, s |= ϕ2 if and only if there is some path from s on which p is true infinitely often.

2.3 Axiomatization

We give the Kozen’s axiomatization Koz for the modal µ-calculus in the Tait-style calculus.5 Hereafter,
we will write Γ, ∆, . . . for a finite set of formulas. Moreover, the standard abbreviation in the Tait-style
calculus are used. That is, we write α,Γ for {α} ∪ Γ; Γ,∆ for Γ ∪∆; and ∼∆ for {∼ δ | δ ∈ ∆} and so
forth.

Axioms Koz contains basic tautologies of classical propositional calculus and the pre-fixpoint ax-
ioms :

⊥ ⊢
(Bot)

ϕ,∼ϕ ⊢
(Tau)

α(µx.α(x)),∼µx.α(x) ⊢
(Prefix)

Inference Rules In addition to the classical inference rules from propositional modal logic, for any
formula ϕ(x) such that x appears only positively, we have the induction rule (Ind) to handle fixpoints:

α,Γ ⊢ β,Γ ⊢

α ∨ β,Γ ⊢
(∨)

α, β,Γ ⊢

α ∧ β,Γ ⊢
(∧)

Γ ⊢
α,Γ ⊢

(Weak)
ψ, {α | �α ∈ Γ} ⊢

✸ψ,Γ ⊢
(✸)

Γ,∼α ⊢ α,∆ ⊢

Γ,∆ ⊢
(Cut)

ϕ(ψ),∼ψ ⊢

µx.ϕ(x),∼ψ ⊢
(Ind)

Of course, the condition of substitution is satisfied in the (Ind)-rule; namely, no new binding relation
occurs by applying the substitution ϕ(ψ). As usual, we say that a formula ∼

∧
Γ is provable in Koz

(denoted Γ ⊢) if there exists a proof diagram of Γ. We frequently use notation such as Γ ⊢ ∆ to mean
Γ,∼∆ ⊢.

The following two lemmas state some basic properties of Koz. We leave the proofs of these statement
as an exercise to the reader.

Lemma 2.9. Let ϕ be a modal µ-formula and let α(x) and β(x, x) be modal µ-formulas where x appears
only positively. Then, the following holds:

5 In Kozen’s original article [8], the system Koz was defined as the axiomatization of the equational theory. Nevertheless
we present Koz as an equivalent Tait-style calculus due to the calculus’ affinity with the tableaux discussed in the sequel.

6

1. ⊢ σx.α(x) ↔ σy.α(y) where y /∈ Free(α(x)).

2. ⊢ σx.β(x, x) ↔ σx.σy.β(x, y) where y /∈ Free(β(x, x)).

3. ⊢ µx.α(x) ↔ α(⊥), if no appearances of x are in the scope of any modal operators.

4. ⊢ νx.α(x) ↔ α(⊤), if no appearances of x are in the scope of any modal operators.

5. We can construct a well-named formula wnf(ϕ) ∈ WNF such that ⊢ ϕ↔ wnf(ϕ).

Lemma 2.10. Let α, β, ϕ(x), ψ(x), χ1(x) and χ2(x) be modal µ-formulas where x appears only positively
in ϕ(x) and ψ(x). Further, suppose that χ1(α), χ1(β) and χ2(α) are legal substitution; namely, a new
binding relation does not occur by such substitutions. Then, the following holds:

1. If ⊢ ϕ(x) → ψ(x) then ⊢ σx.ϕ(x) → σx.ψ(x).

2. If ⊢ α↔ β then ⊢ χ1(α) ↔ χ1(β).

3. If ⊢ χ1(x) ↔ χ2(x) then ⊢ χ1(α) ↔ χ2(α).

Remark 2.11 (Substitution). Let ϕ(x) and ψ be formulas where ϕ(x) = ϕ(x1, . . . , xk)[x1/x, . . . , xk/x]
and x /∈ Free(ϕ(x1, . . . , xk)); i.e., ϕ(x1, . . . , xk) is a formula obtained by renaming all instances of x in
ϕ(x). Let ϕ′(x) be the formula obtained by renaming bound variables in ϕ(x) and let ψi with 1 ≤ i ≤ k
be formulas obtained by renaming bound variables in ψ so that;

Bound(ϕ′(x)) ∩ Free(ϕ′(x)) = ∅ (1)

Bound(ϕ′(x)) ∩ Free(ψi) = ∅ (1 ≤ ∀i ≤ k) (2)

Free(ϕ′(x)) ∩ Bound(ψi) = ∅ (1 ≤ ∀i ≤ k) (3)

Bound(ψi) ∩ Free(ψj) = ∅ (1 ≤ ∀i, ∀j ≤ k) (4)

Bound(ψi) ∩ Bound(ψj) = ∅ (1 ≤ ∀i, ∀j ≤ k, i 6= j) (5)

Then the formula ϕ′(ψ1, . . . , ψk) is termed well-named. Moreover, from Lemmas 2.9 and 2.10, we can
assume that ϕ′(ψ1, . . . , ψk) is syntactically (and thus semantically) equivalent to ϕ(ψ). Hereafter, we will
assume that ϕ(ψ) is an abbreviation for ϕ′(ψ1, . . . , ψk); this abbreviation is harmless as far as provability
and satisfiability are concerned. Furthermore, we can write ϕ(ψ) even if a new binding relation occurs
by the substitution; in this case, we will regard it as merely an abbreviation for ϕ′(ψ1, . . . , ψk).

3 Automata

The purpose of this section is to define the parity automata and introduce a classical result concerning
the complement of an ω-language characterized by some parity automaton, namely, the Complementation
Lemma.

A parity automaton is a quintuple A = (Q,Σ, δ, qI ,Ω) where:

• Q is a finite set of states of the automaton,

• Σ is an alphabet,

• qI ∈ Q is a state called the initial state,

• δ : Q× Σ → P(Q) is a transition function, and

• Ω : Q→ ω is called the priority function.

Using the usual definitions, we say that A is deterministic if |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ.
Let A = (Q,Σ, δ, qI ,Ω) be a parity automaton. A run of A on an ω-word π ∈ Σω is an infinite sequence
ξ ∈ Qω of a state where ξ[1] = qI and ξ[n+1] ∈ δ(ξ[n], π[n]) for any n ≥ 1. An ω-word π ∈ Σω is accepted
by A if there is a run ξ of A on π satisfying the following condition:

max Inf(~Ω(ξ)) = 0 (mod 2).

7

The ω-language of all ω-words accepted by A is denoted by L(A).
Let A = (Q,Σ, δ, qI ,Ω) be a parity automaton and π ∈ Σ∗. If A is deterministic, then the state of

A by reading π is uniquely determined. We denote this state δ(qI , π); in other words, δ(qI , π) is defined
inductively on the length of π by

δ(qI , π) :=

{
qI (|π| = 0)
δ
(
δ(qI , π[1, n]), π[n+ 1]

)
(|π| = n+ 1).

Moreover, for any π ∈ Σ∗ ∪Σω, we denote the run of A on α by ~δ(qI , π), that is,

~δ(qI , π) := qIδ(qI , π[1, 1])δ(qI , π[1, 2])δ(qI , π[1, 3]) · · · ∈ Q∗ ∪Qω.

The following lemma shows that the complement of the ω-language characterized by a parity au-
tomaton is also characterized by some parity automaton. The proof of this lemma can be found in the
literature, for example, see [6].

Lemma 3.1 (Complementation Lemma). For any parity automaton A = (Q,Σ, δ, qI ,Ω), we can

construct a deterministic parity automaton Ā such that L(Ā) = Σω \L(A) with 2O(|Q|2 log |Q|2) states and
priorities bounded by O(|Q|2).

4 Games

It is well known that Parity games and Evaluation games are important tools in the modal µ-calculus.
They will also play a crucial role in this article. This section introduces these games.

4.1 Parity games

A parity game G is defined in terms of an arena A and a priority function Ω. An arena is a (possibly
infinite) directed graphA = 〈V0, V1, E〉, where V0∩V1 = ∅ and the edge relation is E ⊆ (V0∪V1)×(V0∪V1).
We call each element of V := V0 ∪ V1 a game position of the arena. The priority function is Ω : V → ω
where Ω(V) is a finite set.

A play in arenaA can be finite or infinite. In the former case, the play is an E-sequence π = v1 · · · vn ∈
V + such that E(vn) = ∅. In the later case, the play is simply an infinite E-sequence. Thus, a finite or
infinite play in a game can be seen as the trace of a token moved on the arena by two players, Player
0 and Player 1, in such a way that if the token is in position v ∈ Vδ (δ ∈ {0, 1}), then Player δ has to
choose a successor of v to which to move the token. A play π is winning for Player 0 if:

• If π is finite, then the last position π[|π|] of the play is in V1.

• If π is infinite, then max inf(~Ω(π)) = 0 (mod 2).

A play is winning for Player 1 if it is not winning for Player 0.

Example 4.1. Let G = 〈〈V0, V1, E〉,Ω〉 be the parity game presented in Figure 1. We have the 0-
vertices V0 = {v1, v5} (circles) and the 1-vertices V1 = {v2, v3, v4} (squares). The edge relation E
and priority function Ω may be derived from the figure, e.g., Ω(v1) = 2 and Ω(v2) = 3. A possible

WVUTPQRSv1, 2 //

��

v2, 3

zztt
tt
tt
tt
tt
t

��
v3, 1 22

SS

v4, 3
rr // WVUTPQRSv5, 0

Figure 1: An example of a parity game.

infinite play in this game is, for example, π = v1v2(v3v1)
ω. This play is winning for Player 0 because

~Ω(v1v2(v3v1)
ω) = 〈2, 3, 1, 2, 1, 2, . . . 〉 and:

max inf(~Ω(π)) = max inf(〈2, 3, 1, 2, 1, 2, . . . 〉) = max{1, 2} = 2 = 0 (mod 2).

8

A finite E-sequence π = v1v2v4v5 is also a possible play since v5 is a dead-end. This play is winning for
Player 1 because the last position v5 is in V0.

LetA be an arena. A strategy for Player δ with δ ∈ {0, 1} is a partial function fδ : V
∗Vδ → V such that

for any π ∈ V ∗Vδ, if E(π[|π|]) 6= ∅ then fδ(π) is defined and satisfies fδ(π) ∈ E(π[|π|]). A play π is said
to be consistent with fδ if for every n ∈ ω such that 1 ≤ n < |π|, π[n] ∈ Vδ implies fσ(π[1, n]) = π[n+1].
The strategy fδ is said to be a winning strategy for Player δ if every play consistent with fδ is winning
for Player δ. A position v ∈ V is winning for Player δ if there is a strategy fδ such that every play
consistent with fδ which starts in v is winning for Player δ. A winning strategy fδ is called memoryless
if for all finite E-sequences π and π′, fδ(π) = fδ(π

′) whenever π[|π|] = π′[|π′|]. For parity games, we have
a memoryless determinacy result.

Theorem 4.2 (Mostowski [10], Emerson and Jutla [5]). For any parity game, one of the Players
has a memoryless winning strategy from each game position.

Considering this theorem, we will assume that all winning strategies are memoryless. In other words,
a winning strategy in a parity game for Player 0 is a function f0 : V0 → V , and is denoted analogously
for Player 1.

4.2 Evaluation games

Given a well-named formula ϕ, a Kripke model S = (S,R, λ) and its world s0, we define the evaluation
game EG(S, s0, ϕ) as a parity game with Player 0 and 1 moving a token to positions of the form 〈ψ, s〉 ∈
Sub(ϕ)× S. Intuitively, Player 0 asserts that ”the formula ϕ is true at the possible world s0” and Player
1 asserts the opposite.

The initial game position is 〈ϕ, s0〉. Table 1 displays the rules of the game, that is, admissible moves
from a given position, and the player supposed to make this move. In order to define the priority function

Position Player Admissible moves

〈⊥, s〉 0 ∅
〈⊤, s〉 1 ∅
〈p, s〉 with p ∈ Free(ϕ) and s ∈ λ(p) 1 ∅
〈p, s〉 with p ∈ Free(ϕ) and s /∈ λ(p) 0 ∅
〈¬p, s〉 with p ∈ Free(ϕ) and s /∈ λ(p) 1 ∅
〈¬p, s〉 with p ∈ Free(ϕ) and s ∈ λ(p) 0 ∅
〈α ∧ β, s〉 1 {〈α, s〉, 〈β, s〉}
〈α ∨ β, s〉 0 {〈α, s〉, 〈β, s〉}
〈�α, s〉 1 {〈α, t〉 | (s, t) ∈ R}
〈✸α, s〉 0 {〈α, t〉 | (s, t) ∈ R}
〈σx.α, s〉 0 {〈α, s〉}
〈x, s〉 with x ∈ Bound(ϕ) 0 {〈ϕx(x), s〉}

Table 1: Admissible move of EG(S, s0, ϕ)

Ωe : V → ω, we define the function Ωϕ : Sub(ϕ) → ω as follows:

Ωϕ(ψ) :=

alt(σx.ϕx(x)) − 1 if ψ = ϕx(x), σx = µ and alt(σx.ϕx(x)) = 0 (mod 2),
alt(σx.ϕx(x)) if ψ = ϕx(x), σx = µ and alt(σx.ϕx(x)) = 1 (mod 2),
alt(σx.ϕx(x)) − 1 if ψ = ϕx(x), σx = ν and alt(σx.ϕx(x)) = 1 (mod 2),
alt(σx.ϕx(x)) if ψ = ϕx(x), σx = ν and alt(σx.ϕx(x)) = 0 (mod 2),
0 otherwise.

(6)

Then we define Ωe(〈ψ, s〉) := Ωϕ(ψ) for each game position 〈ψ, s〉.
The following theorem was proved by Streett and Emerson [12].

Theorem 4.3 (Streett and Emerson [12]). For any well-named formula ϕ, Kripke model S and its
world s, we have S, s |= ϕ if and only if Player 0 has a (memoryless) winning strategy for EG(S, s, ϕ).

9

5 Tableaux

In this section, we introduce the concept of a tableau and investigate some of its characteristic properties.
The main result of this section is Corollary 5.27 in which we prove Claim (g) as foreshadowed in Section
1. This section is divided into the following three subsections.

