
Counterexample-Preserving Reduction for
Symbolic Model Checking?

Wanwei Liu*, Rui Wang, Xianjin Fu, Ji Wang,
Wei Dong, and Xiaoguang Mao

School of Computer Science,
National University of Defense Technology,

Changsha, P.R. China, 410073
{wwliu}@nudt.edu.cn

Abstract. The cost of LTL model checking is highly sensitive to the
length of the formula under verification. We observe that, under some
specific conditions, the input LTL formula can be reduced to an easier-to-
handle one before model checking. In our reduction, these two formulae
need not to be logically equivalent, but they share the same counterex-
ample set w.r.t the model. In the case that the model is symbolically
represented, the condition enabling such reduction can be detected with
a lightweight effort (e.g., with SAT-solving). In this paper, we tentatively
name such technique “Counterexample-Preserving Reduction” (CePRe,
for short), and the proposed technique is experimentally evaluated by
adapting NuSMV.

1 Introduction

LTL [12] is one of the most frequently used specification languages in model
checking (cf. [15]). It designates properties over a linear structure, which can be
viewed as an execution of the program. The task of LTL model checking is to
search the state space (explicitly or implicitly), with the goal of detecting the
existence of feasible traces violating the specification. If such traces exist, the
model checker will report one of them as a “counterexample”; otherwise, the
model checker will give an affirmative report.

It can be shown that the complexity of LTL model checking for M |= ϕ is
in O(|M | × 2|ϕ|), meanwhile, the nesting depth of temporal operators might be
the major factor affecting the cost in compiling LTL formulae.

Hence, it is reasonable to simplify the specification before conducting model
checking. For example, in [13], Somenzi and Bloem provided a set of rewriting
schemas for simplifying LTL specifications, and these rewriting schemas preserve
logical equivalence.

? This work is supported by NSFC under Grant No. 61103012, 91118007; the 863
Program under Grant No. 2011AA010106, 2012AA011201; the Program for New
Century Excellent Talents in University.

One may argue that “a majority of LTL formulae used in real applications
are simple, succinct rather than complicated”, but, we might want to notice the
following facts:

– Some LTL formula, for example F(pUq), is usually considered to be a “sim-
ple” one. Nevertheless, it can be further simplified to Fq, and this fact tends
to be ignored.1

– Indeed, people do use complicate specifications in the real industrial field,
as well in some standard benchmark (cf. [2]).

– Last but not least, not all specifications are designated manually. Actually,
some formulae are generated by specification-generaton-tools (e.g., ProSpec).
Indeed, one may find that lots of these machine-generated specifications can
be simplified.

Symbolic model checking [11] is one of the most significant breakthrough in
model checking, and two major fashions of symbolic model checking are widely
used: one is the BDD-based manner [6], and the other is SAT-based manner,
such as BMC [1].

Instead of using an explicit representation, the symbolic approach represents
state space with a series of Boolean formulae. This enables implicit manipulation
of the verification process and it usually leads to an efficient implementation [3].
Meanwhile, the symbolic encoding of transitions and invariants of the model
provides heuristic information to simplify the specification. For example:

– The formulae pUq and (rUp)Uq can be respectively reduced as q and (rUp)∨
q, if we know that p→ q holds everywhere in the model.

– Each occurrence of Gθ in the specification can be replaced with > (i.e.,
logically true), if we can inductively infer that the Boolean formula θ holds
at each reachable state in the model.

Actually, we can make certain of these conditions with the following efforts.

– To ensure that “p→ q holds everywhere in the model”, one possible way is
to make sure that p→ q is an invariant in the model — i.e., just to examine
if ρ∧¬(p→ q) is unsatisfiable (we in the later denote it as ρ ` p→ q), where
ρ is the Boolean encoding of the model’s transition relation.

– Likely, to justify that θ holds at each reachable state2, it suffices to ensure
that θ0 ` θ and ρ ` θ → θ′, where θ0 is the initial condition of the model.

We could do this because the component ρ should be satisfied at each transition
step. Hence, it encloses both “local invariants” and “transitional invariants”. For
example, if ρ = p∧(q → q′), then we may consider p as a local invariant, whereas
q → q′ as a transitional invariant.

1 On one hand, pUq implies Fq, and hence F(pUq) implies FFq (i.e., Fq); on the
other hand, q implies pUq, and hence Fq implies F(pUq).

2 Note that a “dead-end” has no infinite path starting from it, hence we may safely
omit dead-ends in the model when doing this.

Hence, this provides an opportunity to replace the specification with a simpler
one, accompanied with some lightweight extra task of condition detection. Even
if such detection fails, the overhead is usually negligible. More importantly, such
reductions can be performed before starting model checking.

In this paper, we systematically investigate the above idea, and tentatively
name this technique CounterExample-Preserving REduction (CePRe , for short).
To justify it, we have extended NuSMV and implemented CePRe as an up-front
option for LTL model checking. Subsequently, we conduct experiments over both
industrial benchmarks and randomly generated cases. Experimental results show
that CePRe can improve the efficiency significantly.

This paper is organized as follows: Section 2 revisits some basic notions. Sec-
tion 3 introduces the CePRe technique and gives the performance analysis. In
Section 4, the experimental results over industrial benchmarks and over random
generated cases are given. We summarize the whole paper with Section 5.

