
The Common Fragment of CTL and LTL

Monika Maidl
Siemens Corporate Technology

Otto-Hahn-Ring 6, 81739 München, Germany
Monika.Maidl@mchp.siemens.de

Abstract

It is well-known that CTL and LTL have incomparable
expressive power. In this paper, we give an inductive def-
inition of those ACTL formulas that can be expressed in
LTL. In addition, we obtain a procedure to decide whether
an ACTL formula lies in LTL, and show that this prob-
lem is PSPACE complete. By omitting path quantifiers, we
get an inductive definition of the LTL formulas expressible
in ACTL. We can show that the fragment defined by our
logic represents exactly those LTL formulas the negation
of which can be represented by a 1-weak Büchi automaton
and that for this fragment, the representing automaton can
be chosen to be of size linear in the size of the formula.

1. Introduction

The propositional temporal logics CTL and LTL are the
most commonly used specification logics for model check-
ing. For complex and safety-critical systems, model check-
ing appears as an attractive method of verifying the correct-
ness of designs. Several model-checking tools have been
developed: On the one hand, SMV and VIS [18, 1], us-
ing CTL as a specification logic; and on the other hand,
SPIN, COSPAN [14, 9] using LTL; the pros and cons of
each formalism with respect to model checking have been
the subject of a lively debate [6, 23, 11, 22].
While LTL formulas describe a property of a computa-

tion sequence, in CTL every temporal operator has to be
preceded by a path quantifier, and hence such a formula ex-
presses a property of a computation tree. The two logics are
relateable by considering them to be properties of systems:
a system can be considered as a computation tree, but also
a as a set of computation sequences.
The set of states that satisfy a CTL formula (and more

general the formulas of the alternation-free µ-calculus) can
be characterized as fixed point, and this allows efficient
model-checked with symbolic methods, most prominently
by using Binary Decision Diagrams (BDDs) [2]. The linear

character of LTL offers a more natural semantics especially
for open systems and assumption-commitment verification:
A system satisfies an LTL property if all its computation
sequences satisfy it. For checking that the property holds
regardless of how the environment behaves, the behaviour
of the environment can be added to the system, so that more
computation sequences correspond to it, reflecting the pos-
sible environment steps. Assumption-commitment verifi-
cation can be done by just restricting to the set of computa-
tion sequences that satisfy the assumption. So when dealing
with open systems, it is advantageous to use properties that
can be expressed simultaneously in CTL and LTL.
The relationship between linear- and branching-time

temporal logics has been studied by several researchers.
Clarke and Draghicescu in [3] gave a characterization of
the CTL formulas that can be expressed in LTL. Kupfer-
man and Vardi [13] solved the opposite problem of deciding
whether an LTL formula can be specified in the alternation-
free µ-calculus.
This paper is concerned with the formulas that can be

expressed simultaneously in LTL and CTL, where we re-
strict ourselves to ACTL, the fragment of CTL that uses
only universal path quantifiers. We present an inductive
definition of those ACTL formulas that are expressible in
LTL, which we call ACTLdet. Josko [10] also approached
the problem and defined a fragment of ACTL having the
property that all its formulas are equivalent to the universal
quantification of an LTL formula. It is a proper subset of
ACTLdet.
The proof that ACTLdet covers this fragment is built on

a characterization of the fragment by a certain property of
the tableau of an ACTL formula. So deciding whether an
ACTL formula has an equivalent LTL formula can be re-
duced to deciding this property for the tableau of the ACTL
formula. This gives a PSPACE lower bound, and it follows
that the problem is PSPACE complete.
For an ACTLdet formula, an equivalent LTL formula is

obtained by just omitting all path quantifiers. When doing
so in the inductive definition of ACTLdet, one gets an induc-
tive definition of a subset of LTL, which we call LTLdet. It



follows immediately that LTLdet characterizes all LTL for-
mulas that are expressible in ACTL.
It turns out that LTLdet characterizes yet another class of

LTL formulas: Those LTL formulas the negation of which
can be represented by a 1-weak Büchi automaton. 1-weak
Büchi automata have an easier acceptance condition than
general Büchi automata. Model checking of an LTL for-
mula q, as used in SPIN [9, 8] and COSPAN [14], is based
on the construction of a Büchi automaton A¬q representing
¬q. It is checked whether the product of the model with A¬q
has a fair path. The size of A¬q influences the efficiency of
model checking. While for general LTL formulas, A¬q may
have a size exponential in the size of q, we can show that for
LTLdet, A¬q can be chosen to be linear in the size of q. The
easier acceptance condition also makes it possible to check
for existence of fair paths more efficiently.
Using LTL formulas with a negation representable by a

linear 1-weak automaton has another advantage: It makes it
possible to reduce model checking of this logic to model
checking of simple formulas of form AG p and AGAF p,
where p is a state predicate. For these formulas, it is possi-
ble to apply special methods to encrease efficiency, see e. g.
[16], which also contains approaches for verifying these for-
mulas for systems with infinite state space.

2. Definitions

Temporal logics specify properties of a succession of
(system-)states. In propositional temporal logics, proper-
ties of states are expressed by predicates over the system
variables V , where for example for boolean variables v,
v is a predicate, and for enumerative variables, equations
between terms of the same sort are predicates. Pred(V )
denotes the predicates over V . Models for predicates are
valuations for the variables in V ; we call such valuations
states over V , and denote by States(V ) the set of states over
V . Possible successions of states, i.e. models for temporal
logics, are defined by Kripke structures (Q,Q0,R) over V ,
where Q⊆ States(V ), Q0 ⊂ Q is the set of initial states and
R⊆Q×Q is the transition relation.
Sometimes Kripke structures with fairness (Q,Q0,R,F)

have to be used to model a system, where the fairness con-
straint F is used to distinguish relevant paths from those pre-
senting impossible behaviour. We use fairness constraints
F that are sets of state predicates. A path of a Kripke
structure (Q,Q0,R,F) is a sequence / of states such that
(/(i),/(i+1)) ∈ R for all i≥ 0. A fair path is a path satis-
fying every predicate in F at infinitely many positions.
The formulas of linear time logic (LTL) [20] are induc-

tively defined by using temporal operators: Predicates are
in LTL and if s, s1 and s2 are LTL formulas, so are Xs
(“next”), s1Us2 (“until”), s1Ws2 (“unless”)1, s1 ∧s2