In Subsection 5.1, we introduce the tableau and tableau games, which originated in Niwinski and
Walukiewicz [11], with some modifications for our concept.

In Subsection 5.2, the automaton normal form is introduced and Claim (b) is shown; namely, for any
formula ϕ we can construct an equivalent automaton normal form anf(ϕ). Although this result is not
new, we will see the proof of it in detail since our argument relies on both the result and the process for
proving (b).

In Subsection 5.3, we introduce the novel concept of a wide tableau, which is a generalization of
tableaux and prove Claim (g) using this new resource.

5.1 Tableau games

Definition 5.1 (Cover modality). Let Φ be a finite set of formulas. Then ▽Φ denotes an abbreviation
of the following formula: (∧

✸Φ
)
∧
(
�

∨
Φ
)
.

Here, ✸Φ denotes the set {✸ϕ | ϕ ∈ Φ}, and as always, we use the convention that
∨
∅ := ⊥ and∧

∅ := ⊤. The symbol ▽ is called the cover modality.

Remark 5.2. Note that the both the ordinary diamond ✸ and the ordinary box � can be expressed in
term of cover modality and the disjunction:

✸ϕ ≡ ▽{ϕ,⊤},

�ϕ ≡ ▽∅ ∨ ▽{ϕ}.

Therefore, without loss of generality we restrict ourselves to using only ▽ instead of ✸ and �. Hereafter,
we exclusively use cover modality notation instead of ordinal modal notation; thus if not otherwise
mentioned, all formulas are assumed to be using this new constructor. Moreover, the concepts from
Section 2 such as the well-named formula and the alternation depth extend to formulas using this modality.

Definition 5.3. Let Γ be a set of formulas. We will say that Γ is locally consistent if Γ does not contain
⊥ nor any propositional variable p and its negation ¬p simultaneously. On the other hand, Γ is said to
be modal (under ϕ) if Γ does not contain formulas of the forms α ∨ β, α ∧ β, σx.α(x), or x ∈ Bound(ϕ).
In other words, if Γ is modal, then Γ can possess only the elements of Lit(ϕ) and formulas of the form
▽Φ.

Definition 5.4 (Tableau). Let ϕ be a well-named formula. A set of tableau rules for ϕ is defined as
follows:

α,Γ | β,Γ

α ∨ β,Γ
(∨)

α, β,Γ

α ∧ β,Γ
(∧)

ϕx(x),Γ

σxx.ϕx(x),Γ
(σ)

ϕx(x),Γ

x,Γ
(Reg)

{ψk} ∪ {
∨
Ψn | n ∈ Nψk

} | For every k ∈ ω with 1 ≤ k ≤ i and ψk ∈ Ψk.

▽Ψ1, . . . ,▽Ψi, l1, . . . , lj
(▽)

where in the (▽)-rule, l1, . . . , lj ∈ Lit(ϕ) and Nψk
:= {n ∈ ω | 1 ≤ n ≤ i, n 6= k}. Therefore, the premises

of a (▽)-rule is equal to
∑

1≤k≤i |Ψk|.
A tableau for ϕ is a structure Tϕ = (T,C, r, L) where (T,C, r) is a tree structure and L : T →

P(Sub(ϕ)) is a label function satisfying the following clauses:

1. L(r) = {ϕ}.

2. Let t ∈ T . If L(t) is modal and inconsistent then t has no child. Otherwise, if t is labeled by a set
of formulas which fulfills the form of the conclusion of some tableau rules, then t has children which
are labeled by the sets of formulas of premises of one of those tableau rules, e.g., if L(t) = {α∨ β},
then t must have two children u and v with L(u) = {α} and L(v) = {β}.

10

3. The rule (▽) can be applied in t only if L(t) is modal; in other words, (▽) is applicable when no
other rule is applicable.

We call a node t a (▽)-node if the rule (▽) is applied between t and its children. The notions of (∨)-node,
(∧)-node, (σ)-node and (Reg)-node are defined similarly.

Definition 5.5 (Modal and choice nodes). Leaves and (▽)-nodes are called modal nodes. The root of
the tableau and children of modal nodes are called choice nodes. We say that a modal node t and choice
node u are near to each other if t is a descendant of u and between the C-sequence from u to t, there
is no node in which the rule (▽) is applied. Similarly, we say that a modal node t′ is a next modal node
of a modal node t if t′ is a descendant of t and between the C-sequence from t to t′, rule (▽) is applied
exactly once between t and its child. Note that, in some cases, a choice node may be also a modal node.

Definition 5.6 (Trace). Let ϕ be a well-named formula and Tϕ = (T,C, r, L) be a tableau for ϕ. For
each node t ∈ T and its child u ∈ C(t), we define the trace function TRtu : L(t) → P(L(u)) as follows:

• If t is a (∨)-node where the rule applied between t and its children forms

α,Γ | β,Γ

α ∨ β,Γ
(∨)

then we set TRtu(γ) := {γ} for every γ ∈ Γ. Further, we set TRtu(α∨β) := {α} when L(u) = {α}∪Γ
and set TRtu(α ∨ β) := {β} when L(u) = {β} ∪ Γ.

• If t is a (∧)-node where the rule applied between t and its child forms

α, β,Γ

α ∧ β,Γ
(∧)

then we set TRtu(γ) := {γ} for every γ ∈ Γ, and set TRtu(α ∧ β) := {α, β}.

• If t is a (σ)-node where the rule applied between t and its child forms

ϕx(x),Γ

σxx.ϕx(x),Γ
(σ)

then we set TRtu(γ) := {γ} for every γ ∈ Γ, and set TRtu(σxx.ϕx(x)) := {ϕx(x)}.

• If t is a (Reg)-node where the rule applied between t and its child forms

ϕx(x),Γ

x,Γ
(Reg)

then we set TRtu(γ) := {γ} for every γ ∈ Γ, and set TRtu(x) := {ϕx(x)}.

• If t is a (▽)-node where the rule applied between t and its children forms

{ψk} ∪ {
∨
Ψn | n ∈ Nψk

} | 1 ≤ k ≤ i, ψk ∈ Ψk.

▽Ψ1, . . . ,▽Ψi, l1, . . . , lj
(▽)

Moreover, suppose u is labeled by {ψk} ∪ {
∨
Ψn | n ∈ Nψk

} for some k ≤ i and ψk ∈ Ψk. Then
we set TRtu(▽Ψk) := {ψk}, TRtu(▽Ψn) := {

∨
Ψn} for every n ∈ Nψk

, and TRtu(ln) := ∅ for every
n ≤ j.

Take a finite or infinite C-sequence π of Tϕ. A trace tr on π is a finite or infinite sequence of Sub(ϕ)
satisfying the following two conditions;

• tr[1] = ϕ.

• For any n ∈ ω \ {0}, if tr[n] is defined and satisfies TRπ[n]π[n+1](tr[n]) 6= ∅, then tr[n + 1] is also
defined and satisfies tr[n+ 1] ∈ TRπ[n]π[n+1](tr[n]).

11

Note that, from the definition, for any n ∈ ω such that 1 ≤ n ≤ |tr|, we have tr[n] ∈ L(π[n]). The infinite
trace tr is said to be even if

max Inf(~Ωϕ(tr)) = 0 (mod 2).

Furthermore, an infinite branch π is even if every trace on it is even. The set of all traces on π is denoted
by TR(π). TR(π[n,m]) denotes the set {tr[n,m] | tr ∈ TR(π)} and may also be written TR(π[n], π[m]).
For any two factors tr[n,m] and tr′[n′,m′], we say tr[n,m] and tr′[n′,m′] are equivalent (denoted tr[n,m] ≡
tr′[n′,m′]) if, by ignoring invariant portions of the traces, they can be seen as the same sequence. For
example, let;

tr[n, n+ 3] = 〈(α ∧ β) ∨ γ, (α ∧ β) ∨ γ, α ∧ β, β〉
tr′[n′, n′ + 4] = 〈(α ∧ β) ∨ γ, α ∧ β, α ∧ β, α ∧ β, β〉

then tr[n, n+ 3] and tr′[n′, n′ + 4] are equivalent to each other. Let X and Y be the set of some factors
of some traces. Then we write X ⋐ Y if for any tr[n,m] ∈ X there exists tr′[n′,m′] ∈ Y such that
tr[n,m] ≡ tr′[n′,m′]; and write X ≡ Y if X ⋐ Y and X ⋑ Y .

Let ϕ be a formula. Since P(Sub(ϕ)) is a finite set, it can be seen as an alphabet. The next lemma
shows that there is an automaton Aϕ which precisely detects the evenness of a branch of the tableau.

Lemma 5.7. Let ϕ be a well-named formula and Tϕ = (T,C, r, L) be a tableau for ϕ. Set M = |Sub(ϕ)|.
Then we can construct a deterministic parity automaton

Aϕ = (Q,P(Sub(ϕ)), δ, qI ,Ω)

with |Q| ∈ 2O(M2 logM2) and priorities bounded by O(M2) such that for any infinite branch π, Aϕ accepts
~L(π) ∈ P(Sub(ϕ))ω if and only if π is even.

Proof. First, we construct a non-deterministic parity automaton

Bϕ = (Q′,P(Sub(ϕ)), δ′, q′I ,Ω
′)

which only accepts sequences of labels of π that are not even. Set Q′ := Sub(ϕ) ⊎ {q′I}, then Bϕ has
(M + 1) states. We define the transition function δ′ so that δ′(q′I , {ϕ}) := {ϕ} and δ′(ψ, π[n + 1]) :=
TRπ[n]π[n+1](ψ) for any n ≥ 1. The priority is defined as Ω′(q′I) := 0 and Ω′(ψ) := Ωϕ(ψ) + 1 for every
ψ ∈ Sub(ϕ).

Now, Bϕ is defined in such a way that a run of the automaton on ~L(π) forms one trace on π and
the automaton accepts only odd traces. By applying the Complementation Lemma 3.1, we obtain the
required automaton.

Now, we define the tableau games introduced by Niwinski and Walukiewicz [11]. To distinguish players
of this game from players of the evaluation games defined in subsection 4.2, we assume that players of a
tableau game have other popular names; say Player 2 and Player 3. Intuitively, Player 2 asserts that ”ϕ
is satisfiable” and Player 3 asserts the opposite. This is justified by Lemmas 5.9 and 5.10.

Definition 5.8 (Tableau game). Let ϕ be a well-named formula, Tϕ = (T,C, r, L) be a tableau for ϕ,
and Aϕ = (Q,P(Sub(ϕ)), δ, qI ,Ω) be an automaton given by Lemma 5.7. A tableau game for ϕ (denoted
T G(ϕ)) is a parity game played by Player 2 and Player 3 defined as follows:

Positions Let M ⊆ T be the set of all modal nodes which are consistent. The positions of Player 2 are
given by V2 := (T \M) and the positions of Player 3 are given by V3 := M ; therefore the set of
game positions is T . The starting position of this game is the root r.

Admissible moves In a position t ∈ V2, Player 2 chooses the next position from C(t). Note that when
t is modal and locally inconsistent, Player 2 loses the game immediately since C(t) = ∅ and so she
has no choice from t. In a position t ∈ V3, Player 3 chooses the next position from C(t). Note that
when L(t) does not contain a formula of the form ▽Ψ, Player 3 loses the game immediately since
C(t) = ∅ and so he has no choice from t.

Priority For any tableau node t ∈ T , we define the automaton states of t by stat(t) := δ(qI , ~L(π)) where
π is the C-sequence starting at r and ending at t. Then, the priority of t ∈ T is Ω(stat(t)).

12

Lemma 5.9. Let ϕ be a well-named formula. If ϕ is satisfiable, then Player 2 has a winning strategy in
the tableau game T G(ϕ).

Proof. Let S = (S,R, λ) be a model and s0 ∈ S be a possible world such that S, s0 |= ϕ. From Theorem
4.3, we can assume that there exists a memoryless winning strategy f0 for Player 0 in evaluation game
EG(S, s0, ϕ). Now, we will construct a winning strategy for Player 2 in T G(ϕ) inductively; in the process
of the defining the strategy, we will also define the marking function mark : T → S simultaneously such
that

(†): If the current game position is in t ∈ T and mark(t) = s, then for any γ ∈ L(t), Player 0
can win at the position 〈γ, s〉 by using the strategy f0.

Initially, we define mark(r) := s0. This marking indeed satisfies (†). The remaining strategy and marking
are divided into the following three cases:

• Suppose that the current position t is a (∨)-node where t and its children are labeled

α,Γ | β,Γ

α ∨ β,Γ
(∨)

Then Player 2 must choose the next game position from these two children, say u and v which
are labeled by {α} ∪ Γ and {β} ∪ Γ, respectively. By our induction assumption, we can assume
that there exists a marking mark(t) = s which satisfies (†). Then Player 2 chooses u if and only if
f0(α ∨ β, s) = 〈α, s〉. Player 2 also defines the new marking as mark(u) := mark(t).

• Suppose the current position t is a (▽)-node where t and its children are labeled

{ψk} ∪ {
∨
Ψn | n ∈ Nψk

} | 1 ≤ k ≤ i, ψk ∈ Ψk.

▽Ψ1, . . . ,▽Ψi, l1, . . . , lj
(▽)

Moreover, suppose that Player 3 chooses u ∈ C(t) which is labeled by {ψk}∪{
∨
Ψn | n ∈ Nψk

}. By
our induction assumption, there is a marking mark(t) = s such that for any m ∈ ω with 1 ≤ m ≤ i,
〈▽Ψm, s〉 is a winning position for Player 0 by using f0. Since 〈▽Ψk, s〉 is winning for Player 0,
the position 〈✸ψk, s〉 is also winning for Player 0 (because ▽Ψk ≡

(∧
✸Ψk

)
∧
(
�
∨
Ψk

)
, and since

〈
(∧

✸Ψk
)
∧
(
�
∨
Ψk

)
, s〉 is winning for Player 0 and Player 1 can choose the position 〈✸ψk, s〉

from this position, 〈✸ψk, s〉 must be winning for Player 0). Take the possible world s′ such that
f0(✸ψk, s) = 〈ψk, s′〉. Note that for any n ∈ Nψk

, since 〈▽Ψn, s〉 is winning for Player 0, the
position 〈�

∨
Ψn, s〉 is also winning, and thus, 〈

∨
Ψn, s

′〉 is winning for Player 0. Finally, Player 2
creates a new marking as mark(u) := s′, and this marking satisfies (†) as discussed above.