2 Preliminaries

We presuppose a countable set P of atomic propositions, ranging over p, q, etc,
and for each proposition p ∈ P, we create a primed version p′ (not belonging
to P) for it. For each set V ⊆ P, we define V ′ , {p′ | p ∈ V}. We use B(V) to
denote the set of Boolean formulae over V. Similarly, we denote by B(V∪V ′) the
set of Boolean formulae built up from V ∪ V ′. The scope of the prime operator
can be naturally lifted to Boolean formulae over B(V), by defining

>′ = > ⊥′ = ⊥ (¬θ)′ , ¬θ′ (θ1 → θ2)′ , θ′1 → θ′2

An assignment is a subset V of P. Intuitively, it assigns 1 (or, true) to the
propositions belonging to V, and assigns 0 (or, false) to the other propositions.
For each V ⊆ U ⊆ P and θ ∈ B(U), we denote by V θ if θ is evaluated to 1
under the assignment V.

A united assignment is a pair (V1,V2), where both V1 and V2 are subsets of
P. It assigns 1 to the propositions belonging to V1 ∪ V ′

2, and assigns 0 to the
other propositions. Suppose that V1,V2 ⊆ U ⊆ P and θ ∈ B(U ∪ U ′), we also
write (V1,V2) θ if θ is evaluated to 1 under the united assignment (V1,V2).

LTL formulae can be inductively defined as follows.

– ⊥ and > are LTL formulae.
– Each proposition p ∈ P is an LTL formula.
– If both ϕ1 and ϕ2 are LTL formulae, so does ϕ1 → ϕ2.
– If ϕ is an LTL formula, then Xϕ and Yϕ are LTL formulae.
– If ϕ1 and ϕ2 are LTL formulae, then both ϕ1Uϕ2 and ϕ1Sϕ2 are LTL

formulae.

Semantics of an LTL formula is defined w.r.t. a linear structure π ∈ (2P)ω

(i.e., π is an infinite word over the alphabet 2P) and a position i ≺ ω. Inductively:

– π, i |= > and π, i 6|= ⊥;

– π, i |= p iff π(i) p (where π(i) is the i-th letter of π, which can be viewed
as an assignment);

– π, i |= ϕ1 → ϕ2 iff either π, i 6|= ϕ1 or π, i |= ϕ2;
– π, i |= Xϕ iff π, i+ 1 |= ϕ;
– π, i |= Yϕ iff i > 0 and π, i− 1 |= ϕ;
– π, i |= ϕ1Uϕ2 iff there is some j ≥ i, s.t. π, j |= ϕ2 and π, k |= ϕ1 for each
i ≤ k < j;

– π, i |= ϕ1Sϕ2 iff there is some j ≤ i, s.t. π, j |= ϕ2 and π, k |= ϕ1 for each
i ≥ k > j.

For the sake of convenience, we may directly write π, 0 |= ϕ as π |= ϕ.
As usual, we employ some derived Boolean connectives such as

¬ϕ , ϕ→ ⊥ ϕ ∨ ψ , ¬ϕ→ ψ ϕ ∧ ψ , ¬(¬ϕ ∨ ¬ψ)

and derived temporal operators such as

Fϕ , >Uϕ Zϕ , ¬Y¬ϕ Oϕ , >Sϕ

Gϕ , ¬F¬ϕ Hϕ , ¬O¬ϕ
ϕRψ , ¬(¬ϕU¬ψ) ϕTψ , ¬(¬ϕS¬ψ)

We say that ‘> and ⊥’, ‘∧ and ∨’, ‘F and G’, ‘O and H’, ‘Y and Z’, ‘X and
X itself’, ‘U and R’, ‘T and S’ are pairwise the dual operators.

Temporal operators like X, U, F, G, R are called future operators, whereas
Y, Z, S, O, H and T are called past operators. An LTL formula is said to be
pure future (resp. pure past) if it involves no past (resp. future) operators.

Theorem 1 ([8]). Each LTL formula has an equivalent pure future expression.

Theorem 1 tells the fact that past operators do not add any expressive power
to LTL formulae. Nevertheless, with these, we can give a much more succinct
description in defining specifications.

Given an LTL formula ϕ, we denote by sub(ϕ) the set constituted with
subformulae of ϕ. Particularly, we respectively denote by subU(ϕ) and subS(ϕ)
the set consisting of “U-subformulae” and “S-subfomulae” of ϕ, where an U-
formula (resp. S-formula) is a formula rooted at U (resp. S). 3

A model is a tuple M = 〈V, ρ, θ0,F〉, where:

– V ⊆ P, is a finite set of atomic propositions.
– ρ ∈ B(V ∪ V ′), is the transition relation.
– θ0 ∈ B(V), is the initial condition.
– F ⊆ B(V), is a set of fairness constraints.

A derived linear structure of M is an infinite word π ∈ (2V)ω, such that

1. π(0) θ0;
2. (π(i), π(i+ 1)) ρ for each i ≺ ω;

3 Note that Fϕ is also an U-formula whereas Gϕ is not.

3. for each ϕ ∈ F , there are infinitely many i’s having π(i) ϕ.

We denote by L(M) the set of derived linear strctures of M , call it the
language of M .