1This operator is not necessary in a logic that is closed under negation

and ¬s1.
Models of LTL formulas are sequences of states. A

Kripke structure together with a state s0 satisfies an LTL
formula q if all its paths starting in s0 satisfy q.
The branching time logic CTL [4] is defined by using

the same temporal operators, but every temporal operator is
prefixed by a path quantifier, either an existential quantifier
(E) or a universal one (A), meaning that either at least one
or all paths starting in a state satisfy the quantified formula.
A model for a CTL formula is a Kripke structure together
with a state s0.
ACTL is the fragment of those CTL formulas that con-

tain, when in negation normal form, only A as a quantifier.
In using Kripke structures as models of both LTL and

CTL, the two logics become comparable. We use ⇔ to
denote equivalence between formulas. In particular, for an
LTL formula s and a CTL formula q, q⇔s holds if for all
Kripke structures S and states s of S , S ,s |= q iff S ,s |= s.

3. Linear-time restriction of CTL: ACTLdet

The following characterization of CTL formulas that can
be expressed in the linear time formalism was given by
Clarke and Draghicescu [3], where for a CTL formula q,
we denote the result of removing all path quantifiers from q
by qd .

Lemma 1 ([3]) Let q be a CTL formula. Then there is an
LTL formula s such that q and s are equivalent iff q is
equivalent to qd.

It can be shown [3] that AFAG p is not equivalent to
FG p, which implies that the ACTL formula AFAG p can-
not be expressed in LTL. The difference between AFAG p
and FG p can be described as follows: Satisfaction of
AFAG p forces all paths to have a state s such that all paths
starting from s always satisfy p. In contrast to that, FG p
is satisfied if on all paths a state s is reached such that all
the following states on the path satisfy p, but there might be
other paths starting from s which reach states satisfying ¬p.
Hence in the definition of ACTLdet, we must exclude

formulas that contain a path quantifier forcing all paths
starting at some state to have a certain property, while the
same formula without path quantifiers requires only one
path to have that property. We inductively define ACTLdet
formulas by using the clauses of the inductive definition of
ACTL in restricted form:

Definition 1 (ACTLdet)
– p ∈ Pred(V ),

like LTL, but since later on we consider logics which do not have this
property, we introduce this operator here. For technical reasons concerning
ACTLdet, we do not use the operator V instead of W , which would be the
exact dual of U .



– for ACTLdet formulas q1 and q2 and a predicate p:
q1∧q2, AXq1, (p∧q1)∨ (¬p∧q2),
A(p∧q1)U(¬p∧q2), A(p∧q1)W(¬p∧q2).

Remark. For an ACTLdet formula q, AqW p can be ex-
pressed in ACTLdet, since AqW p ⇔ A(q∧ ¬p)W p. A
special case is AGq. Similarly, AqU p can be expressed
in ACTLdet.

3.1. The tableau construction

In order to prove that ACTLdet is exactly the set of
ACTL formulas equivalent to LTL formulas, we use a
tableau construction for ACTL formulas. It differs from
other tableau constructions, e. g. [15] and [17], in that not
all possible states are generated, but only those which ex-
actly characterize the formula that has to be satisfied at that
point. It is very similar to the construction given by Gerth,
Peled, Vardi andWolper [7], except that we do not split state
predicates.
The tableau construction is based on a splitting of for-

mulas into a propositional part and a “next” part. We define
an operator \ that generates the splitting:

Definition 2
1. Exp1 applies one expansion step to its arguments.

Exp1 : 22
ACTL −→ 22ACTL is defined by

Exp1({Z0, . . . ,Zn})
def=

⋃
0≤i≤n Exp2(Zi).

The definition satisfies the following property:
There is some Z ∈ Exp1({Z0, . . . ,Zn}) such that S ,s |=∧

s∈Zs iff S ,s |=
∨
i(

∧
s∈Zi s).

2. Exp2 : 2ACTL −→ 22ACTL is defined by
Exp2({q0, . . . ,qn})

def= {Z0∪ · · ·∪Zn | (Z0, . . . ,Zn) ∈
.0≤ j≤n Exp3(q j)}
The definition has the following property:
There is some Z ∈ Exp2({q0, . . . ,qn}) such that S ,s |=∧

s∈Zs iff S ,s |=
∧
i qi.

3. Exp3(q) splits a single formula into a predicate part
and a “next” part. For doing so, there might be several
alternatives. So Exp2(q0, . . . ,qn) is the set of sets that
are formed by choosing one alternative for each qi.

– Exp3(p) = {{p}} for state predicates p,
– Exp3(AXq) = {{AXq}},
– Exp3(s1∧s2) = {{s1,s2}},
– Exp3(s1∨s2) = {{s1},{s2}},
– Exp3(As1Ws2) = {{s1,AXAs1Ws2},{s2}},
– Exp3(As1Us2) = {{s1,AXAs1Us2},{s2}}.

Obviously the following holds:
S ,s |= s iff there is some element Z ∈ Exp3(s) such
that S ,s |=

∧
s′∈Zs

′.
4. – \( /0) = {{true}}, and

– \(q0, . . . ,qn) = Expm1 ({{q0, . . . ,qn}}),
where m satisfies Exp1(Expm1 ({{q0, . . . ,qn}})) =
Expm1 ({{q0, . . . ,qn}}). Since the size of non-
terminal formulas (i. e. those not of form p
or AXq) is decreasing in each expansion step,
there is somem≤max{|q0|, . . . , |qn|} having that
property.

An element Y ∪X ∈ \(q0, . . . ,q2), where Y is a set of
state predicates and X is a set of formulas of the form
AXs, is represented as the pair (

∧
Y,X).

The following lemma states that the result of transform-
ing a formula q into state predicates and “next” part by ap-
plying \ is equivalent to q.

Lemma 2 Let q be an ACTL formula.

(a) Let S be a Kripke structure and let s be a state in S .
Then S ,s |= q iff there is some (p,X) ∈\(q) such that
S ,s |= p∧

∧
AXs∈X AX(s).

(b) Let / be a path of states. Then / |= qd iff there is an
element (p,X)∈\(q) such that / |= p∧

∧
AXs∈X Xsd.