• In another position t, Player 2 has at most one choice and so the strategy is determined automati-
cally. Player 2 sets the new marking as mark(u) := mark(t) for u ∈ C(t).

Every marking and game position consistent with this strategy satisfies (†). In fact, it can be easily
checked that our strategy satisfies the following stronger assertion;

(‡): Let π be a finite or infinite play of T G(ϕ) consistent with our strategy, and let ξ :=
~mark(π) ∈ S+ ∪ Sω be the corresponding sequence of possible worlds. Then, for any trace tr

on π,
〈tr[1], ξ[1]〉〈tr[2], ξ[2]〉〈tr[3], ξ[3]〉 · · ·

is a play of EG(S, s0, ϕ) which is consistent with f0.

From (‡), we can confirm that the above strategy is winning. Take an arbitrary play π of T G(ϕ) consistent
with the strategy. Suppose π is a finite branch. In this case, for any l ∈ L(π[|π|]) ∩ Lit(ϕ), by (‡), we
can assume that S, s |= l and thus L(π[|π|]) must be consistent. This means that the final position π[|π|]
belongs to V3 and, thus, Player 2 wins in this play. Suppose π is an infinite branch. In this case, by (‡),
we can assume that every trace tr on π is even and, thus, π is also even so Player 2 wins in this play.
Hence, our strategy is a winning strategy for Player 2.

Lemma 5.10. Let ϕ be a well-named formula. If Player 2 has a winning strategy in the tableau game
T G(ϕ), then ϕ is satisfiable.

13

Proof. Let Tϕ = (T,C, r, L) be a tableau for ϕ, and let f2 be a winning strategy for Player 2 in the
tableau game T G(ϕ). Consider the tree with label Tϕ|f2 = (Tf2 , Cf2 , r, Lf2) which is obtained from Tϕ
by removing all nodes of Tϕ except those used by f2. Here, Cf2 and Lf2 are appropriate restrictions of
C and L, respectively. We call the structure Tϕ|f2 a winning tree for Player 2 derived by f2. We also
define a Kripke model S = (S,R, λ) as follows:

Possible worlds: S consists of all modal positions belonging to Tf2 .

Accessibility relation: For any s, s′ ∈ S(⊆ Tf2), we have (s, s′) ∈ R if and only if s′ is a next modal
node of s.

Valuation: For any p ∈ Prop and s ∈ S, we have s ∈ λ(p) if and only if ¬p /∈ L(s).

Note that for any t ∈ Tf2 , there exists exactly one modal node s ∈ S which is near t, and so we can
denote such an s by mark(t). From now on, we construct a winning strategy for Player 0 of the evaluation
game EG(S,mark(r), ϕ). If we accomplish this task, then the Lemma follows since, from Theorem 4.3,
we have S,mark(r) |= ϕ. Note that the strategy we will construct below is not necessarily memoryless.

First, Player 0 brings on a token and stores 〈ϕ, r〉 in that token. Subsequently, some element 〈ψ, t〉 ∈
Sub(ϕ)× Tf2 is stored in the token at any time. Player 0 will replace the content in the token according
to the current game position of EG(S,mark(r), ϕ). It is always the case that:

(†): If 〈ψ, t〉 is in the token, then one of the following four conditions is satisfied:

(C1) Current game position is 〈ψ,mark(t)〉 with ψ ∈ L(t).

(C2) Current game position is 〈
∧
✸∆′,mark(t)〉 with ψ = ▽∆ ∈ L(t) and ∆′ ⊆ ∆.

(C3) Current game position is 〈�
∨
∆,mark(t)〉 with ψ = ▽∆ ∈ L(t).

(C4) Current game position is 〈
∨
∆′,mark(t)〉 with ▽∆ ∈ L(u), ∆′ ⊆ ∆ and ψ ∈ ∆′ where

mark(t) is a next modal node of a modal node u ∈ S.

The strategy satisfying Condition (†) is straightforward. Suppose 〈ψ, t〉 is in the token and satisfies
Condition (†), and (C1). If ψ = α ∨ β, then Player 0 proceeds accordingly on the Cf2 -path from t to
a (∨)-node u where α ∨ β is reduced to α or β between u and v ∈ Cf2 (u). Then, Player 0 chooses
〈α,mark(v)〉(= 〈α,mark(t)〉) as the next position if and only if α∨β is reduced to α between u and v and,
further, replaces the content in the token by 〈α, v〉 or 〈β, v〉 according to her choice of position. If ψ = α∧β,
then Player 1 chooses the next position from 〈α,mark(t)〉 or 〈β,mark(t)〉. Player 0 proceeds according on
Cf2 -path from t to a (∧)-node u where α∧β is reduced to α and β between u and v ∈ Cf2(u). Then Player
0 replaces the content in the token to 〈α, v〉 or 〈β, v〉 according to Player 1’s choice of position. The case
of ψ = x ∈ Bound(ϕ) and ψ = σx.ϕx(x), Player 0 replaces the content of the token similarly to the above
cases. If ψ = ▽∆, then Player 1 chooses the next position from 〈

∧
✸∆,mark(t)〉 or 〈�

∨
∆,mark(t)〉. In

both cases, Player 0 replaces the context in the token to 〈▽∆,mark(t)〉. Therefore either Condition (C2)
or (C3) is satisfied.

Suppose (C2) is satisfied. Then, Player 0 does nothing until the position reaches the forms 〈✸δ,mark(t)〉
with δ ∈ ∆. In the position 〈✸δ,mark(t)〉, Player 0 seeks the node u ∈ Cf2 (mark(t))(= C(mark(t))) in
which ▽∆ is reduced to δ. Then Player 0 chooses the position 〈δ,mark(u)〉 and replaces the content of
the token to 〈δ, u〉. This game position and the content in the token satisfy (C1).

Suppose (C3) is satisfied. In this case, Player 1 chooses the next position 〈
∨
∆,mark(u)〉 with

u ∈ Cf2(mark(t)). If ▽∆ ∈ L(t) is reduced to
∨
∆ in u, then Player 0 replaces the content in the token

to 〈
∨

∆, u〉; therefore, (C1) is satisfied in this case. If ▽∆ ∈ L(t) is reduced to δ ∈ ∆ in u, then Player
0 replaces the content in the token to 〈δ, u〉; therefore, (C4) is satisfied in this case.

Suppose (C4) is satisfied. In this case, from the current game position 〈
∨
∆′,mark(t)〉 Player 0 chooses

the next position 〈
∨
∆′′,mark(t)〉 such that ψ ∈ ∆′′. By repeating this choice, Player 0 can reach the

position 〈ψ,mark(t)〉. Then, the content in the token and the current game position satisfy (C1).
Let ξ be a play of EG(S,mark(r), ϕ) consistent with our strategy. If ξ is finite, then for ξ[|ξ|] =

〈l,mark(t)〉, we have l ∈ L(mark(t)) and, thus, from the definition of λ, we have S,mark(t) |= l. This
means ξ is winning for player 0. Let ξ be infinite. Then, from the construction of the strategy, we can
find the branch π of T |f2 and the trace tr on π such that

ξ = 〈tr[1],mark(π[1])〉〈tr[2],mark(π[2])〉〈tr[3],mark(π[3])〉 . . . (7)

14

Since π is a play of the tableau game T G(ϕ) consistent with f2, π is even, and so tr is also even. From
(7) we know that ξ is even and, thus, winning for Player 0. From the above argument, ξ is winning for
Player 0 in either case and, thus, our strategy is winning for Player 0.

5.2 Automaton normal form

Definition 5.11 (Indexed tops). For technical reasons, we now expand our language by adding indexed
tops Top := {⊤i | i ∈ I} where I is an infinite countable set of indices. Each ⊤i is treated like ⊤, e.g.,
⊤i belongs to the literal, ∼⊤i := ⊥, and for any model S and its world s, we have S, s |= ⊤i.

Definition 5.12 (Automaton normal form). The set of an automaton normal form ANF is the
smallest set of formulas defined by the following clauses:

1. If l1, . . . , li ∈ Lit, then
∧

1≤j≤i lj ∈ ANF.

2. If α ∨ β ∈ ANF, Bound(α) ∩ Free(β) = ∅ and Free(α) ∩ Bound(β) = ∅, then α ∨ β ∈ ANF.

3. If α(x) ∈ ANF where x occurs only positively in the scope of some modal operator (cover modality),
and Sub(α(x)) does not contain a formula of the form x ∧ β. Then, σ~x.α(~x) ∈ ANF where σ~x.α(~x)
is the abbreviation of σx1. . . . σxk.α(x1, . . . , xk) as stated in Definition 2.3.

4. If Φ ⊆ ANF is a finite set such that for any ϕ1, ϕ2 ∈ Φ, we have Bound(ϕ1) ∩ Free(ϕ2) = ∅, then
(▽Φ) ∧ (

∧
1≤i≤j li) ∈ ANF where l1, . . . , lj ∈ Lit \

⋃
ϕ∈Φ Bound(ϕ) with 0 ≤ j.

5. If α ∈ ANF then α ∧ ⊤i ∈ ANF.

Note that the above clauses imply ANF ⊆ WNF.

Remark 5.13. For any automaton normal form ϕ̂, a tableau Tϕ̂ = (T,C, r, L) for ϕ̂ forms very simple
shapes. Indeed, for any node t ∈ T , there exists at most one formula α̂ ∈ L(t) which includes some bound
variables. Note that for any infinite trace tr, tr[n] must include some bound variables. Consequently, for
any infinite branch of the tableau for an automaton normal form, there exists a unique trace on it.

Definition 5.14 (Tableau bisimulation). Let Tα = (T,C, r, L) and Tβ = (T ′, C′, r′, L′) be two
tableaux for some well-named formulas α and β. Let Tm and T ′

m be sets of modal nodes of Tα and Tβ ,
respectively, and let Tc and T ′

c be a set of choice nodes of Tα and Tβ , respectively. Then Tα and Tβ are
said to be tableau bisimilar (notation: Tα ⇋ Tβ) if there exists a binary relation Z ⊆ (Tm×T ′

m)∪(Tc×T
′
c)

satisfying the following seven conditions:

Root condition: (r, r′) ∈ Z.

Prop condition: For any t ∈ Tm and t′ ∈ T ′
m, if (t, t

′) ∈ Z, then

(L(t) ∩ Lit(α)) \ Top = (L′(t′) ∩ Lit(β)) \ Top.

Consequently L(t) is consistent if and only if L′(t′) is consistent.

Forth condition on modal nodes: Take t ∈ Tm, u ∈ Tc and t′ ∈ T ′
m arbitrarily. If (t, t′) ∈ Z and

u ∈ C(t), then there exists u′ ∈ C′(t′) such that (u, u′) ∈ Z (See Figure 2).

Back condition on modal nodes: The converse of the forth condition on modal nodes: Take t ∈ Tm,
t′ ∈ T ′

m and u′ ∈ T ′
c arbitrarily. If (t, t′) ∈ Z and u′ ∈ C′(t′), then there exists u ∈ C(t) such that

(u, u′) ∈ Z.

Forth condition on choice nodes: Take u ∈ Tc, t ∈ Tm and u′ ∈ T ′
c arbitrarily. If (u, u

′) ∈ Z and t is
near u, then there exists t′ ∈ T ′

m such that (t, t′) ∈ Z and t′ is near u′ (See Figure 2).

Back condition on choice nodes: The converse of the forth condition on choice nodes: Take u ∈ Tc,
u′ ∈ T ′

c and t′ ∈ T ′
m arbitrarily. If (u, u′) ∈ Z and t′ is near u′, then there exists t ∈ Tm such that

(t, t′) ∈ Z and t is near u.

15

Figure 2: The forth conditions.

Parity condition: Let π and π′ be infinite branches of Tα and Tβ , respectively. We say that π and π′

are associated with each other if the k-th modal nodes π[ik] and π
′[i′k] satisfy (π[jk], π

′[j′k]) ∈ Z for
any k ∈ ω \ {0}. For any π and π′ which are associated with each other, we have π is even if and
only if π′ is even.

If Tα and Tβ are tableau bisimilar with Z, then Z is called a tableau bisimulation from Tα to Tβ .

Remark 5.15. As will be shown in Lemma 5.16, if Tα and Tβ are tableau bisimilar, then, α and β are
semantically equivalent. However, the reverse is not applied. For example, consider the following two
tableaux, say T1 and T2:

p, q | p, r
p, q ∨ r (∨)

p ∧ (q ∨ r), q ∨ r
(∧)

(p ∧ (q ∨ r)) ∧ (q ∨ r)
(∧)

p, q | p, q, r

p, q ∨ r, q (∨)

p ∧ (q ∨ r), q
(∧)

|

p, q, r | p, r

p, q ∨ r, r (∨)

p ∧ (q ∨ r), r
(∧)

p ∧ (q ∨ r), q ∨ r
(∨)

(p ∧ (q ∨ r)) ∧ (q ∨ r)
(∧)

In this example, even T1 and T2 are tableaux for the same formula (p ∧ (q ∨ r)) ∧ (q ∨ r), there does not
exist a tableau bisimulation between them. Because, T2 has leaves labeled by {p, q, r} but T1 does not.
Note that if ϕ̂ is an automaton normal form, then the tableau Tϕ̂ for ϕ̂ is uniquely determined.

Lemma 5.16. Let α, β be well-named formulas. If Tα ⇋ Tβ, then |= α ↔ β.

Proof. First, we will introduce the notion of a marking relation, which is a slight generalization of the
marking function discussed in the proof of Lemmas 5.9 and 5.10. Let Tϕ = (T,C, r, L) be a tableau for
some well-named formula ϕ, and S = (S,R, λ) be a model and s0 ∈ S be its possible world. The marking
relation Mark ⊆ T × S between Tϕ and 〈S, s0〉 is a relation satisfying the following clauses;

• (r, s0) ∈ Mark

• If (t, s) ∈ Mark and t is a choice node, then there exists modal node u ∈ C∗(t) such that u is near
t and (u, s) ∈ Mark.