For a model M and an LTL formula ϕ, we denote as M |= ϕ if π |= ϕ for
each π ∈ L(M). Meanwhile, we define

CE(ϕ,M) , {π ∈ L(M) | π 6|= ϕ}

and call it the counterexample set of ϕ w.r.t. M .

3 Counterexample-Preserving Reduction

We describe the CePRe technique in this section, but first of all, let us fix the
components of the model, and just let M be 〈V, ρ, θ0,F〉 in the following.

For M , we are particularly concerned about formulae having the same coun-
terexample set — we say that ϕ and ψ are inter-reduce-able w.r.t. M if and only
if CE(ϕ,M) = CE(ψ,M), denoted as ϕ ≈M ψ. Hence, ϕ ≈M ψ implies that
M |= ϕ⇔M |= ψ.

The central part of CePRe is a series of reduction rules being of the form

Cond B ϕ ≈M ψ (name)

where “Cond” is called the additional condition.
Though the relation ≈M is, actually symmetric, we always write the reduced

formula on the righthand of the “≈” sign in a reduction rule. Since the model
M is fixed, in this section, we omit it from the subscript. In addition, if the
additional condition trivially holds, we will discard this part and directly write
the rule as ϕ ≈ ψ, and in this case we say that this rule is “model-independent”;
otherwise, we say that the underlying reduction rule is “model-dependent”.

3.1 The Reduction Rules

First of all, we have some elementary reduction rules as depicted in Figure 1. For
the rules (Init), (Ind) and (Trans), the notation “`” occurring in the condition
part stands for the “inferring” relation in propositional logic (ρ ` θ iff ρ ∧ ¬θ is
unsatisfiable), and we here require that θ, θ1, θ2 ∈ B(V).

θ0 ` θ B θ ≈ > (Init) ρ ` θ B Gθ ≈ > (Trans)

θ ∈ F B GFθ ≈ > (Fair) θ0 ` θ; ρ ` θ → θ′ B Gθ ≈ > (Ind)

Fig. 1. Elementary reduction rules.

Subsequently, let us define a partial order “v” over unary temporal operators
(and their combinations) as follows:

F v GF v FG v G
F v Xi v G (i ≺ ω)
O v HO v OH v H

where X0ϕ , ϕ and Xi+1ϕ , X(Xiϕ).
Assume that Pw,Ps ∈ {F,FG,GF,G,O,HO,OH,H} ∪ {Xi | i ≺ ω} and

Pw v Ps, then we have two model-indenpendent rules, as depicted in Figure 2.
Though these rules seem to be trivial, they are useful in doing combinational
reductions (see the example given in Section 3.2).

(Pwϕ ∧Psϕ) ≈ Psϕ (Conj) (Pwϕ ∨Psϕ) ≈ Pwϕ (Disj)

Fig. 2. Reduction rules of (Conj) and (Disj).

Figure 3 provides some reduction rules that can be used to simplify nested
temporal operators. Moreover, we may immediately get such a rule’s “past ver-
sion” by switching U and S, R and T, etc. For example, we may obtain the rule
(OS) (i.e., O(ϕSψ) ≈ Oψ) from (FU) .

F(ϕUψ) ≈ Fψ (FU) ϕU(Fψ) ≈ Fψ (UF)

FFϕ ≈ Fϕ (FF) GFGϕ ≈ FGϕ (GFG)

Fig. 3. Reduction rules for formulae involving nested pure future operators.

Meanwhile, we also have the Duality Principle for model-independent rules:
“by switching each operator with its dual operator, then we may get a new
reduction rule”. For the rules listed in Figure 3, we may obtain the corresponding
rules such as (GR), (RG), (GG) and (FGF). As an example, the rule (GG) is
just GGϕ ≈ Gϕ.

Yϕ ≈ ⊥ (Y) Oϕ ≈ ϕ (O) ϕSψ ≈ ϕ (S)

Fig. 4. Reduction rules for formulae involving (outermost) past operators.

Since we always stand at the starting point when doing model checking (i.e.,
the goal is to check if π, 0 |= ϕ for each π ∈ L(M)), we can sometimes “erase”
the outermost past operators, as depicted in Figure 4. Note that we can also
acquire the rules (Z), (H) and (T) by applying the Duality Principle.

XYϕ ≈ ϕ (XY) FHϕ ≈ Hϕ (FH)

FOϕ ≈ Fϕ ∨Oϕ (FO) F(ϕSψ) ≈ Fψ ∨ ϕSψ (FS)

Fig. 5. Reduction rules for formulae involving adjacent past and future operators.

Figure 5 introduces a series of rules handing formulae involving adjacent past
and future temporal operators. Remind that the rules (XZ), (GO), (GH) and
(GT) are also immediately available.

ρ ` θ1 ∨ θ2 B θ1Uθ2 ≈ Fθ2 (U)

ρ ` θ2 → θ1 ∨ θ′2 B θ1Rθ2 ≈ θ2 (R)

Fig. 6. Reduction rules of (U) and (R).

From now on, we let θ1, θ2, . . . range over B(V), and let ϕ1, ϕ2, . . . be arbitrary
LTL formulae. We have some model-dependent rules. The first group of such
rules is listed in Figure 6.