Definition 3 (Tableau Tq)
The tableau Tq = (Qq,Qq0, Rq, Fq) for q is defined as fol-
lows:

1. For a set of ACTL formulas X , let X̂ def= {q |AXq∈X}.

2. The set of states Qq consists of elements of the form
(p,X), where p is a satisfiable conjunction of predi-
cates and X is a set of formulas of the form AXq′.
The states Qq of Tq are defined inductively as follows:

– If (p,X) ∈ \(q) and p is satisfiable, then (p,X)
is in Qq;

– if (p,X) ∈ Qq, then all (p′,X ′) ∈\(X̂) such that
p′ is satisfiable are in Qq.

3. The transition relation Rq ⊆ Qq×Qq of Tq is:

Rq((p,X),(p′,X ′)) iff (p′,X ′) ∈\(X̂).

4. The initial states are Qq0
def= {(p,X) | (p,X) ∈\(q)}.

5. Let liveness(q) ∈ 2ACTL be the set of all subformulas
of q of form Aq1Uq2.



Assume that the states of Tq are numbered, and let
n(p,X) be the number of state (p,X). Tq can be con-
sidered as a Kripke structure over {posq} when con-
sidering a state (p,X) to be a valuation of {posq} by
(p,X)(posq)

def= n(p,X). (Remember that we defined
the states of a Kripke structure over a set of variables
V to be valuations for V .)

– prom(As1Us2)
def= {(p,X) ∈ Qq | AXAs1Us2

∈ X},

– ful(As1Us2)
def= {(p,X)∈Qq | ∃(q,Y )∈\(s2)

s.t. Y ⊆ X and p⇒ q}.

The fairness constraint Fq of Tq is Fq
def=

{
∧

(p,X)∈prom(As1Us2)\ful (As1Us2) posq 0= n(p,X) |
Aq1Uq2 ∈ liveness(q)}.

Example The tableau for q = AG(p∨AX(A p1U p2)) is
shown in Figure 1 on the following page. The initial states
are 0 and 1, and the fairness condition is {posq 0= 1∧posq 0=
4∧posq 0= 5}.

We can characterize satisfaction of an ACTL formula
q by the simulation order (see [19, 5]) between a Kripke
structure and the tableau Tq. This use of the simulation or-
der was introduced by Long [15].
Let S = (Q,Q0,R,F) be a Kripke structure and Tq =

(Qq,Q0q,Rq,Fq) the tableau for an ACTL formula q. A re-
lation!⊆Q×Qq is a simulation of S by Tq if the following
holds: For states s and (p,X), s! s′ implies that:
– s |= p, and
– for every fair path / in S starting at s there is a fair path
/′ starting at (p,X) in Tq such that /(n) ! /′(n) for all
n≥ 0.

S ,s! Tq,(p,X) holds if there is a simulation ! of S by Tq
such that s ! (p,X). S ! Tq holds if for all s ∈ Q0 there is
a state (p,X) ∈ Q0q such that S ,s! Tq,(p,X).

Lemma 3 Let S = (Q,Q0,R,F) be a Kripke structure over
V and q be an ACTL formula, then S ,s |= q for all initial
states s iff S ! Tq.

The proof of Long [15] for this statement, which was con-
ducted for a different tableau construction, can be easily
adopted to ours.
Next we define the containment relation between a Krip-

ke structure and a tableau Tq, which plays an analogous
role for an LTL formula qd as the simulation relation for
an ACTL formula q.
Let S = (Q,Q0,R,F) be a Kripke structure and q an

ACTL formula. Let /S be a path in S and /q be a path in
Tq. Then /S ∼ /q if for all i it holds that /S(i) |= (/q(i))0.

S ⊆ Tq (S is contained in Tq) if for all fair paths /S in S
starting in an initial state there is a fair path /q in Tq starting
in an initial state such that /S ∼ /q.

Lemma 4 Let S be a Kripke structure and let q be an
ACTL formula, then S ,s |= qd for all initial states s iff
S ⊆ Tq.

The following characterization follows directly from
Lemma 3 and Lemma 4.

Lemma 5 For an ACTL formula q, q ⇔ qd iff for any
Kripke structure S it is the case that S ⊆ Tq iff S ! Tq.

3.2. Characterization of ACTLdet by deterministic
tableaux

Lemma 5 implies that an ACTL formula q has an equiv-
alent LTL formula if the notions S ⊆ Tq and S ! Tq col-
lapse. We are looking for a property of tableaux that guar-
antees this. It suffices to require that if for a node (p,X) of
Tq, s |= p and s′ is a successor of s, then s′ |= p′ holds for at
most one successor (p′,X ′) of (p,X). This can be guaran-
teed by requiring that in the tableau, the propositional parts
of the successors of a node are mutually exclusive; such a
tableau we call deterministic.
There are cases where a tableau is not deterministic

but can easily be turned into a deterministic one while
not changing its meaning. Consider the formula A pUq.
Its tableau has two states: (p,{AXA pUq}) and (q,{}),
and it is not deterministic if p ∧ q is satisfiable. But
since AXA pUq ⇒ true, changing the first state to (p ∧
¬q,{AXA pUq}) does not change the meaning of the
tableau. So if a state has two successors (p1,X1) and
(p2,X2) such that p1 ∧ p2 is satisfiable and

∧
l∈X2 l ⇒∧

l∈X1 l, we want to replace (p2,X2) by (p2∧¬p1,X2).
This is however not allowed in all cases. Consider the

formula AFAG p: The states are (true,{AX(AFAG p)}) and
(p,{AXAG p}). Since AXAG p ⇒ AXAFAG p holds, the
propositional part of the second state would be changed to
p∧¬true. So the only possible path with satisfiable propo-
sitional parts would be (p,{AXAG p})t, which is not fair,
and hence this modification would change the meaning of
TAFAG p. So replacement should only be applied if fulfilling
states are not restricted.
In the following, for a state (p,X) we use X instead of∧

l∈X l when it is clear from the context that a formula is
required and not a set.

Definition 4
1. We give an algorithm for making Tq deterministic if
possible; the algorithm constructs a structure T simpq .
For uniformity reasons, we define the algorithm for
AXq instead of q. TAXq has initial state (true,{AXq})



0 p,
AXq

1 AX(A p1U p2),
AXq

2 p2 ∧ p,
AXq

3 p2,
AX(A p1U p2),

AXq

4 p1 ∧ p,
AX(A p1U p2),

AXq

5 p1,
AX(A p1U p2),

AXq

Figure 1. Tableau of an ACTL formula

and the successors of (true,{AXq}) are the initial
states of TAXq.