• If (t, s) ∈ Mark and t is a modal node, then for any u ∈ C(t), there exists s′ ∈ R(s) such that
(u, s′) ∈ Mark.

• If (t, s) ∈ Mark, t is a modal node and C(t) 6= ∅, then for any s′ ∈ R(s), there exists u ∈ C(t) such
that (u, s′) ∈ Mark.

• For any modal node t ∈ T and possible world s ∈ S such that (t, s) ∈ Mark, if l ∈ L(t) ∩ Lit(ϕ),
then S, s |= l.

• For any infinite branch π such that {n ∈ ω | ∃s ∈ S; (π[n], s) ∈ Mark} is infinite, π is even.

Then the following assertion holds:

16

(†): S, s0 |= ϕ if and only if there exists a marking relation between Tϕ and 〈S, s0〉.

(†) is provable in the same method as the proofs of Lemmas 5.9 and 5.10. We leave the proof of (†) as
an exercise to the reader.

Suppose Tα ⇋ Tβ and so there exists a bisimulation Z from Tα to Tβ . Then, the converse relation
Z− := {(t′, t) | (t, t′) ∈ Z} is a bisimulation from Tβ to Tα, and thus Tβ ⇋ Tα. Therefore, it is enough
to show that |= α → β. Take a model S = (S,R, λ) and its world s0 such that S, s0 |= α. Then by (†),
there exists a marking relation Mark′ between Tα and 〈S, s0〉. Consider the composition

Mark := Z−Mark′ = {(t, s) | (t, t′) ∈ Z−, (t′, s) ∈ Mark′}.

Then Mark is a marking relation between Tβ and 〈S, s0〉; thus, from (†), we have S, s0 |= β. Therefore,
we obtain |= α→ β.

Theorem 5.17 (Janin and Walukiewicz [7]). For any well-named formula α, we can construct an
automaton normal form anf(α) such that Tα ⇋ Tanf(α) for some tableau Tα for α.

Proof. Let T ′
α = (T,C, r, L) be a tableau for a given formula α, Aα = (Q,P(Sub(α)), δ, qI ,Ω) be an

automaton as given by Lemma 5.7, and stat(t) be the automaton states of t ∈ T as defined in Definition
5.8.

First, we construct a tableau-like structure T Bα = (Tb, Cb, rb, Lb, Bb) called a tableau with back edge
from T ′

α as follows:

• The node t ∈ T is called a loop node if;

(♠) There is a proper ancestor u such that 〈L(t), stat(t)〉 = 〈L(u), stat(u)〉, and

(♥) for any v ∈ T such that v ∈ C∗(u) and t ∈ C∗(v), we have Ω(stat(v)) ≤ Ω(stat(t))(=
Ω(stat(u))).

In this situation, the node u is called a return node of t. Note that for any infinite branch π of Tα,
there exists a loop node on π. Indeed, take N := maxΩ(Inf(~stat(π))). Then, since P(Sub(α)) ×Q
is finite, there exists 〈Γ, q〉 ∈ P(Sub(α)) ×Q such that Ω(q) = N and

N := {n ∈ ω | 〈Γ, q〉 = 〈L(π[n]), stat(π[n])〉}

is an infinite set. Take a natural number K such that for any n > K, we have Ω(stat(π[n])) ≤ N .
Moreover, take n1, n2 ∈ N such that K < n1 < n2. Then, from the definitions of N and K, we
have 〈L(π[n1]), stat(π[n1])〉 = 〈L(π[n2]), stat(π[n2])〉 and for any k ∈ ω such that n1 ≤ k ≤ n2,
Ω(stat(π[k])) ≤ Ω(stat(π[n2])). Therefore π[n2] is a loop node with return node π[n1].

We define the set Tb of nodes as follows:

Tb := {t ∈ T | for any proper ancestor u of t, u is not a loop node}

Intuitively speaking, we trace the nodes on each branch from the root and as soon as we arrive at
a return node, we cut off the former branch from the tableau.

• Set Cb := C|Tb×Tb
, rb := r and Lb := L|Tb

.

• Bb := {(t, u) ∈ Tb × Tb | t is a loop node and u is a return node of t}. An element of Bb is called
back edge.

By König’s lemma, we can assume that T Bα is a finite structure because it has no infinite branches. The
tableau with back edge is very similar to the basic tableau. In fact, the unwinding UNWrb(T Bα) is a
tableau for α. Therefore, we use the terminology and concepts of the tableau, such as the concept of the
parity of the sequence of nodes. From the definition of loop and return nodes (particularly Condition
(♥)), we can assume that

(†): Let π be an infinite (Cb ∪Bb)-sequence and let t ∈ Tb be the return node which appears
infinitely often in π and is nearest to the root of all such return nodes. Then, π is even if and
only if Ω(stat(t)) is even.

Next, we assign an automaton normal form anf(t) to each node t ∈ Tb by using top-down fashion:

17

Base step: Let t ∈ Tb be a leaf. If t is not a loop node, then t must be a modal node with an inconsistent
label or contain no formula of the form ▽Φ. In both cases, we assign anf(t) :=

∧
1≤k≤i lk where

{l1, . . . , li} = Lb(t) ∩ Lit(α). If t is a loop node, we take xt ∈ Prop \ Sub(ϕ) uniquely for each such
leaf and we set anf(t) := xt.

Inductive step I: Suppose t ∈ Tb is a (▽)-node where t is labeled by {▽Ψ1, . . . ,▽Ψi, l1, . . . , lj} with
l1, . . . , lj ∈ Lit(α), and we have already assigned the automaton normal form anf(u) for each child
u ∈ Cb(t). In this situation, we first assign anf−(t) to t as follows:

anf−(t) := ▽{anf(u) | u ∈ Cb(t)} ∧

∧

1≤k≤j

lk

=

∧

u∈Cb(t)

✸anf(u)

 ∧�

∨

1≤k≤i

∨

u∈C
(k)
b

(t)

anf(u)

 ∧

∧

1≤k≤j

lk

 (8)

where C
(k)
b (t) denotes the set of all children u ∈ Cb(t) such that ▽Ψk is reduced to some ψk ∈ Ψk

between t and u. That is, we designate the order of disjunction in anf−(t) for technical reasons (see
Remark 5.18). If t is not a return node, then we set anf(t) := anf−(t). Alternatively, if t is a return
node, then let t1, . . . , tn be all the loop nodes such that (tk, t) ∈ Bb (1 ≤ k ≤ n). We set

σt :=

{
µ If Ω(stat(t))(= Ω(stat(t1)) = · · · = Ω(stat(tn))) = 1 (mod 2)
ν If Ω(stat(t))(= Ω(stat(t1)) = · · · = Ω(stat(tn))) = 0 (mod 2)

(9)

In this case we define anf(t) as anf(t) := σtxt1 σtxtn .anf
−(t).

Inductive step II: Suppose t ∈ Tb is a (∨)-node where, for both children u, v ∈ Cb(t), we have already
assigned the automaton normal forms anf(u) and anf(v), respectively. If t is not a return node,
then we set anf(t) := anf(u) ∨ anf(v). Suppose t is a return node. Let t1, . . . , tn be all the loop
nodes such that (tk, t) ∈ Bb (1 ≤ k ≤ n). In this case, σt is defined in the same way as (9) and we
define anf(t) as anf(t) := σtxt1 σtxtn .

(
anf(u) ∨ anf(v)

)
.

Inductive step III: Suppose t ∈ Tb is a (∧)-, (σ)- or (Reg)-node where we have already assigned the
automaton normal form anf(u) for the child u ∈ Cb(t). If t is not a return node, then we assign
anf(t) := anf(u) ∧ ⊤t where ⊤t is an indexed top which is taken uniquely for each t ∈ Tb. If t is
a return node and t1, . . . , tn are all the loop nodes such that (tk, t) ∈ Bb (1 ≤ k ≤ n), then, σt is
defined in the same way as (9), and we define anf(t) as anf(t) := σtxt1 σtxtn . anf(u).

We take anf(α) := anf(rb).
Consider the structure (Tb, Cb, rb, anf, Bb). We intuit that this structure is almost a tableau with

back edge for anf(α). To clarify this intuition, we give a structure T Banf(α) = (T̂ , Ĉ, r̂, L̂, B̂) by applying
the following four steps of procedure re-formatting (Tb, Cb, rb, anf, Bb) so that T Banf(α) can be seen as a

proper tableau with back edge. At the same time, we define the relation Z+ ⊆ Tb × T̂ .

Step I (insert (σ)-nodes) Initially, we set (T̂ , Ĉ, r̂, L̂, B̂) := (Tb, Cb, rb, L̂, Bb) where L̂(t) := {anf(t)},

and set Z+ := {(t, t) | t ∈ Tb}. Let t ∈ T̂ be a return node where t1, . . . , tn are all the loop nodes

such that (tk, t) ∈ B̂ (1 ≤ k ≤ n). Then, we insert the (σ)-nodes u1, . . . , un between t and its
children in such a way that

anf(t) = σtxt1 .σtxt2 σtxtn .β(xt1 , . . . , xtn)

is reduced to β(xt1 , . . . , xtn) from u1 to un.
6 Moreover, we expand the relation Z+ by adding

{(t, uk) | 1 ≤ k ≤ n}. For example, if t is a (∨)-node in T Bα such that {v1, v2} = Cb(t), then our

6 In other words, we add u1, . . . , un into T̂ , add (t, u1), (u1, u2), . . . , (un−1, un) and {(un, u) | u ∈ Ĉ(t)} into Ĉ, discard

{(t, u) | u ∈ Ĉ(t)} from Ĉ, and expand L̂ to u1, . . . , un appropriately.

18

procedure would be as follows:

anf(v1) | anf(v2)

σtxt1 .σtxt2 σtxtn . (anf(v1) ∨ anf(v2))
⇒

anf(v1) | anf(v2)

anf(v1) ∨ anf(v2)
(∨)

.... (σ)

σtxt2 σtxtn . (anf(v1) ∨ anf(v2))

σtxt1 .σtxt2 σtxtn . (anf(v1) ∨ anf(v2))
(σ)

Step II (insert (∧)-nodes) Let t ∈ T̂ be a node which is labeled by;

▽{anf(u) | u ∈ Ĉ(t)} ∧

 ∧

1≤k≤j

lk

 .

Then, we insert the (∧)-nodes u0, . . . , ui between t′ and its children (i.e., the nodes of Ĉ(t)) and
label such u1, . . . , uj as below:

anf(u) | u ∈ Ĉ(t)

▽{anf(u) | u ∈ Ĉ(t)} ∧
(∧

1≤k≤j lk

) ⇒

anf(u) | u ∈ Ĉ(t)

▽{anf(u) | u ∈ Ĉ(t)}, l1, . . . , lj
(▽)

.... (∧)

▽{anf(u) | u ∈ Ĉ(t)},
(∧

1≤k≤j lk

)

▽{anf(u) | u ∈ Ĉ(t)} ∧
(∧

1≤k≤j lk

) (∧)

Further, we expand the relation Z+ by adding {(t, uk) | 1 ≤ k ≤ j}.

Step III (revise the back edges) Let tk with 1 ≤ k ≤ n be the loop node, and t be the return node
of tk such that

anf(tk) = xtk

anf(t) = σtxt1 .σtxt2 σtxtn .β(xt1 , . . . , xtn).

If 2 ≤ k, then we delete (tk, t) from B̂ and add (tk, uk) into B̂ where uk is the unique nodes
satisfying;

L̂(uk) = {σtxtk σtxtn .β(xt1 , . . . , xtn)}.

By this revising procedure, for any loop node t and its return node u, L̂(t) and L̂(u) form the
(Reg)-rule of anf(α).

Step IV (add the indexed tops) Suppose t ∈ T̂ and its child u are labeled as follows;

anf(u)

anf(u) ∧ ⊤t

Then, we add ⊤t to L̂(v) where v ∈ (Ĉ ∪ B̂)+(t) such that, between the (Ĉ ∪ B̂)-path from t to v,
there does not exist a (▽)-node. By this adding procedure, such a t becomes a proper (∧)-node.

The structure T Banf(α) = (T̂ , Ĉ, r̂, L̂, B̂) repaired by the above four procedures can be seen as a tableau
with back edge for anf(α) in the sense that the following two assertions hold:

(♣) The unwinding UNWr̂(T Banf(α)) is a tableau of anf(α).

(♦) Let π̂ be an infinite (Ĉ ∪ B̂)-sequence and let t̂ ∈ T̂ be the return node which appears infinitely often

in π̂ and is nearest to the root of all such return nodes. Then π̂ is even if and only if L̂(t̂) includes
a ν-formula.

19

Set Z := Z+|((Tb)m×T̂m)∪((Tb)c×T̂c)
. If we extend the relation Z to the pair of nodes of UNWr(T Bα)

and UNWr̂(T Banf(α)), then Z clearly satisfies the root condition, prop condition, back conditions and
forth conditions. Moreover, from (†) and (♦), we can assume that Z satisfies the Parity condition.
Therefore, we have UNWr(T Bα) ⇋ UNWr̂(T Banf(α)), and so Tα := UNWr(T Bα) and anf(α) satisfy the
required condition.

Remark 5.18. Let Sub′(anf(α)) be the set of subformulas of anf(α) which contains some bound variables.
From the relation Z+ constructed in the proof of Lemma 5.17, we can construct a function f from
Sub′(anf(α)) to P(Sub(α)) naturally because of the following:

• for any β̂ ∈ Sub′(anf(α)), there exists a unique t̂ ∈ T̂ such that β̂ ∈ L̂(t̂); and

• for any t̂ ∈ T̂ there exists a unique t ∈ Tb such that (t, t̂) ∈ Z+.

Therefore, if we define f(β̂) := L(t) where β̂ ∈ L̂(t̂) and (t, t̂) ∈ Z+, then the function f is well-defined.
Moreover, let t ∈ Tb be a (▽)-node such that Lb(t) = {▽Ψ1, . . . ,▽Ψi, l1, . . . , lj}. Then, we expand f to
the formula χ1 and χ2 such that

anf(u) ≤ χ1 ≤
∨

u∈C
(k)
b

(t)

anf(u) ≤ χ2 ≤

∨

1≤k≤i

∨

u∈C
(k)
b

(t)

anf(u)

 ,

for every k where 1 ≤ k ≤ i and for every u ∈ C
(k)
b (t). Now, we define f(χ2) as

f(χ2) :=
{∨

Ψn | 1 ≤ n ≤ i
}
.