Figure 7 provides another set of model-dependent reduction rules, and these
rules are mainly concerned with LTL formulae involving adjacent U-operators.
Note that when applying the Duality Principle to this group of rules, besides
switching the operators, we also need to exchange the antecedent and subsequent
in the righthand of ` in the condition part. As an example, we may obtain the
reduction rule

ρ ` θ3 → θ2 B (ϕ1Rθ2)Rθ3 ≈ θ3 ∧ (ϕ1Rθ2) (RR[3→ 2])

by applying the Duality Principle to (UU[2→ 3]).

Lastly, Figure 8 provides some reduction rules that can be used to simplify
formulae with mixed usage of U and R. Similarly, by switching dual operators
and inverting the corresponding part in the additional condition, one may obtain
the reduction rules for formulae in which R appears (adjacently) out of U.

ρ ` θ1 → θ2 B θ1Uθ2 ≈ θ2 (U[1→ 2])

ρ ` θ1 → θ3 B (θ1Uϕ2)Uθ3 ≈ ϕ2Uθ3 (UU[1→ 3])

ρ ` θ2 → θ3 B (ϕ1Uθ2)Uθ3 ≈ θ3 ∨ (ϕ1Uθ2) (UU[2→ 3])

ρ ` θ3 → θ2 B (ϕ1Uθ2)Uθ3 ≈ (ϕ1 ∨ θ2)Uθ3 (UU[3→ 2])

ρ ` θ2 → θ′3 B (ϕ1Uθ2)Uθ3 ≈ (ϕ1 ∨ θ2)Uθ3 (UU[2→ 3′])

ρ ` ¬θ2 → θ3 B (ϕ1Uθ2)Uθ3 ≈ Fθ3 (UU[¬2→ 3])

ρ ` θ1 → θ2 B θ1U(θ2Uϕ3) ≈ θ2Uϕ3 (UU[1→ 2])

ρ ` θ1 → θ3 B θ1U(ϕ2Uθ3) ≈ ϕ2Uθ3 (UU[1→ 3])

ρ ` θ2 → θ1 B θ1U(θ2Uϕ3) ≈ θ1Uϕ3 (UU[2→ 1])

Fig. 7. Reduction rules for formulae involving adjacent U operators.

ρ ` θ1 → θ3 B (θ1Rϕ2)Uθ3 ≈ ((θ1Rϕ2) ∨ θ3) ∧ Fθ3 (UR[1→ 3])

ρ ` ¬θ1 → θ3 B (θ1Rϕ2)Uθ3 ≈ ϕ2Uθ3 (UR[¬1→ 3])

ρ ` θ1 → θ3 B θ1U(ϕ2Rθ3) ≈ ϕ2Rθ3 (UR[1→ 3])

Fig. 8. Reduction rules for formulae involving adjacent U and R operators.

3.2 Reduction Strategy

We show the usage of CePRe reduction rules by illustrating the reduction
process of M |= (θ1Uθ2)Uθ3:

1. We may first try with the rule (UU[1 → 3]) by inquiring the SAT-solver if
ρ ` θ1 → θ3 holds.

2. If the SAT-solver returns “unsatisfiable” with the input ρ ∧ θ1 ∧ ¬θ3, then
it implies that the additional condition is stated, and we may replace the
specification with θ2Uθ3.

3. Otherwise, we will try with another reduction rule, such as (UU[2→ 3]).

In fact, these rules can also be “locally applied” to subformulae. For example,
to make a local reduction of (FU), we may replace each occurrence of F(ϕUψ)
in the specification with Fψ. The only exception is for the group of rules listed in
Figure 4: observe that we have Yϕ ≈ ⊥ according to (Y), yet this does not imply

that FYϕ ≈ F⊥ holds. Hence, these rules have an “implicit condition” when
doing local application: the subformula to be reduced must occur “temporally
outermost” in the specification — i.e., the target subformula does not occur in
the scope of any temporal operators in the specification.

Input: The original specification ϕ.
Output: The reduced specification.

1 let Γ := ∅; /∗ Γ memorizes the sub-formulae with infeasible condition ∗/
2 let ∆ := {ψ ∈ (sub(ϕ) \ Γ) such that ψ matches some reduction rule(s)};
3 foreach ψ1, ψ2 ∈ ∆ s.t. ψ1 6= ψ2 do
4 if ψ1 ∈ sub(ψ2) then
5 ∆ := ∆ \ {ψ1}; /∗ i.e., we only proceed “max” subformulae ∗/
6 end

7 end
8 if ∆ = ∅ then
9 return ϕ;

10 end
11 foreach ψ ∈ ∆ do
12 let Θ := the set of rules that can be applied to ψ;
13 /∗ note that we have |Θ| ≤ 5 for each ψ ∗/
14 while Θ 6= ∅ do
15 choose R := (CondB ψ ≈ η) in Θ ;
16 if Cond is stated then

17 ϕ := ϕψη ; /∗ ϕψη is obtained from ϕ by replacing ψ with η ∗/
18 break;

19 end
20 Θ := Θ \ {R};
21 end
22 ∆ := ∆ \ {ψ};
23 if Θ = ∅ then
24 Γ := Γ ∪ {ψ} ; /∗ ψ would be excluded in the next iteration ∗/
25 end

26 end
27 goto 2;

Algorithm 1: The “max-match” rule-selection strategy.