(i) Normalization:
If for two successors (p1,X1) and (p2,X2) of a
state, X1 ⇔ X2 holds (note that CTL is decid-
able), then they are replaced by (p1 ∧¬p2,X1 ∪
X2), (p2 ∧¬p1,X1 ∪X2) and (p1 ∧ p2, ,X1 ∪X2).
(We cannot use X1 or X2 instead of the union
since then we could lose fulfilling states.)

(ii) The algorithm proceeds as follows: For every
next-part X occurring in the normalized TAXq,
new successors S(X) are constructed. (p′,X ′) is
a successor of (p,X) in T simpAXq iff (p′,X ′) ∈ S(X).

In the construction of S(X), we use the follow-
ing notion: The states (p1,X1) and (p2,X2) are a
prom-ful-pair if for some subformula As1Us2
of q:
– (p1,X1) ∈ prom(AXAs1Us2)\
ful(As1Us2),

– (p2,X2) ∈ ful(As1Us2), and
– there is a loop for (p1,X1) in the normalized
tableau consisting of states (p,X) lying in
prom(As1Us2)\ ful(As1Us2).

Initially, S(X) is the the set of successors in the
normalized tableau of a node with next-part X .
For any pair (p1,X1) and (p2,X2) ∈ S(X), per-
form the following step:
If p1 ∧ p2 is satisfiable and X2 ⇒ X1 holds, and
the pair is not a prom-ful-pair, then (p2,X2) is
replaced by (p2 ∧¬p1,X2) in S(X), and analo-
gously if X1 ⇒ X2 holds. Otherwise, S(X) is not
changed. Since the normalization of step (i) was
applied, the result of the step is uniquely deter-
mined.
Note that next-states are not changed in the con-
struction of S(X), so for any state (p,X) in the

normalized TAXq, S(X) is well-defined. Fur-
thermore, membership in prom(As1Us2) and
ful(As1Us2) is not affected.

(iii) If for some state (p,X), p is not satisfiable or
(p,X) has no successors, remove (p,X) and it-
eratively all states that have no successors. Af-
terwards, remove all states that are not reachable
from some initial state.

(iv) If for two elements (p1,X1) and (p2,X2) ∈ S(X),
p1∧ p2 is satisfiable, X2 ⇒ X1 holds and it is not
a prom-ful-pair any more (i. e. some states of the
relevant loop for (p1,X1) have been removed in
step (iii)), replace (p2,X2) by (p2 ∧¬p1,X2) in
S(X) or remove it in case p2 ∧¬p1 is not satisfi-
able.

2. A tableau Tq is called deterministic if for all states
(p1,X1) and (p2,X2) in TsimpAXq that are both successors
of the same state, p1∧ p2 is unsatisfiable.

The order on pairs of states used in (ii) of the construc-
tion of T simpAXq does not matter in the following sense:

Lemma 6 (a) Let (p,X) be a state of a tableau. Inde-
pendent of the chosen order on pairs of successors,
S(X) has the following property:

∨
(q,Y )∈\(X̂)(q∧Y )⇔

∨
(q,Y )∈S(X)(q∧Y ).

(b) If T and T ′ are T simpAXq constructed with respect to dif-
ferent orderings on pairs in step (ii), then T is deter-
ministic iff T ′ is deterministic.

Example
AGAF p: TAGAF p has states (true,{AXAGAF p,AXAF p})

and (p,{AXAGAF p}), each one having the two states
as successors. The normalized tableau has states
(¬p, {AXAGAF p,AXAF p}) and (p, {AXAGAF p,
AXAF p}), each having both states as successors. This
is already deterministic.



AFAG p: TAFAG p has states (true,{AXAFAG p}) and (p,
{AXAG p}), the first having itself and the second as
successors, the second having only itself as succes-
sor. The normalizing step changes nothing, since
AXAFAG p does not imply AXAG p. The succes-
sors are not changed either: Although AXAG p im-
plies AXAFAG p, the states (true,{AXAFAG p}) and
(p,{AXAG p}) are a prom-ful-pair. So TAFAG p is not
deterministic.

We have to show that the operation ( )simp does not
change the meaning of a tableau as expressed by the fol-
lowing lemma. The appendix contains a proof sketch.

Lemma 7 Let q be an ACTL formula. For all Kripke
structures S and states s of S , there is some initial
state (p,X) of Tq such that S ,s ! Tq,(p,X) if and only
if there is some initial state (p′,X ′) of T simpq such that
S ,s! T simpq ,(p′,X ′) holds.

The following lemma follows easily from the definition
of deterministic tableau.

Lemma 8 If Tq is deterministic, then for any structure S
holds that S ⊆ T simpq iff S ! Tsimpq .

The notion of deterministic tableau characterizes the
ACTL formulas expressible in LTL:

Theorem 1 Let q ∈ ACTL. Then q⇔ qd iff Tq is deter-
ministic.

Proof: It suffices to show the direction from left to right,
the other direction follows from Lemma 8 and Lemma 5.
Assume that Tq is not deterministic. Then TAXq is not deter-
ministic as well. There are two cases to consider.
Case 1: There is a state (p,X) in T simpAXq having two suc-

cessors (p1,X1) and (p2,X2) such that
(i) p1∧ p2 is satisfiable,
(ii) X1 0⇒ X2 and X2 0⇒ X1, and
(iii) (p,X) is reachable from some initial state in T simpAXq .
By (ii), there exist Kripke structures S1 and S2 and states
si in Si such that S1,s1 |=

∧
AXs∈X1 s∧¬(

∧
AXs∈X2 s) and

S2,s2 |=
∧
AXs∈X2 s∧¬(

∧
AXs∈X1 s). By (iii), we can as-

sume that there is a path /′ in T simpAXq from an initial state to
(p,X) such that all states except (p,X) have no successors
(p′1,X ′

1) and (p′2,X ′
2) such that p′1 ∧ p′2 is satisfiable. Let /

be a path of length |/′| consisting of states such that /∼ /′,
which exists since the propositional part of all states in T simpAXq
is satisfiable, and let s̃ be a state satisfying p1 ∧ p2. Let S ′

be the Kripke structure formed by concatenating S1 with the
initial state s1 and S2 with initial state s2 to /s̃, and let /(0)
is the initial state of S ′.