Next, we note that for any u ∈ C
(k)
b (t) there is a unique ψk ∈ Ψk such that ▽Ψk is reduced to ψk. We

denote such a ψk by cor(u). Suppose χ1 =
∨
u∈X(k) anf(u) where X(k) ⊆ C

(k)
b (t). Then we define f(χ1)

as;

f(χ1) :=
{∨

Ψn | 1 ≤ n ≤ i, n 6= k
}
∪

∨

u∈X(k)

cor(u)

 .

Recalling Equation (8), the reason we designated the order of disjunction in anf(t) is that, in conjunction
with above definition of f , we obtain the following useful property:

(Corresponding Property): Consider the section of the tableau which has the root labeled by

∨

1≤k≤i

∨

u∈C
(k)
b

(t)

anf(u)

 ,

and every leaf labeled by some anf(u). Then, for any node u and its children v1 and v2 we have (i)
f(L(u)) = f(L(v1)) = f(L(v2)) or, (ii) f(L(u)), f(L(v1)) and f(L(v2)) forming a (∨)-rule.

Let us confirm the above property by observing a concrete example as depicted in Figure 3. In this
example, the root and its children satisfy (i), and the child of the root and its children form a (∨)-rule.
Thus, (ii) is satisfied.

The function f will be used in the proof of Part 5 of Lemma 5.26.

Corollary 5.19. For any well-named formula α, we can construct an automaton normal form anf(α)
which is semantically equivalent to α. Moreover, for any x ∈ Free(α) which occurs only positively in α,
it holds that x ∈ Free(anf(α)) and x occurs only positively in anf(α).

Proof. This is an immediate consequence of Lemma 5.16 and Theorem 5.17.

20

Figure 3: An example of the corresponding property.

5.3 Wide tableau

Definition 5.20 (Wide tableau). Let ϕ be a well-named formula. The rule of a wide tableau for ϕ is
obtained by adding the following seven rules to the rule of tableau, which are collectively called the wide
rules :

Γ
Γ

(ǫ1)
Γ | Γ

Γ
(ǫ2)

α, α ∨ β,Γ | β, α ∨ β,Γ

α ∨ β,Γ
(∨w)

α, β, α ∧ β,Γ

α ∧ β,Γ
(∧w)

ϕx(x), σxx.ϕx(x),Γ

σxx.ϕx(x),Γ
(σw)

ϕx(x), x,Γ

x,Γ
(Regw)

{ψk} ∪ {
∨
Ψn | n ∈ Nψk

} | For every k ∈ ω with 1 ≤ k ≤ i and ψk ∈ Ψk.

▽Ψ1, . . . ,▽Ψi, l1, . . . , lj
(▽w)

where in the (▽w)-rule, l1, . . . , lj ∈ Lit(ϕ) and, for each ψk ∈
⋃

1≤k≤iΨk we have Nψk
= {n ∈ ω | 1 ≤

n ≤ i, n 6= k} or Nψk
= {n ∈ ω | 1 ≤ n ≤ i}. Therefore, the premises of the (▽w)-rule is, as with the

(▽)-rule, equal to
∑

1≤k≤i |Ψk|.
A wide tableau for ϕ (notation: WT ϕ) is the structure defined as a tableau for ϕ, but satisfying the

following additional clause:

4. For any infinite branch π of WT ϕ, {n ∈ ω | π[n] is (▽)-node or (▽w)-node} is an infinite set.

Clause 4 restrains a branch that does not reach any modal node eternally by infinitely applying the wide
rules except (▽w)-rule.

Remark 5.21. A tableau can be considered a special case of the wide tableau, in which the wide-rules
are not used. The concepts of modal and choice nodes as per Definition 5.5 naturally extend to the wide
tableau. Let t be a node of some wide tableau and u be its child. Then, the trace function TRtu as per
Definition 5.6 is extended as follows:

• If t is a (ǫ1)- or (ǫ2)-node where t and u are labeled by Γ, then we set TRtu(γ) := {γ} for every
γ ∈ Γ.

• If t is a (∨w)-node where the rule applied between t and its children forms

α, α ∨ β,Γ | β, α ∨ β,Γ

α ∨ β,Γ
(∨)

then we set TRtu(γ) := {γ} for every γ ∈ Γ. Furthermore, we set TRtu(α ∨ β) := {α, α ∨ β} when
L(u) = {α, α ∨ β} ∪ Γ and set TRtu(α ∨ β) := {β, α ∨ β} when L(u) = {β, α ∨ β} ∪ Γ.

21

• If t is a (∧w)-node where the rule applied between t and its child forms

α, β, α ∧ β,Γ

α ∧ β,Γ
(∧w)

then we set TRtu(γ) := {γ} for every γ ∈ Γ, and we set TRtu(α ∧ β) := {α, β, α ∧ β}.

• If t is a (σw)-node where the rule applied between t and its child forms

ϕx(x), σxx.ϕx(x),Γ

σxx.ϕx(x),Γ
(σw)

then we set TRtu(γ) := {γ} for every γ ∈ Γ, and we set TRtu(σxx.ϕx(x)) := {ϕx(x), σxx.ϕx(x)}.

• If t is a (Reg)-node where the rule applied between t and its child forms

ϕx(x), x,Γ

x,Γ
(Regw)

then we set TRtu(γ) := {γ} for every γ ∈ Γ, and we set TRtu(x) := {ϕx(x), x}.

• If t is a (▽w)-node where the rule applied between t and its children forms

{ψk} ∪ {
∨
Ψn | n ∈ Nψk

} | 1 ≤ k ≤ i, ψk ∈ Ψk.

▽Ψ1, . . . ,▽Ψi, l1, . . . , lj
(▽w)

Moreover, suppose u is labeled by {ψk} ∪ {
∨
Ψn | n ∈ Nψk

}. Then, we set TRtu(▽Ψk) := {ψk}
when Nψk

= {n ∈ ω | 1 ≤ n ≤ i, n 6= k}, and we set TRtu(▽Ψk) := {ψk,
∨
Ψk} when Nψk

= {n ∈
ω | 1 ≤ n ≤ i}. We set TRtu(▽Ψn) := {

∨
Ψn} for every n ∈ Nψk

\ {k}, and set TRtu(ln) := ∅ for
every n ≤ j.

Under this extended definition of the trace, the automaton Aϕ of Lemma 5.7 and the bisimulation of
Definition 5.14 can also be naturally extended to the wide tableau. Thus, we apply these concepts and
results freely to this new structure.

Definition 5.22 (Inserted trace). Let WT ϕ = (T,C, r, L) be a wide tableau for some well-named
formula ϕ. Let π be a finite or infinite branch of WT and let tr be a trace on π. For technical reasons,
we will need an inserted trace (denotation: tr+) for each trace tr which is constructed by the following
procedure (†) (see also Figure 4);

Figure 4: An inserted trace.

(†): Suppose Ψ = {ψ0, ψ1, . . . , ψk} and that π[n] is a (▽)- or (▽w)-node in which tr[n] = ▽Ψ
is reduced into tr[n+ 1] = ψ0. Then, we insert the sequence

〈
∨

Ψ,
∨

(Ψ \ { ψ1}),
∨

(Ψ \ { ψ1, ψ2}), . . . ,
∨

{ψ0, ψk−1, ψk},
∨

{ψ0, ψk}〉

between tr[n] and tr[n+ 1].

Note that tr is even if and only if tr+ is even because inserted formulas are all ∨-formulas and, thus, the
priorities of these formulas are equal to 0 (recall Equation (6)). The set of inserted traces TR+(π) and
the set of factors of inserted traces TR+(π[n,m]) or TR+(π[n], π[m]) are defined similarly.

22

Definition 5.23 (Tableau consequence). Let WT α = (T,C, r, L) and WT β = (T ′, C′, r′, L′) be two
wide tableaux for some well-named formula α and β. Let Tm and T ′

m be the set of modal nodes of
WT α and WT β , and let Tc and T ′

c be the set of choice nodes of WT α and WT β, respectively. Then
WT β is called a tableau consequence of WT α (notation: WT α ⇀WT β) if there exists a binary relation
Z ⊆ (Tm × T ′

m) ∪ (Tc × T ′
c) satisfying the following six conditions (here, the condition of the tableau

consequence is similar to the condition of tableau bisimulation so we have illustrated the differences
between these two conditions using underlines):

Root condition: (r, r′) ∈ Z.

Prop condition: For any t ∈ Tm and t′ ∈ T ′
m, if (t, t

′) ∈ Z, then

(L(t) ∩ Lit(α)) \ Top ⊇
✿✿

(L′(t′) ∩ Lit(β)) \ Top.

Consequently, L(t) is consistent
✿✿✿✿

only
✿✿

if L′(t′) is consistent.

Forth condition on modal nodes:
✿✿✿✿

Take
✿✿✿✿✿✿✿✿✿

t, u ∈ Tm
✿✿✿✿

and
✿✿✿✿✿✿✿

t′ ∈ T ′
m✿✿✿✿✿✿✿✿✿✿✿

arbitrarily.
✿✿

If
✿✿✿✿✿✿✿✿✿✿

(t, t′) ∈ Z
✿✿✿✿

and
✿✿

u
✿✿

is
✿✿

a

✿✿✿✿

next
✿✿✿✿✿✿

modal
✿✿✿✿✿

node
✿✿

of
✿✿

t,
✿✿✿✿

then
✿✿✿✿✿✿✿✿✿✿

C′(t′) = ∅
✿✿

or
✿✿✿✿✿

there
✿✿✿✿✿

exists
✿✿✿✿✿✿✿✿

u′ ∈ T ′
m✿✿✿✿✿✿

which
✿✿

is
✿

a
✿✿✿✿✿

next
✿✿✿✿✿✿

modal
✿✿✿✿

node
✿✿✿

of
✿✿

t′
✿✿✿✿

such

✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿

(u, u′) ∈ Z.

Back condition on modal nodes: Take t ∈ Tm, t′ ∈ T ′
m and u′ ∈ T ′

c arbitrarily. If (t, t′) ∈ Z and
u′ ∈ C′(t′), then

✿✿✿✿✿✿✿

C(t) = ∅ or there exists u ∈ C(t) such that (u, u′) ∈ Z.

Forth condition on choice nodes: Take u ∈ Tc, t ∈ Tm and u′ ∈ T ′
c arbitrarily. If (u, u

′) ∈ Z and t is
near u, then there exists t′ ∈ T ′

m such that (t, t′) ∈ Z and t′ is near u′.

Back condition on choice nodes:
✿✿✿

No
✿✿✿✿✿✿✿✿✿

condition.

Parity condition: Let π and π′ be infinite branches of WT α and WT β respectively. If π and π′ are
associated with each other, then π is even

✿✿✿✿

only
✿✿

if π′ is even.

A relation Z which satisfies the above six conditions called tableau consequence relation from WT α to
WT β.

Let T1 and T2 be tableaux mentioned in Remark 5.15, then they are not bisimilar. However, we can
assume that T2 ⇀ T1. Suppose t is a node of some tableau labeled by {γ}∪Γ and, u is a its child labeled
by {γ′} ∪ Γ. Then, there exists two possibilities; γ′ ∈ Γ or γ′ /∈ Γ. We say a collision occurred between t
and u if γ′ ∈ Γ. In Remark 5.15, we can find collisions in T1 but cannot in T2. In general, if we construct
a tableau Tϕ for a given formula ϕ so that collisions occur as many as possible, then, we have WT ϕ ⇀ Tϕ
for any wide tableau WT ϕ for ϕ. To denote this fact correctly, we introduce the following definition and
lemma.

Definition 5.24 (Narrow tableau). A well-named formula ϕ and a set Γ ⊆ Sub(ϕ) are given. For a
formula γ ∈ Γ, a closure of γ (denotation: cl(γ)) is defined as follows:

• γ ∈ cl(γ).

• If α ◦ β ∈ cl(γ), then α, β ∈ cl(γ) where ◦ ∈ {∨,∧}.

• If σxx.ϕx(x) ∈ cl(γ), then ϕx(x) ∈ cl(γ).

• If x ∈ cl(γ) ∩ Bound(ϕ), then ϕx(x) ∈ cl(γ).

In other words, cl(γ) is a set of all formulas δ such that for any tableau Tϕ = (T,C, r, L) and its node
t ∈ T , if γ ∈ L(t), then, there is a descendant u ∈ C∗(t) near t and a trace tr on the C-sequence from t to
u where tr[1] = γ and tr[|tr|] = δ. We say γ is reducible in Γ if, for any γ′ ∈ Γ \ {γ}, we have γ /∈ cl(γ′).
A tableau Tϕ = (T,C, r, L) is said narrow if for any node t ∈ T which is not modal, the reduced formula
γ ∈ L(t) between t and its children is reducible in L(t).

Lemma 5.25. For any well-named formula ϕ, we can construct a narrow tableau for ϕ.

23

Proof. Let ϕ be a well-named formula. Then, it is enough to show that for any Γ ⊆ Sub(ϕ) which is not
modal, there exists a reducible formula γ ∈ Γ. Suppose, moving toward a contradiction, that there exists
Γ ⊆ Sub(ϕ) which is not modal and does not include any reducible formula. Take a formula γ1 ∈ Γ such
that cl(γ1)) {γ1}. Since γ1 is not reducible in Γ, there exists γ2 ∈ Γ \ {γ1} such that γ1 ∈ cl(γ2). Since
γ2 is not reducible in Γ, there exists γ3 ∈ Γ \ {γ2} such that γ2 ∈ cl(γ3). And so forth, we obtain the
sequence 〈γn | n ∈ ω \ {0}〉 such that γn+1 ∈ Γ \ {γn} and γn ∈ cl(γn+1) for any n ∈ ω \ {0}. Since |Γ| is
finite, there exists i, j ∈ ω such that 1 ≤ i < j and γi = γj . Consider the tableau Tϕ = (T,C, r, L) and
its node t ∈ T such that γj ∈ L(t). Then, from the definition of the closure cl, there exists a trace tr on
π such that:

(♥) π is a finite C-sequence starting at t where (▽)-rule nor (▽w)-rule do not applied between π.