Compositional use of reduction rules may lead to a more aggressive reduction.
For example:

1. For the task of model checking M |= FOp, we may firstly change the goal
as M |= Fp ∨Op, according to the rule (FO).

2. Now, the subformula Op is a temporally outermost one, hence we may make
a local application of (O), and then the goal becomes M |= Fp ∨ p.

3. Finally, we may change the model checking problem into M |= Fp via the
rule (Disj).

In the real implementation, we perform a “max-match” rule-selection strat-
egy, as depicted in Algorithm 1. In Line 15, for a rule “Cond B ψ ≈ η”, the
simplerCond is, and the shorter η is, the higher priority to be chosen it has.
Hence, a model-independent rule always has a higher priority than a model-
dependent one. We can see that the reduction can be accomplished within O(|ϕ|)
iterations.

3.3 Performance Analysis of the Reduction

We now try to answer the question “why we can gain a better performance
during verification if CePRe is conducted first”. To give a rigorous explanation,
we briefly revisit the implementation of symbolic model checking algorithms.

The core procedure of BDD-based LTL symbolic model checking algorithm
is to construct a tableau for the (negated) property. In the following, we refer the
tableau of ¬ϕ as T¬ϕ, and we would give an analysis on its major components
affecting the cost of model checking.
State space: The state space of T¬ϕ consists of subsets of el(ϕ), and the set
el(ϕ) can be inductively computed as follows.

– el(>) = el(⊥) = ∅.
– el(p) = {p} if p ∈ P.
– el(ϕ1 → ϕ2) = el(ϕ1) ∪ el(ϕ2).
– el(Xψ) = {Xψ} ∪ el(ψ), and el(Yψ) = {Yψ} ∪ el(ψ).
– el(ϕ1Uϕ2) = el(ϕ1)∪el(ϕ2)∪{X(ϕ1Uϕ2)} and el(ϕ1Sϕ2) = el(ϕ1)∪el(ϕ2)∪
{Y(ϕ1Sϕ2)}.

We can see from the definition that el(ϕ) = el(¬ϕ) holds. With symbolic repre-
sentation, each formula ψ ∈ el(ϕ) corresponds to a proposition in building the
tableau. Moreover, if ψ ∈ P, then no new proposition need to be introduced
(since it has already been introduced in building the symbolic representation
of M), otherwise, a fresh proposition pψ is required. Hence the total number
of newly introduced propositions equals to |el(ϕ) \ P|. From an induction over
formula’s structure, we have the following claim.

Proposition 1. |el(ϕ) \ P| equals to the number of temporal operators in ϕ.

Transitions: The transition relation of T¬ϕ is a conjunction of a set of con-
straints, and each constraint is either of the form pXψ ↔ (σ(ψ))′ or p′Yη ↔ σ(η),
where Xψ,Yη ∈ el(ϕ), and the function σ can inductively defined as follows.

– σ(⊥) = ⊥ and σ(>) = >.
– σ(p) = p for each p ∈ P.
– σ(ψ1 → ψ2) = σ(ψ1)→ σ(ψ2).
– σ(Xψ1) = pXψ1 and σ(Yψ2) = pYψ2 .
– σ(ψ1Uψ2) = σ(ψ2) ∨ σ(ψ1) ∧ pX(ψ1Uψ2) and σ(ψ1Sψ2) = σ(ψ2) ∨ σ(ψ1) ∧
pY(ψ1Uψ2).

According to the definition of el, we can see that each ψ ∈ sub(ϕ) rooted at a
future (reps. past) temporal operator exactly produces one formula Xη (resp.
Yη) in el(ϕ), and hence a new proposition pXη (resp. pYη) would be introduced.
Subsequently, each such pXη (reps. pYη) adds exactly one constraint to the
transition relation. Hence, we have the following claim.

Proposition 2. The number of constraints in the transition relation of T¬ϕ
equals to the number of temporal operators occurring in ϕ (alternatively, |el(ϕ)\
P|).

Fairness constraints: According to the tableau construction, each ψ ∈ subU(¬ϕ)
would impose a fairness constraint to T¬ϕ. Hence, the number of fairness con-
straints equals to |subU(¬ϕ)|.

With a case-by-case checking, we can show the following theorem.

Theorem 2. Let “Cond B ϕ ≈ ψ” be a reduction rule, then we have |el(ψ)\P| ≤
|el(ϕ) \ P| and |subU(ψ)| ≤ |subU(¬ϕ)|.

In contrast, the cost of BMC is quite sensitive to the encoding approach. In
a broad sense, we can categorize the encoding approaches into two fashions.

Syntactic encodings : Such kind of encodings are inductively produced w.r.t.
the formula’s structure. The very original one is presented in [1], and this is
improved in [4] by observing some properties of that encoding. In [9, 10], a
linear incremental syntactic encoding is suggested. And see [16] for a recent
translation for ECTL*.

Semantic encodings : In [5], an alternative BMC technique is provided: it
mimics the tableau-based model checking process, but it expresses the fair-
path detection upon the product model with Boolean formula.4

For the semantic encodings, the reason that we can benefit from CePRe is
exactly the same as that for BDD-based approach. Because, the encoding is a
conjunction of a k-step unrolling of M and a k-step unrolling of T¬ϕ (an unrolling
is either a partial derived linear structure, or a one ending with a lasso). The
former is usually in a fixed pattern, and for the latter, we need k×|el(ϕ)\P| new
propositions, and the sizes of Boolean formulae w.r.t the transition and fairness
constraints5 are respectively O(k × |el(ϕ) \ P|) and O(k2 × |subU(¬ϕ)|).