We show that S ′ 0! T simpAXq but S ′ ⊆ TsimpAXq , which
contradicts Lemma 5. By construction, we have that
S2,s2 |= ¬

∧
AXs∈X1s and S1,s1 |= ¬

∧
AXs∈X2s, hence

S ′, s̃ 0|= p1∧X1 and S ′, s̃ 0|= p2 ∧ X2. By Lemma 3, S ,s !
TsimpAXq ,(p,X) implies that S ,s |= p∧X . It follows that there
is no simulation ! of S ′ by TsimpAXq such that s̃! (p1,X1) and
the same holds for (p2,X2). As /′ is uniquely determined by
/, it follows that S ′ 0! TsimpAXq . On the other hand, S ′ ⊆ T simpAXq
holds, as by construction Si,si |=

∧
AXl∈Xi l for i= 1,2, and

Lemma 4 implies that there are fair paths /′i in T
simp∧
AXl∈Xi l

such that /i ∼ /′i.
Case 2: There is a state (p,X) in T simpAXq having two suc-

cessors (p1,X1) and (p2,X2) such that
(i) p1∧ p2 is satisfiable,
(ii) X2 ⇒ X1 and X1 0⇒ X2,
(iii) (p1,X1) is in prom(As1Us2) \ ful(As1Us2), while

(p2,X2) ∈ ful(As1Us2), and (p1,X1) has a loop with
states in prom(As1Us2) \ ful(As1Us2) for some
subformula As1Us2 of q,

iv) (p,X) is reachable from some initial state in TsimpAXq .
We can assume that the loop for (p1,X1) consists of states
(p,X) such that for all other successors (p′,X ′) of the pre-
decessor of (p,X) in the loop, (p′,X ′) and (p,X) are not a
prom-ful-pair for which p∧X ⇒ p′ ∧X ′ holds. Otherwise,
this pair can be chosen.
Let /′ be a path in T simpq starting at an initial state and

leading to (p,X), and let / a path of states such that /∼ /′.
We can assume that there is no other path /′′ in T simpq such
that / ∼ /′′. By (iii), there is a loop m for (p1,X1) with
states (p,X) in prom(As1Us2) \ ful(As1Us2). If some
state m(i) has another successor (p′,X ′) besides m(i+ 1),
then either m(i)1∧¬X ′ is satisfiable, or m(i)0∧ p′ is not sat-
isfiable: Otherwise, m(i) ⇒ p′ ∧X ′ holds and m(i)0 ∧ p′ is
satisfiable, and it follows that (p′,X ′) and m(i+ 1) form a
prom-ful-pair, contradicting the assumption on the loop.
We define a Kripke structure S ′ as follows. Let si

be a state satisfying m(i). S ′ is defined by attaching
(s0s1 . . . s|m|−1)t to /, and by attaching certain Kripke struc-
tures to the states si, i. e. by letting a state s of a Kripke
structure be a successor of si: For all 0 < i < |m|, let
for every successor (p,X) of m(i− 1) such that p∧ m(i)0
is satisfiable (and hence as shown above, m(i)1 0⇒ X),
S i(p,X) be a Kripke structure with a state s

i
(p,X) such that

S i(p,X),s
i
(p,X) |=

∧
AXl∈m(i)1 l∧¬

∧
AXl∈X l, and let si(p,X) be

a successor of si. For the first occurrence of s0, i. e. the suc-
cessor of /(|/|− 1), let S 0(p,X) and s

0
(p,X) be defined for all

successors (p,X) of /′(|/′|− 1) such that m(0)0 ∧ p is sat-
isfiable, and let s0(p,X) be a successor of the first occurrence
of s0; condition (i) guarantees that S0(p,X) is defined for at
least one successor (p,X) of /′(|/′|− 1), namely (p2,X2).
For the other occurrences of s0 in the loop, the Kripke



structure with respect to m(|m|− 1) are attached. The fair-
ness requirements are those of S , and in addition the path
/(s0s1 . . .s|m|−1)t is unfair: This can be easily obtained.
Again S ′ 0! T simpAXq : Let /̂ be a fair path of S0(p2,X2) starting

at s0(p2,X2). For the fair path /̃ = /s0/̂ in S ′ there is no fair
path /̃′ in TsimpAXq such that /̃(n) ! /̃′(n) for all n; the only
path /̃′ such that /̃(n) ! /̃′(n)0 is /′mt, which is not fair. It
is easy to see that S ⊆ T simpAXq holds. "
The last step now consists in showing that ACTLdet does

exactly describe those formulas that have a deterministic
tableau.

Lemma 9 If q is a formula of ACTL and Tq is determinis-
tic, then there is a formula q′ in ACTLdet such that q⇔ q′.

Proof: By induction on the structure of s, for every sub-
formula s of q we define an ACTLdet formula sdet such
that X [s := sdet] ⇔ X for all states (p,X) in TAXq, where
X [s :=s′] denotes the result of replacing all occurrences of
AXs in X by AXs′. This implies that there is an ACTLdet
formula q′ such that AXq′ ⇔ AXq, and hence q⇔ q′. The
cases of predicates, s1∧s2 and AXs are clear or follow di-
rectly from the induction hypothesis. The casess1∨s2 and
As1Ws2 can be handled similarly to the case As1Us2.
Case As1Us2: Let \(s1) = {(s0,U0), . . . ,(sl,Ul)} and

\(s2)= {(t1,V1), . . . ,(tm,Vm)}. We define (As1Us2)det=
A

((
(s0∧¬s1∧ · · ·∧¬sl ∧Udet0 )∨ · · ·

∨ (¬s0∧ · · ·∧¬sl−1∧ sl ∧Udetl )
)
∧ (¬t0∧ · · ·∧¬tm)

)

U
((

(t0∧¬t1∧ · · ·∧¬tm∧V det0 )∨ · · ·

∨ (¬t0∧ · · ·∧¬tm−1∧ tm∧V detm )
)
∧ (t0∨ · · ·∨ tm)

)
,

whereUdet is the result of replacing all elements AXl of U
by AX(ldet). This is well-defined becauseUi andVj contain
only formulas AXl such that l is a subformula of As1Us2.
Let (p,X) be a state of TAXq such that X contains As1Us2.
We have to show that X [As1Us2 := (As1Us2)det] ⇔ X .
Using the fact TAXq is deterministic, it can be shown that
the propositional parts of successors of (p,X [As1Us2 :=
(As1Us2)det]) are pointwise equivalent to the proposi-
tional parts of successors of (p,X). This implies that the
tableau for X [As1Us2 := (As1Us2)det] is isomorphic to
the tableau for X , i. e. the states can be matched bijectively
so that propositional parts are equivalent, fairness require-
ments are not changed and successors match. It follows that
X [As1Us2 := (As1Us2)det] ⇔ X . "
The converse is obvious from the definition of ACTLdet:

Lemma 10 If for an ACTL formula q there is a formula q′
in ACTLdet such that q⇔ q′, then Tq is deterministic.