(♣) tr[1] = tr[|tr|] = γj .

On the other hand, since ϕ is well-named, for any bound variable x ∈ Bound(ϕ), x is in the scope of some
modal operator (cover modality) in ϕx(x). Thus we have:

(♠) For any trace tr on π, if (♣) is satisfied, then π includes a (▽)-node or (▽w)-node.

(♥) and (♠) contradict each other.

The next lemma states some basic properties of the tableau consequence.

Lemma 5.26. Let α, β, γ and ϕ(x) be well-named formulas where x appears only positively and in the
scope of some modality in ϕ(x). Then, we have:

1. If WT α ⇋ WT β, then WT α ⇀WT β.

2. If WT α ⇀WT β and WT β ⇀WT γ, then WT α ⇀WT γ .

3. If Tα is narrow, then, for any wide tableau WT α we have WT α ⇀ Tα.

4. For any tableau Tϕ(µ~x.ϕ(~x)), there exists a wide tableau WT µ~x.ϕ(~x) such that Tϕ(µ~x.ϕ(~x)) ⇋ WT µ~x.ϕ(~x).

5. For any tableau Tϕ(anf(α)), there exists a wide tableau WT ϕ(α) such that Tϕ(anf(α)) ⇋ WT ϕ(α).

Proof. Part 1 Suppose WT α ⇋ WT β . Then there exists a tableau bisimulation Z from WT α to WT β .
It is easily checked that Z satisfies the conditions of the tableau consequence relation from WT α to WT β

and, thus, WT α ⇀WT β .

Part 2 Suppose WT α ⇀ WT β and WT β ⇀ WT γ . Then, there is a tableau consequence relation,
Z, from WT α to WT β and there is a tableau consequence relation, Z ′, from WT β to WT γ . The
composition ZZ ′ := {(t, t′′) | (t, t′) ∈ Z, (t′, t′′) ∈ Z ′} is a tableau consequence relation from WT α to
WT γ and, thus WT α ⇀WT γ .

Part 3 Let Tc and T
′
c be the sets of choice nodes of WT α and Tα, and let Tm and T ′

m be the sets of
modal nodes of WT α and Tα, respectively. The tableau consequence relation Z is constructed inductively
in a bottom-up fashion. Our construction of Z satisfies the following additional property:

(†) For any t ∈ Tc ∪ Tm and t′ ∈ T ′
c ∪ T

′
m, if (t, t′) ∈ Z then L(t) ⊇ L′(t′).

For the base step, add (r, r′) into Z. This expansion indeed satisfies (†), since L(r) = L′(r′) = {α}. The
inductive step is divided into two cases.

For the first case, suppose that u ∈ Tc and u′ ∈ T ′
c satisfies (u, u′) ∈ Z and (†). From the facts

L(u) ⊇ L′(u′) and that Tα is narrow, for any t ∈ Tm which is near u, we can find t′ ∈ T ′
m which is near

u′ such that TR[u, t] ⋑ TR[u′, t′]. We add such pairs (t, t′) into Z; this expansion indeed preserves (†).
Note that it is possible that, although L(u) = L′(u′), our extension yields L(t)) L′(t′) due to collisions
and the (∨w)-rule. For example, consider a section of a wide tableau and a tableau as depicted in Figure
5. In this example, if (u, u′) ∈ Z, we must extend it so that Z includes

{(t1, t
′
1), (t2, t

′
1), (t3, t

′
1), (t2, t

′
2), (t3, t

′
2), (t4, t

′
2)}

24

Figure 5: An extension of the tableau consequence relation.

because of, for example,

TR[u, t2] = {〈▽Ψ1 ∨ ▽Ψ2, ▽Ψ1, ▽Ψ1〉,

〈▽Ψ1 ∨ ▽Ψ2, ▽Ψ1 ∨ ▽Ψ2, ▽Ψ2〉}

⋑ {〈▽Ψ1 ∨ ▽Ψ2, ▽Ψ1〉}
= TR[u′, t′1].

Thus, we have (t2, t
′
1) ∈ Z. Consequently, although L(u) = L′(u′) = {▽Ψ1 ∨ ▽Ψ2}, we have L(t2) =

{▽Ψ1,▽Ψ2}) {▽Ψ1} = L′(t′1).
For the second case, suppose that t ∈ Tm and t′ ∈ T ′

m satisfy (t, t′) ∈ Z and (†). Let

L(t) = ▽Ψ1, . . . ,▽Ψa,▽Ψa+1, . . . ,▽Ψb, l1, . . . , lc, lc+1, . . . , ld, (10)

L′(t′) = ▽Ψ1, . . . ,▽Ψa, l1, . . . , lc, (11)

with 0 ≤ a, b, c, d. If a = 0, then we halt the expansion of Z from (t, t′). This halting procedure does
not conflict with the forth and back conditions on modal nodes t and t′ since C′(t′) = ∅. Similarly, if
{l1, . . . , ld} is inconsistent, then we halt the expansion of Z from (t, t′). This halting procedure does not
conflict with the forth and back conditions on modal nodes t and t′ since C(t) = ∅. Suppose a > 0 and
{l1, . . . , ld} is consistent. Then, for the back condition on modal nodes, for any u′ ∈ C′(t′), we must find
u ∈ C(t) such that (u, u′) ∈ Z. For u′ ∈ C′(t′) which is labeled by {ψk}∪{

∨
Ψn | n ∈ N ′

ψk
}, we add pairs

(u, u′) into Z where u ∈ C(t) is labeled by {ψk} ∪ {
∨
Ψn | n ∈ Nψk

}. This expansion clearly preserves
Condition (†). For the forth condition on modal nodes, for any u which is a next modal node of t we
must find u′ which is a next modal node of t′ such that (u, u′) ∈ Z. From (10), (11) and the fact that Tα
is narrow, for any u near t, there exists u′ near t′ such that TR+[t, u] ⋑ TR+[t′, u′]. We add such pairs
(u, u′) into Z. Again, this expansion preserves (†).

Finally, we must prove that the relation Z constructed above satisfies the parity condition. Let π and
π′ be infinite branches of WT α and Tα, respectively, such that π and π′ are associated with each other.
Then, by the construction of Z, we can assume that

TR+(π) ⋑ TR+(π′) (12)

If π′ is not even, then there exists an odd trace tr on π′. From (12), we can assume that TR+(π) includes
tr+ and, thus, there exists an odd trace on π (this is because, remember that tr is even if and only if tr+

is even). This means π is also not even and, therefore, the parity condition is indeed satisfied.

Part 4 First, recall Remark 2.11. Since ϕ(x) is well-named, we can assume that ϕ(µ~x.ϕ(~x)) is an
abbreviation of

ϕ(µ~x1.ϕ(~x1), . . . , µ~xk.ϕ(~xk))

where ϕ(x) = ϕ(x1, . . . , xk)[x1/x, . . . , xk/x], x /∈ Free(ϕ(x1, . . . , xk)) and ~µxi.ϕ(~xi) = µx
(1)
i µx

(k)
i .ϕ(x

(1)
i , . . . , x

(k)
i)

with 1 ≤ i ≤ k are appropriate renaming formulas of µ~x.ϕ(~x) so that Equations (1) through (5) are satis-
fied. Then, we can divide Sub(ϕ(µ~x.ϕ(~x)) into the following three sets of formulas, each of them pairwise
disjoint;

Sub1 :=
{
α(µ~x1.ϕ(~x1), . . . , µ~xk.ϕ(~xk)) | α(~x) ∈ Sub(µ~x.ϕ(~x))

}
\ Sub3

Sub2 :=
⋃

1≤i≤k

Sub(µ~xi.ϕ(~xi)) \
({

~µx1.ϕ(~x1), . . . , ~µxk.ϕ(~xk))
}
∪ Sub3

)

Sub3 := {ψ ∈ Sub(ϕ(µ~x.ϕ(~x))) | ψ does not contain any bound variable.}

25

Next, we define the function f : Sub(ϕ(µ~x.ϕ(~x))) → Sub(µ~x.ϕ(~x)) by

f(ψ) :=

α(~x) if ψ = α(~µx1.ϕ(~x1), . . . , ~µxk.ϕ(~xk)) ∈ Sub1,
β(~x) if ψ = β(~xi) ∈ Sub2 with 1 ≤ i ≤ k,
ψ if ψ ∈ Sub3.

Let Tϕ(µ~x.ϕ(~x)) = (T,C, r, L) be a tableau for ϕ(µ~x.ϕ(~x)). Consider the structure

WT µ~x.ϕ(~x) = (T ⊎ {r1, . . . , rk}, C ⊎ {(rn, rn+1), (rk, r) | 1 ≤ n < k}, r1, L
′)

where L′(rn) := {µxn. . . . µxk.ϕ(~x)} with 1 ≤ n ≤ k and L′(t) := f(L(t)) for any t ∈ T . Then, we
can assume WT µ~x.ϕ(~x) is a wide tableau for µ~x.ϕ(~x). Note that, in general, wide rules are necessary in
WT µ~x.ϕ(~x); for example, consider a part of Tϕ(µ~x.ϕ(~x)) and the corresponding part of WT µ~x.ϕ(~x) depicted
in Figure 6. In this example, we assume that considering the label of a node includes

Figure 6: An initial example of a corresponding wide tableau.

ψ1 := σy.α(y, µ~x1.ϕ(~x1), . . . , µ~xk.ϕ(~xk)) ∈ Sub1

ψ2 := σy.α(y, ~x1) ∈ Sub2

where f(ψ1) = f(ψ2) = σy.α(y, ~x). If we reduce ψ1, then the corresponding label of the node on
WT µ~x.ϕ(~x) includes α(y, ~x) and σy.α(y, ~x). Therefore, this case requires the (σw)-rule.

Take an infinite trace tr of Tϕ(µ~x.ϕ(~x)) arbitrarily. Then, from the definition of f , we have;

(‡): tr is even if and only if ~f(tr) is even.

Set Z := {(r, r1), (t, t) | t ∈ (Tm∪Tc)\{r}}, where Tm ⊆ T is the set of modal nodes and Tc ⊆ T is the set
of choice nodes. This relation Z satisfies the conditions of tableau bisimulation; we only have to confirm
the parity condition since all the other conditions are obviously satisfied. Let π be an infinite branch
of Tϕ(µ~x.ϕ(~x)) and let π′ be an associated infinite branch of WT µ~x.ϕ(~x). Then, from the construction of
WT µ~x.ϕ(~x) and Z, we can assume that π[n] = π′[n + k] for every n ∈ ω \ {0, 1}. If π is not even, then

there exists a trace tr on π which is not even. Consider the sequence 〈µ~x.ϕ(~x), . . . , µxk.ϕ(~x)〉~f(tr). From
(‡), we can assume that this sequence is a trace on π′, which is also not even. Therefore π′ is not even.
Conversely, suppose that π′ is not even. Then, there exists a trace tr′ on π′ which is not even. Take a
trace tr on π such that 〈µ~x.ϕ(~x), . . . , µxk.ϕ(~x)〉~f(tr) = tr′. Then, tr is also not even and, therefore, π is
not even. The above implies the parity condition of Z.

Part 5 First, as in the proof of Part 4, we divide Sub(ϕ(anf(α))) into three sets of formulas, each of
them pairwise disjoint;

Sub1 := {β(anf(α)1, . . . , anf(α)k) | β(x1, . . . , xk) ∈ Sub(ϕ(~x))} \ Sub3

Sub2 :=
⋃

1≤i≤k

Sub(anf(α)i) \
({

anf(α)1, . . . , anf(α)k
}
∪ Sub3

)

Sub3 := {ψ ∈ Sub(ϕ(anf(α))) | ψ does not contain any bound variable.}

where ϕ(x) = ϕ(x1, . . . , xk)[x1/x, . . . , xk/x], x /∈ Free(ϕ(x1, . . . , xk)) and anf(α)i with 1 ≤ i ≤ k are
appropriate renaming formulas of anf(α). Recall Remark 5.18; there we had given the partial function

26

f : Sub(anf(α)) → P(Sub(α)). We define the function f+ : Sub(ϕ(anf(α))) → P(Sub(ϕ(α))) by expanding
f as follows;

f+(ψ) :=

{β(α1, . . . , αk)} if ψ = β(anf(α)1, . . . , anf(α)k) ∈ Sub1,
f(γ̂) if ψ = γ̂i ∈ Sub2 with 1 ≤ i ≤ k,
{ψ} if ψ ∈ Sub3.

where αi with 1 ≤ i ≤ k are appropriate renaming formulas of α and γ̂i with 1 ≤ i ≤ k are appropriate
renaming formula of γ̂ ∈ Sub(anf(α)). Let Tϕ(anf(α)) = (T,C, r, L) be a tableau for ϕ(anf(α)). Then, we
can assume the corresponding structure WT ϕ(α) := (T,C, r, f+ ◦L) is a wide tableau for ϕ(α). Note that
the wide rules (∧w), (∨w), (σw), (Regw) and (▽w) are needed when we reduce χ1 where the node under
consideration includes χ1 and χ2 such that f+(χ1) ∩ f+(χ2) 6= ∅. We observe this fact by confirming a
constructed example depicted in Figure 7. In this example, the node of Tϕ(anf(α)) under consideration is

Figure 7: A second example of a corresponding wide tableau.

a (∨)-node which is labeled by {α̂1 ∨ α̂2, β̂1 ∨ β̂2} ∪ Γ where α̂1 ∨ α̂2, β̂1 ∨ β̂2 ∈ Sub2 such that

f+(α̂1 ∨ α̂2) = A ∪ {ψ1 ∨ ψ2}

f+(β̂1 ∨ β̂2) = B ∪ {ψ1 ∨ ψ2}

f+(α̂1) = A ∪ {ψ1}

f+(α̂2) = A ∪ {ψ2}

Thus, the corresponding labels f+ ◦ L of such nodes form the (∨w)-rule. Moreover, note that the wide
rules (ǫ1) and (ǫ2) are needed when we reduce χ1 to χ2 such that f+(χ1) = f+(χ2).