For a syntactic BMC encoding, one need to generate a Boolean formula of
the form EkM ∧ Ek¬ϕ, where EkM is the unrolling of M with k steps, and Ek¬ϕ
describes that such k-step unrolling would cause a violation of ϕ. In general,
EkM is almost the same in all kinds of syntactic encodings, and the key factor
affecting the cost lies in Ek¬ϕ.

Given a subformula ψ of ϕ, if we use ||Ekψ|| to denote the max length of the
Boolean formula describing that ψ is initially satisfied upon a k-step unrolling,
then it can be inductively computed as follows.

4 In [7], a “fixpoint”-based encoding is proposed, and it can also be subsumed to
semantic encodings.

5 Note that the part w.r.t. fairness constraints can be linearized.

– ||Ek⊥|| = ||Ek>|| = 0. 6

– ||Ekp || = 1 for each p ∈ P.

– ||Ekϕ1→ϕ2
|| = ||Ekϕ1

||+ ||Ekϕ2
||+ 1.

– ||EkXψ|| = ||EkYψ|| = ||Ekψ||.
– ||Ekϕ1Uϕ2

|| = ||Ekϕ1Sϕ2
|| = L(k)× ||Ekϕ1

||+ k × ||Ekϕ2
||. 7

Here, L(k) is some polynomial about k, related to the encoding approach. For
example, with the technique proposed in [1, 4], we have L(k) ∈ O(k2), whereas
L(k) ∈ O(k) in [9, 10]. This partly explains the reason that we tend to change
temporal nestifications with Boolean combinations, as done in (UU[3→ 2]) etc.

Another feature affecting the cost is the scale of propositions required for the
encoding. If we denote by vark(ϕ) the set of additional propositions which only
takes part in the encoding of Ek¬ϕ, then we have the following conclusions.

– For the techniques proposed in [1] and [4], we have vark(ϕ) = 0. i.o.w., all
propositions required in encoding Ek¬ϕ can be shared with those for EkM .

– In term of the encoding presented in [10], we need to add O(k) new propo-
sitions to vark(ϕ) for each U-subformula and for each S-subformula.

Theorem 3. Let “Cond B ϕ ≈ ψ” be a reduction rule, then we have ||Ekψ|| ≤
||Ekϕ|| and |vark(ψ)| ≤ |vark(ϕ)| in syntactic encodings.

4 Experimental Results

We have implemented CePRe as an upfront option in NuSMV8, and we have
also conducted experiments upon both industrial benchmarks and randomly
generated cases in terms of both BDD-based and bounded model checking. The
BMC encoding approach here we adapt is that proposed in [4], which is the
current BMC implementation of NuSMV.

We conduct the experiments under such platform: CPU - Intel Core Duo2
E4500 2.2GHz, Mem - 2G Bytes, OS - Ubuntu 10.04 Linux, Cudd -v2.4.1.1,
Zchaff -v2007.3.12.

4.1 Experiments upon Industrial Benchmarks

The benchmarks we choose in this paper are suggested in [2], and most of them
come from real hardware verification.

6 This is just for the case when ⊥ or > appears as a subformula in the specification,
and hence can be optimized; otherwise, we have ||Ek⊥|| = ||Ek>|| = 1.

7 Note that this case does not imply that further blow-up would be caused with deeper
nesting of temporal operators. For example, in [10], by introducing fresh propositions
and reusing, it still leads to a linear encoding for the whole formula.

8 The tool is available in http://sourceforge.net/projects/nusmvwithcepre, and
all SMV manuscripts for experiments can be found in the folder of /files/benchmark
and /files/random from that site.

Without CePRe With CePRe
Model Spec. #BDD- #R.S. #Time #BDD- #R.S. #Time

-Nodes (sec.) -Nodes (sec.)

srg5 Ptimo.ltl 7946 720 0.024 2751 720 0.016

Pti.gnv.ltl 29704 11460 0.058 5712 2880 0.012

Pti.g.ltl 64749 130048 0.048 8119 32768 0.016

abp4 P2false.ltl 99577 559104 0.200 99625 559104 0.202

P2true.ltl 61209 904384 0.066 56494 419296 0.064
Pold.ltl 52301 353536 0.060 52349 353536 0.064
Ptimo.ltl 78098 219616 0.080 78146 219616 0.088
Pti.g.ltl 8385 200704 0.060 8433 200704 0.062

dme3 P0.ltl 889773 35964 5.756 527983 26316 5.096
P1.ltl 455148 8775 0.460 409432 5505 0.374

dme5 Mdl.ltl 793942 8.64316e+06 167.346 814494 3.2097e+06 114.599

Wat.ltl 412867 1.79217e+07 302.005 967033 1.12567e+07 286.850
Ptimo.neg 508036 1.26202e+06 3.260 508081 1.26202e+06 3.280

msi w- Sched.ltl 2275558 7.31055e+07 6.612 2275655 7.31055e+07 6.632
trans Safety.ltl 1213308 3.6528e+07 7.568 1213460 3.6528e+07 7.644

Seq.ltl 1921973 3.5946e+07 93.570 1702585 1.7973e+07 94.085

Table 1. Comparative results of BDD-based MC with/without CePRe.