Theorem 1, Lemma 9 and Lemma 10 imply the main
result:

Theorem 2 Let q be a ACTL formula. Then there exists
an LTL formula s which is equivalent to q iff q can be
expressed in ACTLdet .

3.3. Decision procedure for ACTLdet

Using the notion of deterministic tableau, we obtain a
procedure to decide whether an ACTL formula s can be
expressed in LTL: Namely, by checking whether Ts is de-
terministic.

Theorem 3 Deciding whether an ACTL formula s can be
expressed in LTL is PSPACE complete.

Proof: The lower bound follows by a reduction from
ACTL satisfiability, which can be shown to be PSPACE
complete analogously to LTL satisfiability ([21]) by using
the tableau construction. Let p be a boolean variable that
does not occur in s. It is easy to see that s is not satisfia-
bility iff s∧AFAG p is expressible in LTL.
We describe a nondeterministic polynomial space algo-

rithm for deciding whether Ts is not deterministic. Assume
that s is in negation normal form. We represent a state
of the normalized tableau in form P∪Q∪ X , where P is
a set of propositional subformulas, X is a set of subformu-
las of form As1Us2 or As1Ws2 of s such that P∪X is
a state of TAXq, and Q is subset of the propositional sub-
formulas of s; hence such a state can be encoded in twice
the size of s. The formula represented by such a state is∧
P∧

∧
q∈Q¬q∧

∧
X ; the elements ofQ stand for the formu-

las added during the construction of T simAXs, more precisely
for an element of the disjunctive normal form of the (con-
junction of the) added predicates.
To check whether Ts is not deterministic, the algorithm

has to guess a path in T simpAXs from {AXs} to a state that
has two successors P1 ∪Q1∪X1 and P2 ∪Q2∪X2 such that∧
P1 ∧

∧
q∈Q1 ¬q∧

∧
P2 ∧

∧
q∈Q2 ¬q is satisfiable. For any

pair of successive states P∪Q∪X and P′ ∪Q′ ∪X ′ along
the path (and for the last state with respect to P1 ∪Q1 ∪X1
and P2 ∪Q2 ∪ X2), it has to be checked that the succes-
sor relation holds and that

∧
P′ ∧

∧
q ∈ Q′¬q is satisfiable.

For the former, it has to be checked that for each other
successor P′′ ∪ X ′′ of P ∪ X (successor in Ts) for which∧
X ′ ⇒

∧
X ′′ holds (this can be decided in PSPACE) and

for which P′′ ∪ X ′′ and P′ ∪ X ′ is not a prom-ful-pair, Q′

contains an element of P′′. By a similar argument, it fol-
lows that there is a PSPACE algorithm to check whether a
state P∪Q∪X has a loop in T simpAXs . By Savitch’s Theorem,
the claim follows. "



4. Universal-branching restriction of LTL:
LTLdet

We define LTLdet inductively like ACTLdet except that
all path quantifiers are removed.

Definition 5 (LTLdet)
– p ∈ Pred(V ),

– for LTLdet formulas q1 and q2 and a predicate p:
q1∧q2, Xq1, (p∧q1)∨ (¬p∧q2),
(p∧q1)U(¬p∧q2), (p∧q1)W(¬p∧q2).

Analogously to ACTLdet, LTLdet represents all LTL for-
mulas that are expressible in ACTL:

Corollary 1 Let s be an LTL formula. There exists an
ACTL formula q which is equivalent to s iff s can be ex-
pressed in LTLdet .

A Büchi automaton A = (Q,Q0,R,L,F) over the alpha-
bet Y = States(V) consists of a finite set of states Q, a set
Q0 ⊆ Q of initial states, a transition relation R ⊆ Q×Q,
a labelling L : Q −→ 2Y and a set F ⊆ Q of accepting
states. A run of A on an t-word c = c(0)c(1) · · · ∈ Yt is
a sequence m = m(0)m(1) . . . such that m(0) ∈ Q0, for all
i ≥ 0, (m(i),m(i+ 1)) ∈ R and c(i) ∈ L(m(i)). The run is
called successful if Inf (m)∩F 0= /0, where Inf (m) def= {q ∈
Q | m(n) = q for infinitely many n}. The automaton A ac-
cepts c if there is a successful run of A on c.
A Büchi automaton represents an LTL formula s over

V if it accepts exactly the paths c over States(V) that satisfy
s, i. e. all models of s.

Theorem 4 ([24, 25]) An LTL formula s can be repre-
sented by a Büchi automaton the size of which is at most
exponential in the size of s.

A 1-weak Büchi automaton is a weak Büchi automaton
such that there is a partial ordering≤ on the state setQ such
that every q and q′ for which (q,q′) ∈ R, we have q ≤ q′.
It is useful to identify the accepting states q ∈ F such that
for all sequences c starting in a state s such that s ∈ L(q)
there is a successful run on c starting in q. Acc0 consists
of those accepting states, while Acc1 consists of all other
accepting states. So we denote a 1-weak Büchi automaton
(Q,Q0,R,F) alternatively by (Q,Q0,R,Acc0,Acc1).
We can do better for LTLdet formulas than for general

LTL formulas:

Theorem 5 Let q be an LTLdet formula. There is a 1-weak
Büchi automaton ANegq representing ¬q such that the num-
ber of states of ANegq is linear in the size of q.