Consider the relation Z := {(t, t) | t ∈ Tm∪Tc} where Tm is the set of modal nodes, and Tc is the set of
choice nodes of Tϕ(anf(α)). To complete the proof, we have to show that Z is a bisimulation relation from
Tϕ(anf(α)) to WT ϕ(α). It is obvious that Z satisfies the root condition, prop condition, forth conditions
and back conditions. Therefore we only have to confirm the parity condition of Z. Let π be an infinite
branch of Tϕ(anf(α)). We divide the set of traces TR(π) of Tϕ(anf(α)) into two sets; TR1(π) consists of all
traces tr such that tr[n] ∈ Sub1 for every n ∈ ω, and TR2(π) consists of all traces tr such that tr[n] ∈ Sub2

for some n ∈ ω. Then ~f+(TR1(π)) ∪ ~f+(TR2(π)) is the set of all traces of WT ϕ(α) on π. Since

Ωϕ(α)(β(α)) = Ωϕ(anf(α))(β(anf(α)1, . . . , anf(α)k)) (mod 2)

for any β(anf(α)1, . . . , anf(α)k) ∈ Sub1, we have

(♠) : TR1(π) includes an odd trace if and only if ~f+(TR1(π)) includes an odd trace.

On the other hand, for any tr ∈ TR2(π), from the construction of f+, we have;

(♥) : tr is odd if and only if ~f+(tr) includes an odd trace.

From (♠) and (♥), we have that TR(π) is even if and only if ~f+(TR(π)) is even, and so the parity
condition is indeed satisfied. Therefore, Part 5 of the Lemma is true.

Corollary 5.27. Let α̂(x) be an automaton normal form in which x ∈ Free(α̂(x)) appears only positively.
Set ϕ̂ := anf(µ~x.α̂(~x)). Then we have Tα̂(ϕ̂) ⇀ Tϕ̂.

27

Figure 8: The plan for the proof of the corollary.

Proof. This corollary is proved using four wide tableaux; Figure 8 depicts the plan of the proof. First, we
have Tα̂(ϕ̂) ⇋ WT α̂(µ~x.α̂(~x)) from Part 5 of Lemma 5.26. Second, take a narrow tableau Tα̂(µ~x.α̂(~x)), then,
we haveWT α̂(µ~x.α̂(~x)) ⇀ Tα̂(µ~x.α̂(~x)) from Part 3 of Lemma 5.26. Third, we have Tα̂(µ~x.α̂(~x)) ⇋ WT µ~x.α̂(~x)

from Part 4 of Lemma 5.26. Fourth, take a narrow tableau Tµ~x.α̂(~x), then, we have WT µ~x.α̂(~x) ⇀ Tµ~x.α̂(~x),
again from Part 3 of Lemma 5.26. Fifth, the equivalence Tµ~x.α̂(~x) ⇋ Tϕ̂ is trivial by the definition of ϕ̂.
Finally, by applying Part 1 and 2 of Lemma 5.26 repeatedly, we obtain Tα̂(ϕ̂) ⇀ Tϕ̂.

6 Completeness

In this section, we prove the completeness of Koz. In Subsection 6.1, we give the concept of refutation and
show that every unsatisfiable formula has a refutation. We also introduce the concept of thin refutation
and exhibit Claim (f). In Subsection 6.2, we prove the completeness of Koz by proving Claim (h) and
(d), in that order.

6.1 Refutation

Definition 6.1 (Refutation). A well-named formula ϕ is given. Refutation rules for ϕ are defined as
the rules of tableau, but this time, we modify the set of rules by adding an explicit weakening rule:

Γ
α,Γ

(Weak)

and, instead of the (▽)-rule, we take the following (▽r)-rule:

{ψk} ∪ {
∨
Ψn | n ∈ Nψk

}

▽Ψ1, . . . ,▽Ψi, l1, . . . , lj
(▽r)

where in the (∨w)-rule, we have 1 ≤ k ≤ i, ψk ∈ Ψk, Nψk
= {n ∈ ω | 1 ≤ n ≤ i, n 6= k} and

l1, . . . , lj ∈ Lit(ϕ). Therefore the (▽r)-rule has one premise.
A refutation for ϕ is a structure Rϕ = (T,C, r, L) where (T,C, r) is a tree structure and L : T →

P(Sub(ϕ)) is a label function satisfying the following clauses:

1. L(r) = {ϕ}.

2. Every leaf is labeled by some inconsistent set of formulas.

3. Let t ∈ T . If L(t) is modal and inconsistent, then t has no child. Otherwise, if t is labeled by the
set of formulas which fulfils the form of the conclusion of some refutation rules, then t has children
which are labeled by the sets of formulas of premises of those refutation rules.

4. The rule (▽r) can be applied to t only if L(t) is modal.

5. For any infinite branch π, π is odd (not even) in the sense of Definition 5.6.

Lemma 6.2. Let ϕ be a well-named formula. If ϕ is not satisfiable, then there exists a refutation for ϕ.

Proof. From Lemmas 5.9 and 5.10, we find that ϕ is not satisfiable if and only if Player 3 has the
memoryless winning strategy f3 for the tableau game T G(ϕ). If Player 3 has the memoryless the winning
strategy f3, then winning tree Tϕ|f3 derived by f3 is a refutation for ϕ.

Definition 6.3 (Aconjunctive formula). Let ϕ be a well-named formula, and �ϕ be its dependency
order (recall Definition 2.4). Then,

28

• For any ψ ∈ Sub(ϕ) and x ∈ Bound(ϕ), we say x is active in ψ if there exists y ∈ Sub(ψ)∩Bound(ϕ)
such that x �ϕ y.

• A variable x ∈ Bound(ϕ) is called aconjunctive if, for any α∧β ∈ Sub(ϕx(x)), x is active in at most
one of α or β.

• ϕ is called aconjunctive if every x ∈ Bound(ϕ) such that σx = µ is aconjunctive.

Definition 6.4 (Thin refutation). Let Rϕ be a refutation for some well-named formula ϕ. We say
that Rϕ is thin if, whenever a formula of the form α ∧ β is reduced, some node of the refutation and
some variable is active in α as well as β, then at least one of α and β is immediately discarded by using
the (Weak)-rule.

From Definition 6.4 and Lemma 6.2, it is obvious that every unsatisfiable aconjunctive formula has a
thin refutation (without the (Weak)-rule). The following Theorem 6.5 was first proved in Kozen [8] for
the refutation of an aconjunctive formula, and then extended in the following way in Walukiewicz [15].
We will omit its proof.

Theorem 6.5. Let ϕ be a well-named formula. If there exists a thin refutation for ϕ, then ∼ϕ is probable
in Koz.

Corollary 6.6. Let ϕ̂ be an automaton normal form. Then, we have

1. ϕ̂ is aconjunctive.

2. If ϕ̂ is not satisfiable, then ⊢∼ ϕ̂.

Proof. The first assertion of the Corollary is obvious from the observation of Remark 5.13. For the second
assertion, suppose that ϕ̂ is not satisfiable. Then, from Lemma 6.2, there exists a refutation for ϕ̂. Since
ϕ̂ is aconjunctive, this refutation is thin and, thus, we have ⊢∼ ϕ̂ from Theorem 6.5.

In the next Lemma, we confirm that some compositions preserve aconjunctiveness.

Lemma 6.7 (Composition). Let ϕ, ψ and α(x) be aconjunctive formulas where x ∈ Prop appears only
positively in α(x). Then ϕ ∧ ψ, α(ϕ) and ν~x.α(~x) are also aconjunctive.

Proof. We only prove the claim concerning α(ϕ) and the other two claims are left as exercises for the
reader. As mentioned in Remark 2.11, α(ϕ) is an abbreviation of α(ϕ1, . . . , ϕk) where ϕi with 1 ≤ i ≤ k
are appropriate renaming formulas of ϕ. For our purpose, the following assertions are fundamental;

Bound(α(x)) ∩ Bound(ϕi) = ∅ (1 ≤ ∀i ≤ k) (13)

Bound(α(x)) ∩ Free(ϕi) = ∅ (1 ≤ ∀i ≤ k) (14)

Bound(ϕi) ∩ Bound(ϕj) = ∅ (1 ≤ i, j ≤ k, i 6= j) (15)

Let y ∈ Bound(α(ϕ)) be a variable such that σy = µ. From (13) and (15), we have y ∈ Bound(α(x))
or y ∈ Bound(ϕi) for some i ∈ ω such that 1 ≤ i ≤ k. If y ∈ Bound(α(x)), then from (14), for every
z ∈ Bound(α(ϕ)) such that y �α(ϕ) z, we have z ∈ Bound(α(x)). Hence, y is aconjunctive in α(ϕ) if and
only if y is aconjunctive in α(x). By a similar argument, we can show that if y ∈ Bound(ϕi), then y is
aconjunctive in α(ϕ) if and only if y is aconjunctive in ϕi. From the above argument and the assumptions
of the Lemma, we can assume that every bound variable y is aconjunctive in α(ϕ) and thus α(ϕ) is indeed
aconjunctive.

6.2 Proof of completeness

Lemma 6.8. Let α be an aconjunctive formula, and ϕ̂ be an automaton normal form. A tableau Tα =
(Tα, Cα, rα, Lα) for α and a tableau Tϕ̂ = (Tϕ̂, Cϕ̂, rϕ̂, Lϕ̂) for ϕ̂ are given. If Tϕ̂ is a tableau consequence
of Tα, then we can construct a thin refutation R for α∧ ∼ ϕ̂ (≡ ∼(α → ϕ̂)).

Proof. Let Tα and Tϕ̂ be the tableaux satisfying the condition of the Lemma. Then, there exists a tableau
consequence relation Z from Tα to Tϕ̂. Now, we will construct a thin refutationR = (T,C, r, L) for α∧∼ ϕ̂
inductively. To facilitate the construction, we define two correspondence functions Corα : T → Tα and

29

Corϕ̂ : T → Tϕ̂. These functions are partial and, in every considered node t of R, the following conditions
are satisfied:

L(t) = Lα(Corα(t)) ∪
{
∼

∨
(Lϕ̂(Corϕ̂(t)) \ Top)

}
(16)

(Corα(t),Corϕ̂(t)) ∈ Z (17)

Of course, the root of R is labeled by {α∧ ∼ ϕ̂} and its child, say t0, is labeled by {α,∼ ϕ̂}. For the base
step, set Corα(t0) := rα and Corϕ̂(t0) := rϕ̂. Then, the Condition (16) and (17) are indeed satisfied. The
remaining construction is divided into two cases; the second of which will be further divided into four
cases.

Inductive step I Suppose we have already constructed R up to a node t where Corα(t) and Corϕ̂(t) are
choice nodes of appropriate tableaux and satisfy Conditions (16) and (17). In this case, we prolong
R up to u so that:

1. Corα(u) is a modal node of Tα near Corα(t).

2. Corϕ̂(u) is a modal node of Tϕ̂ near Corϕ̂(t).

3. Conditions (16) and (17) are satisfied in u.

4. TR[t, u] ≡ TR[Corα(t),Corα(u)]∪{〈∼
∨
(Lϕ̂(t1) \ Top), · · · ,∼

∨
(Lϕ̂(tk) \ Top)〉} where t1 · · · tk ∈

T+
ϕ̂ is the Cϕ̂-sequence starting at Corϕ̂(t) and ending at Corϕ̂(u).

The idea of the prolonging procedure is represented in Figure 9. From t, we first apply the tableau

Figure 9: The prolonging procedure for Inductive step I.

rules to the formulas of Sub(Lα(Corα(t))) in the same order as they were applied from Corα(t)
and its nearest modal nodes. Then, we obtain a finite tree rooted in t which is isomorphic to
the section of Tα between Corα(t) and its nearest modal nodes. Therefore, for each leaf t′ of
this section of R, we can take unique modal node t′α of Tα that is isomorphic to t′. Note that
L(t′) = Lα(t

′
α) ∪ {∼

∨
(Lϕ̂(Corϕ̂(t)) \ Top)}. Now, the forth condition on the choice node of Z is

used. From (17), we can find t′ϕ̂ ∈ Tϕ̂ which is near Corϕ̂(t) and satisfies (t′α, t
′
ϕ̂) ∈ Z. Let us look

at the path from Corϕ̂(t) to t
′
ϕ̂ in Tϕ̂. Since ϕ̂ is an automaton normal form on this path only the

(∨)-, (σ)- and (Reg)-rules, and (∧)-rules reducing ψ̂ ∧⊤i to {ψ̂,⊤i} may be applied first. Then, we
have zero or more applications of the (∧)-rule. Let us apply dual rules to ∼

∨
Lϕ̂(Corϕ̂(t)) (note

that (Reg) and (σ) are self-dual).

For an application of the (∨)-rule in Tϕ̂, we apply the (∧)-rule followed by the (Weak)-rule to leave
only the conjunct which appears on the path to t′ϕ̂. In this way, we ensure the resulting path of R
will be thin.

For an application of the (∧)-rule reducing ψ̂∧⊤i to {ψ̂,⊤i} in Tϕ̂, we apply the (∨)-rule inR. Then,

we have two children, say v1 and v2 such that L(v1) includes ∼ ψ̂ and L(v2) includes ∼⊤i = ⊥.
Since L(v2) is inconsistent, if we further prolong R from v2 to its nearest modal nodes, such modal
nodes also labeled inconsistent set. This means that the modal nodes can be leaves of a refutation.
We therefore stop the prolonging procedure on such modal nodes.

30

After these reductions, we get a node u which is labeled by Lα(t
′
α)∪ {∼

∨
(Lϕ̂(t

′
ϕ̂) \Top)}. Setting

Corα(u) := t′α and Corϕ̂(u) := t′ϕ̂ establishes Conditions (16) and (17). Conditions 1 through 4
follow directly from the construction.