Table 1 provides the experimental results for BDD-based LTL symbolic
model checking. The field #Time is the executing time totally elapsed, and
the field #R.S. refers to the number of reachable states. For the experiments
“with CePRe”, both the overheads of time and space are the summations of
preprocessing and model checking. For Table 1, we have the following remarks:

1. 8 out of 16 specifications could be reduced with CePRe (and these specifi-
cations have been highlighted).

2. For the specifications that can be reduced, considerable improvements are
made during verification. For example, for the specification Pit.g.ltl, with
CePRe, the number of BDD nodes are decreased to 12.5% of that without
using CePRe.

3. When a specification cannot be reduced with CePRe, it spends a very low
extra overheads for doing preprocessings.

4. Something noteworthy we do not provide here is that: in the case that a
violated LTL specification can be reduced, the newly generated counterex-
ample is usually shorter than that of before. Among 8 specifications that can
be reduced, counterexample-lengths of Pti.nuv.ltl, Pit.g.ltl, P0.ltl and Seq.ltl
are respectively shortened to 15, 10 and 194, opposing to the original val-
ues 16, 12 and 217. Meanwhile, counterexample-lengths of others are kept
unchanged.

Table 2 gives the experimental results for BMC-based model checking, and
we here give some comments on that.

Without CePRe With CePRe #Max-
Model Spec. #N.O.C. #Time #N.O.C. #Time bound

(sec.) (sec.)

srg5 Ptimo.ltl 272567 67.391 1371 0.143 20

Pti.gnv.ltl 2101 0.116 299 0.024 6

Pti.g.ltl 21 0.016 21 0.016 1

abp4 P2false.ltl 7532 3.972 7532 3.972 17

P2true.ltl 12639 8.145 9369 7.753 20?

Pold.ltl 7499 9.087 7499 9.488 20?

Ptimo.ltl 6332 2.500 6332 2.512 16
Pti.g.ltl 11952 0.841 11952 0.976 20?

dme3 P0.ltl − − 35102 524.207 62
P1.ltl 216 0.036 167 0.048 1

dme5 Mdl.ltl 90 0.044 90 0.048 0

Wat.ltl 367 0.048 274 0.052 1
Ptimo.neg 367 0.050 277 0.058 1

msi w- Sched.ltl 14235 1.076 14235 1.078 20?

trans Safety.ltl 12439 8.441 12439 8.448 20?

Seq.ltl 1907 0.064 81 0.052 3

Table 2. Experimental results of BMC-based MC with/without CePRe.

1. With NuSMV, we need to preset a max-bound when doing bounded model
checking. The column #Max-bound gives such values — a “star mark”
means that this bound does not reach the completeness threshold. The field
#N.O.C. designates the number of clauses generated during model checking.

2. From Table 2, we can see that without CePRe the specification Pti.gnv.ltl
generates 2101 clauses when the verification stops, in contrast, it only pro-
duces 299 clauses if CePRe is switched on.

3. Another comparison is for P0.ltl upon dme3: If we don’t do any reduction,
the SAT-solver reports a SEGMENTATION FAULT at Step 35. In contrast,
using CePRe, a counterexample could be found at Step 62.

4. Since the encoding approach we adapt is taken from [4], propositions used
in the encoding are only determined by the model and the bound, thus
the number of required propositions does not change. For this reason, the
corresponding experimental results on proposition numbers are not provided.

Note that both model-independent and model-dependent rules contribute to
the reductions. For example, for the model srg5 and the specification Pti.g.ltl,
the rules (FS) and (S) are applied; meanwhile, for the model msi wtrans and the
specification Seq.ltl, the application of (UU[¬2→ 3]) is invoked.

4.2 Experiments w.r.t. Random Models and Specifications

We have also performed experiments upon randomly generated models and spec-
ifications with the tool Lbtt [14] and with the methodology suggested in [10].

For each 3 ≤ ` ≤ 7, we randomly generate 40 specifications having length `.
Subsequently, for each specification, we generate two models respectively for the
BDD-based model checking and for BMC. Hence, we totally have 200 specifica-
tions and 400 models.

For the BDD-based model checking, we give the comparative results on 1) the
scale of BDD-nodes, 2) the number of reachable states, 3) the time consumed,
and the experimental results are respectively shown in Figure 9 – Figure 11.
For bounded model checking, we have set the max-bound to 20 and we have
compared: 1) the number of clauses, and 2) the executing time, the results are
respectively shown in Figure 12 and Figure 13. Each value here we provide is
the average of the 40 executions.

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8

B
D

D
 N

od
es

x
10

00
0

Without�CePRe

With�CePRe

Length of spec.

0

5

10

15

20

25

30

2 3 4 5 6 7 8
R

ea
ch

ab
le

 s
ta

te
s

x
10

00

Without�CePRe

With�CePRe

Length of spec.

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

tim
e

(s
)

Withou�CePRe

With�CePRe

Length of spec.

Fig. 9. Results on the scale of BDD nodes in random BDD-MC experiments.