The construction is explained in the appendix.
Example Let us consider the formula q = G(p∨¬p∧
X(p1 ∧¬p2U p2)); the corresponding automaton ANegq (af-
ter removal of unsatisfiable states) is shown in Figure 2 on
the next page, where Acc0 = {(¬p1∧¬p2,1)} and Acc1 =
{(p1∧¬p2,4)}.
A formula that can be represented by an automaton of

linear size can be model checked in time linear in the for-
mula and the model. Moreover, as explained above, the
structure of 1-weak Büchi automata makes them more ef-
ficiently checkable than general Büchi automata. Hence the
following corollary can be seen as a formalization of the
presumption formulated in [12] that LTL formulas express-
ible in CTL can be checked (at least) as efficiently as CTL
formulas even when using the automaton-based approach to
model checking:

Corollary 2 For every LTL formula s expressible in
ACTL there is a 1-weak Büchi automaton representing ¬s
which has size linear in s.

The easier acceptance condition makes 1-weak Büchi
automata attractive for verification, and hence a character-
ization of the LTL formulas the negation of which can be
represented in this way is of interest. It turns out that LTLdet
provides such a characterization.

Lemma 11 If q is an LTL formula such that ¬q has a rec-
ognizing Büchi automaton which is 1-weak, then there is a
ACTL formula q′ that is equivalent to q.

For a proof sketch, see the appendix. Corollary 2 and
Lemma 11 imply:

Theorem 6 An LTL formula q is expressible in ACTL iff
there is a recognizing Büchi automaton for ¬q that is 1-
weak.

5. Concluding Remarks

We have to leave open the problem whether an CTL
formula s that is expressible in LTL(and hence by [3],
s ⇔ Asd holds), is already expressible in ACTL. It this
held, it would immediately follow that ACTLdet character-
izes the CTL formulas expressible in LTL and LTLdet char-
acterizes the LTL formulas that are expressible in CTL.

Acknowledgments

We would like to thank anonymous referees for spotting
an error in an earlier draft, Orna Kupferman for pointing
us to the complexity theoretic issues, Roderick Bloem for
helpful discussions, especially on the topic of 1-weak Büchi
automata, and Markus Kaltenbach for valuable comments.



true, 10 ¬p, 5 p1 ∧¬p2,4 ¬p1∧¬p2, 1 true, 0

Figure 2. Simplified automaton representing ¬G(p∨¬p∧X(p1∧¬p2U p2))

References

[1] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli,
F. Somenzi, A. Aziz, S. Cheng, S. Edwards, S. Khatri,
T. Kukimoto, A. Prado, S. Quadeer, R. Ranjan, S. Sarwary,
T. Shiple, G. Swamy, and T. Villa. VIS: a system for verifi-
cation and synthesis. In Proc. 8th International. Conference
on Computer Aided Verification, LNCS 1102, pages 428–
432, 1996.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and
beyond. In Proc. 5th Symposium on Logic in Computer Sci-
ence, 1990.

[3] E. M. Clarke and I. A. Draghicescu. Expressibility results
for linear-time and branching-time logics. In Proc. Work-
shop on Linear Time, Branching Time, and Partial Order in
Logics and Models for Concurrency, volume 354 of LNCS,
pages 428–437, 1988.

[4] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching time tempo-
ral logic. In Proc. IBM Workshop on Logics of Programs,
LNCS 131, pages 52–71, 1981.

[5] E. M. Clarke, O. Grumberg, and M. C. Browne. Reasoning
about networks with many identical finite-state processes.
In Proc. 5th ACM Symposium on Principles of Distributed
Computing, pages 240–248, Calgary, Alberta, August 1986.

[6] E. A. Emerson and C.-L. Lei. Modalities for model check-
ing: Branching time strikes back. In Proc. 20th ACM Sympo-
sium on Principles of Programming Languages, pages 84–
96, New Orleans, January 1985.

[7] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-
the-fly automatic verification of linear temporal logic. In
IFIP/WG 6.1, 1995.

[8] G. J. Holzmann. Design and Validation of Computer Proto-
cols. Prentice Hall, 1991.

[9] G. J. Holzmann. An overview of the SPIN model checker.
Technical Report BRICS Autumn School on Verification,
BRICS Notes Series NS-96-6, BRICS, October 1996.

[10] B. Josko. Modular specification and verification of reactive
systems. Habilitationsschrift, Fachbereich Informatik, Carl
von Ossietzky Universität Oldenburg, 1993.

[11] O. Kupferman and M. Vardi. Module checking. In Proc. 8th
International Conference on Computer Aided Verification,
LNCS 1102, pages 75–86, 1996.

[12] O. Kupferman and M. Y. Vardi. Relating linear and branch-
ing model checking. In PROCOMET, 1996.

[13] O. Kupferman and M. Y. Vardi. Freedom, weakness, and
determinism: From linear-time to branching-time. In Proc.
13th Symposium on Logic in Computer Science, 1998.

[14] R. P. Kurshan. Computer-Aided Verification of Coordinating
Processes. Princeton Series in Computer Science, 1994.

[15] D. E. Long. Model Checking, Abstraction and Composi-
tional Verification. PhD thesis, CMU, July 1993.

[16] M. Maidl. System Verification Based on Model Check-
ing. PhD thesis, Ludwig-Maximilians-UniversitätMünchen,
2000.

[17] Z. Manna and A. Pnueli. Temporal Verification of Reactive
Systems: Specification. Springer-Verlag, 1992.

[18] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, Boston,MA, 1993.

[19] R. Milner. An algebraic definition of simulation between
programs. In Proc. 2nd International Joint Conference on
Artificial Intelligence, pages 481–489, September 1971.

[20] A. Pnueli. The temporal logic of programs. In Proc.
18th IEEE Symposion on Foundations of Computer Science,
pages 46–57, 1977.

[21] A. P. Sistla and E. M. Clarke. The complexity of propo-
sitional temporal logic. In Proc. 14th ACM Symposium on
Theory of Computing, pages 159–167, 1982.

[22] M. Vardi. Linear vs. branching time: A complexity-theoretic
perspective. In Proc. 13th Symposium Logic in Computer
Science, 1998.

[23] M. Y. Vardi. On the complexity of modular model check-
ing. In Proc. 10th Symposium on Logic in Computer Sci-
ence, pages 101–111, June 1995.

[24] M. Y. Vardi and P. Wolper. Reasoning about infinite compu-
tations paths. In Proceedings of the 24th IEEE symposium
on foundation of computer science, pages 185–194, Tuscan,
1983.