Inductive step II Suppose we have already constructed R up to a node t where Corα(t) and Corϕ̂(t)
are modal nodes of appropriate tableaux and satisfy Conditions (16) and (17). Note that, since ϕ̂ is
an automaton normal form, we can put Lϕ̂(Corϕ̂(t))\Top = {▽Ψ, l1, . . . , li} or Lϕ̂(Corϕ̂(t))\Top =
{l1, . . . , li} where l1, . . . , li ∈ Lit(ϕ̂). Moreover, observe that

∼

▽Ψ ∧

∧

1≤k≤i

lk

 ≡∼▽Ψ ∨

 ∨

1≤k≤i

∼ lk

≡∼
((∧

✸Ψ
)
∧�

(∨
Ψ
))

∨

∨

1≤k≤i

∼ lk

≡

∨

ψ∈Ψ

� ∼ψ

 ∨✸

(∧
∼Ψ

)
∨

∨

1≤k≤i

∼ lk

≡

∨

ψ∈Ψ

(▽{∼ψ} ∨▽∅)

 ∨ ▽

{(∧
∼Ψ

)
,⊤

}
∨

∨

1≤k≤i

∼ lk

 .

Therefore, if we prolong R from t up to its nearest modal nodes u by applying the (∨)-rule repeat-
edly, the label of u can be categorized as one of following four cases:

(Case 1): L(u) = Lα(Corα(t)) ∪ {∼ lk} for some k such that 1 ≤ k ≤ i.

(Case 2): L(u) = Lα(Corα(t)) ∪ {▽∅}.

(Case 3): L(u) = Lα(Corα(t)) ∪ {▽{∼ψ}} for some ψ ∈ Ψ.

(Case 4): L(u) = Lα(Corα(t)) ∪ {▽ {(
∧
∼Ψ) ,⊤}}.

In every cases, it is possible that Lα(Corα(t)) is inconsistent and, thus, L(u) is also inconsistent. If
this is so, all u can be a leaf of a refutation. Therefore, we stop the prolonging procedure on u in
this case. Now, we consider the case where Lα(Corα(t)) is consistent.

In Case 1, the prop condition is used; by Condition (17), we have lk ∈ Lα(Corα(t)). Thus, L(u)
includes lk and ∼ lk. This means that L(u) is inconsistent and so u can be a leaf of a refutation.
We therefore stop the prolonging procedure on u in this case.

In Case 2, the back condition on modal nodes is used. Since Cϕ̂(Corϕ̂(t)) 6= ∅, it must hold that
Cα(Corα(t)) 6= ∅. Take vα ∈ Cα(Corα(t)) arbitrarily. We prolong R from u to v ∈ C(u) in such a
way that L(v) = Lα(vα) ∪ {

∨
∅(≡ ⊥)}. Since L(v) is inconsistent, if we further prolong R from

v to its nearest modal nodes, such modal nodes are also inconsistent. This means that the modal
nodes can be a leaves of a refutation. We therefore stop the prolonging procedure on such modal
nodes in this case.

In Case 3, the back condition on modal nodes is used. Let vϕ̂ be a child of Corϕ̂(t) such that
Lϕ̂(vϕ̂) = {ψ}. Then, by Condition (17), we can find vα ∈ Cα(Corα(t)) such that (vα, vϕ̂) ∈ Z. We
create a new child v of u which is labeled by Lα(Corα(vα))∪{∼ψ}. Moreover, we set Corα(v) := vα
and Corϕ̂(v) := vϕ̂. This prolonging procedure preserves Conditions (16) and (17). Note that, in
this case, Corα(v) and Corϕ̂(v) are choice nodes of appropriate tableaux.

In Case 4, the forth condition on modal nodes is used. The idea of the prolonging procedure is
represented in Figure 10. Let Lα(Corα(t)) = {▽∆1, . . . ,▽∆i, l1, . . . , lj}. In this case, we first create
a new child v of u such that

L(v) =
{∨

∆1, . . . ,
∨

∆i

}
∪
{∧

∼Ψ
}
.

From the choice node v, we further prolong R up to its nearest modal nodes t′ so that

5. Corα(t
′) is a next modal node of Corα(t).

31

Figure 10: The prolonging procedure for Case 4.

6. Corϕ̂(t
′) is a next modal node of Corϕ̂(t).

7. Condition (16) and (17) are satisfied in t′.

8. TR[u, t′] ≡ TR+[Corα(t),Corα(t
′)]∪{〈▽ {(

∧
∼Ψ) ,⊤} ,

∧
∼Ψ, . . . ,∼ψ =∼

∨
(Lϕ̂(t1)\Top), · · · ,∼∨

(Lϕ̂(tk) \ Top)〉} where t1 · · · tk ∈ T+
ϕ̂ is the Cϕ̂-sequence starting at the child of Corϕ̂(t) la-

beled by {ψ} and ending at Corϕ̂(t
′).

Next, we apply (∨)-rules to
∨
∆1 repeatedly until we arrive at the node w such that

L(w) = {δ1} ∪
{∨

∆2, . . . ,
∨

∆i

}
∪
{∧

∼Ψ
}

where δ1 ∈ ∆1. Note that there exists wα ∈ Cα(Corα(t)) such that

Lα(wα) = {δ1} ∪
{∨

∆2, . . . ,
∨

∆i

}

From w, we apply the tableau rules to formulas of Sub(Lα(wα)) in the same order as they were
applied from wα and its nearest modal nodes. Then, we obtain a finite tree rooted in w which is
isomorphic to the section of Tα between wα and nearest modal nodes. Therefore, for each leaf u′

of this section of R, we can take a unique modal node u′α of Tα which is isomorphic to u′. Note
that L(u′) = Lα(u

′
α) ∪ {

∧
∼Ψ}. Since u′α is a next modal node of Corα(t), from Condition (17)

and the forth condition on modal nodes, we can assume that there exists u′ϕ̂ which is a next modal
node of Corϕ̂(t) and satisfies (u′α, u

′
ϕ̂) ∈ Z. We will now look at the path from Corϕ̂(t) to t′ϕ̂ in

Tϕ̂ and exploit (∧)-rules and (Weak)-rules so that the trace tr on this path satisfies Condition 8.
Finally, we get a node t′ which is labeled by Lα(u

′
α) ∪ {∼

∨
Lϕ̂(u

′
ϕ̂)}. Setting Corα(t

′) := u′α and
Corϕ̂(t

′) := u′ϕ̂ establishes Conditions (16) and (17). Then, Conditions 5 through 8 follow directly
from the construction.

The above two procedures completely describe R. All the leaves are labeled by an inconsistent set.
Moreover, take an infinite branch π of R arbitrarily. Let πα be the branch of Tα such that {n ∈ ω |
Corα(π) = πα[n]} is an infinite set. Let πϕ̂ be the branch of Tϕ̂ such that {n ∈ ω | Corϕ̂(π) = πϕ̂[n]} is
an infinite set. For any trace tr ∈ TR(π), we have tr[1] = α∧∼ ϕ̂ and, tr[2] = α or tr[2] =∼ ϕ̂. TR1(π)
denotes the set of all the trace tr ∈ TR(π) such that tr[2] = α. tr2 ∈ TR(π) denotes the trace such that
tr2[2] =∼ ϕ̂. Then, from the construction of R, we have;

(T1) TR(π) = TR1(π) ∪ {tr2}.

32

(T2) TR+
1 (π) ≡ TR+(πα).

(T3) tr2 is even if and only if πϕ̂ is odd.

(T4) πα and πϕ̂ are associated with each other.

Above conditions imply that π is odd. Indeed, if πα is odd, then, from (T2), π is also odd. If πα is even,
then, from (T4), πϕ̂ is also even. Therefore, from (T3), tr2 is odd. From (T1), we can assume that π
is odd. R is also thin because α is aconjunctive and whenever we reduce a ∧-formula originated from
∼ ϕ̂, we leave only one conjunction and discard the other by applying (Weak)-rule. Therefore, R is a thin
refutation as required.

Lemma 6.9 (Main lemma). For any well-named formula ϕ, there exists a semantically equivalent
automaton normal form ϕ̂ such that ϕ → ϕ̂ is provable in Koz. Moreover, for any x ∈ Free(ϕ) which
occurs only positively in ϕ, it hold that x ∈ Free(ϕ̂) and x occurs only positively in ϕ̂.

Proof. We prove the lemma by the induction on the structure of ϕ.

Case: ϕ ∈ Lit. In this case, ϕ̂ is just ϕ.

Case: ϕ = α ∨ β. By the induction assumption, there exist automaton normal forms α̂ and β̂ which are
equivalent to α and β, respectively, such that ⊢ α → α̂ and ⊢ β → β̂. Set ϕ̂ := α̂ ∨ β̂. Then, we
have ⊢ α ∨ β → ϕ̂.

Case: ϕ = ▽Ψ. This case is very similar to the previous one.

Case: ϕ = α ∧ β. By the induction assumption, there exist automaton normal forms α̂ and β̂ which are
equivalent to α and β respectively, such that ⊢ α → α̂ and ⊢ β → β̂; thus, we have ⊢ α∧β → α̂∧ β̂.
Set ϕ̂ := anf(α̂ ∧ β̂). Then, from Theorem 5.17, we have T

α̂∧β̂ ⇋ Tϕ̂ and, thus, T
α̂∧β̂ ⇀ Tϕ̂. On

the other hand, by Lemma 6.7, we can assume that α̂ ∧ β̂ is aconjunctive. From Lemma 6.8 and
Theorem 6.5, we have ⊢ α̂ ∧ β̂ → ϕ̂. Therefore, we have ⊢ α ∧ β → ϕ̂.

Case: ϕ = νx1. . . . νxk.α(x1, . . . , xk). By the induction assumption, we have an equivalent automaton
normal form α̂(x) of α(x) such that ⊢ α(x) → α̂(x). Therefore, ⊢ ν~x.α(~x) → ν~x.α̂(~x). Set
ϕ̂ := anf(ν~x.α̂(~x)). Then, from Theorem 5.17, we have Tν~x.α̂(~x) ⇋ Tϕ̂ and, thus, Tν~x.α̂(~x) ⇀ Tϕ̂. On
the other hand, by Lemma 6.7, we can assume that ν~x.α̂(~x) is aconjunctive. From Lemma 6.8 and
Theorem 6.5, we have ⊢ ν~x.α̂(~x) → ϕ̂. Therefore, ⊢ ν~x.α(~x) → ϕ̂.

Case: ϕ = µx1. . . . µxk.α(x1, . . . , xk). By the induction assumption, we have an equivalent automaton
normal form α̂(x) of α(x) such that ⊢ α(x) → α̂(x). Therefore, ⊢ µ~x.α(~x) → µ~x.α̂(~x). Set
ϕ̂ := anf(µ~x.α̂(~x)). Then, from Corollary 5.27, we have Tα̂(ϕ̂) ⇀ Tϕ̂. On the other hand, by Lemma
6.7, we can assume that α̂(ϕ̂) is aconjunctive. From Lemma 6.8 and Theorem 6.5, ⊢ α̂(ϕ̂) → ϕ̂. By
applying the (Ind)-rule, we obtain ⊢ µ~x.α̂(~x) → ϕ̂. Thus, ⊢ µ~x.α(~x) → ϕ̂.

Hence, we have proved the Lemma for all cases.

Theorem 6.10 (Completeness). For any formula ϕ, if ϕ is not satisfiable, then ∼ ϕ is provable in
Koz.

Proof. Let ϕ be an unsatisfiable formula. By Part 5 of Lemma 2.9, we can construct a well-named formula
wnf(ϕ) such that

⊢ ϕ↔ wnf(ϕ) (18)

On the other hand, from Lemma 6.9, there exists an automaton normal form (wnf(ϕ))^ which is seman-
tically equivalent to wnf(ϕ) and thus to ϕ such that

⊢ wnf(ϕ) → (wnf(ϕ))^ (19)

Since (wnf(ϕ))^ is not satisfiable, by Corollary 6.6 we have

⊢ (wnf(ϕ))^ → ⊥ (20)

Finally by combining Equations (18) through (20) we obtain ⊢ ϕ→ ⊥ as required.

33

References

[1] Luca Alberucci. Sequent calculi for the modal µ-calculus over S5. J. Log. Comput., 19(6):971–985,
2009.

[2] Nick Bezhanishvili and Ian Hodkinson. Sahlqvist theorem for modal fixed point logic. Theoretical
Computer Science, 424(0):1 – 19, 2012.

[3] Julian Bradfield and Colin Stirling. Modal mu-calculi. In HANDBOOK OF MODAL LOGIC, pages
721–756. Elsevier, 2007.

[4] J.W. de Bakker and D.S. Scott. A theory of programs. Unpublished Manuscript, IBM, Vienna, 1969.

[5] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy (extended
abstract). In FOCS, pages 368–377. IEEE Computer Society, 1991.

[6] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite Games:
A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of
Lecture Notes in Computer Science. Springer, 2002.

[7] David Janin and Igor Walukiewicz. Automata for the modal mu-calculus and related results. In
Jir Wiedermann and Petr Hjek, editors, MFCS, volume 969 of Lecture Notes in Computer Science,
pages 552–562. Springer, 1995.

[8] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–354, 1983.

[9] G. Lenzi. The modal µ-calculus: a survey. TASK Quarterly, 9(3):293–316, 2005.

[10] A.W. Mostowski. Games with forbidden positions. Technical Report 78, University of Gdansk, 1991.

[11] Damian Niwinski and Igor Walukiewicz. Games for the µ-calculus. Theoretical Computer Science,
163(12):99 – 116, 1996.

[12] Robert S. Streett and E. Allen Emerson. An automata theoretic decision procedure for the propo-
sitional mu-calculus. Inf. Comput., 81(3):249–264, June 1989.

[13] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955.

[14] Balder ten Cate and Gaëlle Fontaine. An easy completeness proof for the modal mu-calculus on
finite trees. In FOSSACS, pages 161–175, 2010.

[15] Igor Walukiewicz. Completeness of kozen’s axiomatisation of the propositional µ-calculus.
Information and Computation, 157(12):142 – 182, 2000.

34

	1 Introduction
	1.1 Outline of the article
	1.2 Notation

	2 The modal -calculus
	2.1 Syntax
	2.2 Semantics
	2.3 Axiomatization

	3 Automata
	4 Games
	4.1 Parity games
	4.2 Evaluation games

	5 Tableaux
	5.1 Tableau games
	5.2 Automaton normal form
	5.3 Wide tableau

	6 Completeness
	6.1 Refutation
	6.2 Proof of completeness