For the BDD-based model checking, there are 123 (out of 200) specifications
can be reduced, wheras for bounded model checking, the number of specifica-
tions that can be reduced is 118. Note that in this experiment, when CePRe is
switched on, extra overheads (such as time) have also been taken into account.

5 Concluding Remarks

In this paper, we present a new technique to reduce LTL specifications’ com-
plexity towards symbolic model checking, namely, CePRe. The novelty in this
technique is that the reduced formula needs not to be logically equivalent with
the original one, but just preserves the counterexample set. Moreover, the con-
dition enabling such a reduction can be usually detected with lightweight ap-
proaches, such as SAT-solving. Hence, this technique could leverage the power
of SAT-solvers.

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8

B
D

D
 N

od
es

x
10

00
0

Without�CePRe

With�CePRe

Length of spec.

0

5

10

15

20

25

30

2 3 4 5 6 7 8

R
ea

ch
ab

le
 s

ta
te

s
x

10
00

Without�CePRe

With�CePRe

Length of spec.

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

tim
e

(s
)

Withou�CePRe

With�CePRe

Length of spec.

Fig. 10. Results on reachable states in random BDD-MC experiments.

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8

B
D

D
 N

od
es

x
10

00
0

Without�CePRe

With�CePRe

Length of spec.

0

5

10

15

20

25

30

2 3 4 5 6 7 8

R
ea

ch
ab

le
 s

ta
te

s
x

10
00

Without�CePRe

With�CePRe

Length of spec.

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

tim
e

(s
)

Withou�CePRe

With�CePRe

Length of spec.

Fig. 11. Time overhead in random BDD-MC experiments.

Fig. 12. The scale of clauses in random BMC experiments.

Fig. 13. Time overhead in random BMC experiments.

The central part of CePRe is a set of reduction rules, and soundness of
these reduction rules are fairly easy to check. For the model dependent rules,
additional conditions mainly concern about the invariants and transitions, and
we do not make a sufficient use of other features, such as fairness. In this paper,
the rules are given by enumerating all possible combinations of (at most two)
temporal operators. Indeed, there might be some other reduction schemas we
are not aware.

From the experimental results, we can see that, in a statistical perspective,
a better performance and lower overhead can be achieved with CePRe.

References

1. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proceedings of the 5th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 1579 of Lecture
Notes in Computer Science, pages 193–207. Springer-Verlag, 1999.

2. A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan. Linear encodings
of bounded LTL model checking. Logical Methods in Computer Science, 2(5:5):1–
64, November 2006.

3. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking 1020 states and beyond. Information and Computation, 98(2):142–
170, 1992.

4. A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the encoding of
LTL model checking into SAT. In VMCAI’02, volume 2294 of Lecture Notes in
Computer Science, pages 196–207. Springer, 2002.

5. E. M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. The completeness
and complexity for bounded model checking. In B. Steffen and G. Levi, editors, In
5th intl. conference on Verification, Model-Checking, and Abstract-Interpretation
(VMCAI’04), volume 2937 of Lecture Notes in Computer Science, pages 85–96.
Springer-Verlag, 2004.

6. E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model check-
ing. In CAV’94, volume 818 of Lecture Notes in Computer Science, pages 415–427.
Springer-Verlag, 1994.

7. A. Frisch, D. Sheridan, and T. Walsh. A fixpoint encoding for bounded model
checking. In FMCAD’02, volume 2517, pages 238–255, 2002.

8. D. Gabbay. The declarative past and imperative future: Executable temporal logic
for interactive systems. In B. Banieqbal, editor, Temporal Logic in Specification,
volume 398 of Lecture Notes in Computer Science, pages 431–448. Springer-Verlag,
1989.

9. T. Latvala, A. Biere, K. Heljanko, and T. Junttila. Simple bounded LTL model
checking. In A. Hu and A. Martin, editors, Formal Methods in Computer-Aided
Design 2004 (FMCAD’04), volume 3312 of Lecture Notes in Computer Science,
pages 186–200. Springer-Verlag, 2004.

10. T. Latvala, A. Biere, K. Heljanko, and T. Junttila. Simple is better: Efficient
bounded model checking for past LTL. In VMCAI’05, volume 3385 of Lecture
Notes in Computer Science, pages 380–395. Springer, 2005.

11. K. L. McMillan. Symbolic Model Checking, An Approach to the State Explosion
Problem. PhD thesis, Carnegie Mellon University, Kluwer Academic Publishers,
1993.

12. A. Pnueli. The temporal logic of programs. In Proc. of 18th IEEE Symposium
on Foundation of Computer Science (FOCS’ 77), pages 46–57. IEEE Computer
Society, 1977.

13. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In
E.A. Emerson and A.P. Sistla, editors, CAV’00, volume 1855 of Lecture Notes in
Computer Science, pages 53–65. Springer-Verlag, 2000.

14. H. Taurainen and K. Heljanko. Testing LTL formula translation into Büchi au-
tomata. STTT, 4:57–70, 2002.

15. M. Y. Vardi. Branching vs. linear time: Final showdown. In TACAS’01, volume
2031 of Lecture Notes in Computer Science, pages 1–22. Springer, 2001.

16. A. Zbrzezny. A new translation from ETCL* to SAT. In M. Szczuka et al., editor,
Proceedings of the international workshop CS&P 2011, pages 589–600, September
2011.