[25] M. Y. Vardi and P. Wolper. Reasoning about infinite com-
putations. Information and Computation, 115(1):1–37,
November 1994.

6. Appendix

Proof of Lemma 7: Lemma 6 (a) implies that ! is
also a simulation of S by T simpAXq . So for a fair path / of
states starting at an initial state there is a path /′ in T simpAXq
starting in an initial state such that /(n) ! /′(n) for all
n ≥ 0. In order to show that /′ is fair, we use the follow-
ing: If some state in ful(As1Us2) cannot be entered at
some k although /(k) |= s2 holds, i. e. /(k) 0|= p∧X for
all (p,X) ∈ ful(As1Us2), then by Lemma 6 (a) there is
some (p′,X ′) ∈ prom(As1Us2) \ ful(As1Us2) such that
/(k) |= p′ ∧ X ′. Since X ′ ⇒ AXAs1Us2, there is some
k′ > k such that /(k′) |= s2. The claim follows from this
since eventually (p,X) ∈ ful(As1Us2) is the second node



¬true∧¬false, 9 true, 8

p∧¬true,3 true,2

true, 10 true∧¬p,5 p1 ∧¬p2,4

¬p1 ∧¬p2,1 true,0

true∧ p∧¬true,7 true,6

Figure 3. Automaton representing ¬G(p∨¬p∧X(p1∧¬p2U p2))

of a prom-ful-pair and hence the propositional part of (p,X)
was not strengthened by the algorithm. "

Proof of Theorem 5: By induction on q we proof that there
is a 1-weak Büchi automaton ANegq = (Q,Q0,R,Acc0,Acc1)
of linear size that represents ¬q. States of ANegq are of form
(p, i) for some state predicate p and i∈ IN. The labelling set
of states of a state (p, i) is the set of states satisfying p. The
partial order on states is given by (p, i) ≤ (p′, i′) if i ≥ i′.
We use the integer-component of a state also as numbering
and therefore choose a total order.
Case q: We define Q = {(¬q,1),(true,0)}, Q0 = (¬q,

1), R = {((¬q,1),(true,0)),((true,0),(true,0))}, Acc0 =
{(¬q,1)} and Acc1 = /0.
Case Xq: Let N be the number of states of Tq and

ANegq = (Q′,Q′
0,R′,Acc

′
0,Acc′1). Then Q = (true,N)∪Q′,

Q0 = {(true,N)}, R= R′ ∪{((true,N),(q, i)) | (q, i) ∈ Q0},
Acc0 = Acc′0 and Acc1 = Acc′1.
Case q1∧q2: Pointwise union of ANegq1

and ANegq2
.

Case (p∧ q1)∨ (¬p∧ q2): As (p∧ q1)∨ (¬p∧ q2) ⇔
(p∨ q2)∧ (¬p∨ q1), we can use the construction for case
q1∧q2.
Case (p ∧ q1)U(¬p ∧ q2): Let ANegq1

= (Q1,Q10,R1,
Acc10,Acc11) and A

Neg
q2

= (Q2,Q20,R2,Acc20,Acc21). Let N1
be the size of Q1 and assume that all second components in
states and accepting states of ANegq2

are shifted by N1. Let N
be the number of states in Q1 and Q2 together.
– Q= {(p,N)} ∪ {(p∧q, i) | (q, i)∈Q10} ∪ {(¬p∧q, i) |

(q, i) ∈ Q20} ∪ (Q1 \Q10) ∪ (Q2 \Q20),

– Q0 = {(p,N)} ∪ {(p ∧ q, i) | (q, i) ∈ Q10} ∪ {(¬p ∧
q, i) | (q, i) ∈ Q20},

– R = {((p,N),(p,N))} ∪ {((p,N),(p∧ q, i)) | (q, i) ∈
Q10} ∪ {((p,N),(¬p∧q, i)) | (q, i)∈Q20} ∪{((p∧q, i),

(q′, i′)) | ((q, i),(q′, i′)) ∈ R1} ∪ {((¬p∧ q, i)(q′, i′)) |
((q, i),(q′, i′)) ∈ R2} ∪ R1 ∪ R2,

– Acc0 = Acc10 ∪ Acc20, Acc1 = {(p,N)} ∪ Acc11 ∪ Acc21.

The claim follows by using the fact that ¬(p∧ q1)U(¬p∧
q2) ⇔ pW ((p∧¬q1)∨ (¬p∧¬q2)).
Case (p∧ q1)W(¬p∧ q2): Analogous to the case (p∧

q1)U(¬p∧q2), except that Acc1 is just Acc11∪Acc21. "

As an example consider Figure 3, which displays the
automaton ANegq for q = G(p ∨ ¬p ∧ X(p1 ∧ ¬p2U p2));
thereby, Acc0 = {(¬p1∧¬p2,1),(p∧¬true,3),(true∧ p∧
¬true,7),(¬true∧¬false,9)} and Acc1 = {(p1∧¬p2,4)}.

Proof of Lemma 11: Let A be a representing 1-weak
Büchi automaton for ¬q. By induction on the number n of
states of A reachable from a state q and different from q, we
assign to q an LTL formula F(q) the negation of which is
expressible in LTLdet, such that for a sequence / of states,
/ |= F(q) iff A with initial state q accepts /. For a state q,
let Pred(q) =

∨
{pred(s) | s ∈ L(q)}, where pred(s) is the

conjunction of all atomic propositions that are satisfied by s.
Case n = 0: q has no successors except from itself. If

q has no successors, then F(q) is false, and if it is its own
successor, then F(q) is G(Pred(q)).
Case n+ 1: Let q0, . . . ,qn be the successors of q dif-

ferent from q. If q is its own successor and an accepting
state, then let F(q) = Pred(q)∧ X(Pred(q))W(

∨
i F(qi)).

Otherwise, if q is not accepting, then let F(q) = Pred(q)∧
X(Pred(q))U(

∨
i F(qi)). If q is not its own successor, then

let F(q) = Pred(q)∧X(
∨
i F(qi)).

Let q1, . . . ,qm be the initial states of A. We define q′ to
be

∧
i¬F(qi). By construction, / |= ¬q′ iff / is accepted

by A, which implies that q′ ⇔ q. "


