
SIAM J. COMPUT.
Vol. 25, No. 6, pp. 1268-1280, December 1996

() 1996 Society for Industrial and Applied Mathematics
OO7

LEARNING BEHAVIORS OF AUTOMATA FROM MULTIPLICITY
AND EQUIVALENCE QUERIES*

FRANCESCO BERGADANOi AND STEFANO VARRICCHIO$

Abstract. We consider the problem of identifying the behavior of an unknown automaton
with multiplicity in the field Q of rational numbers (Q-automaton) from multiplicity and equivalence
queries. We provide an algorithm which is polynomial in the size of the Q-automaton and in the max-
imum length of the given counterexamples. As a consequence, we have that Q-automata are probably
approximately correctly learnable (PAC-learnable) in polynomial time when multiplicity queries are
allowed. A corollary of this result is that regular languages are polynomially predictable using mem-
bership queries with respect to the representation of unambiguous nondeterministic automata. This
is important since there are unambiguous automata such that the equivalent deterministic automaton
has an exponentially larger number of states.

Key words. PAC-learning, exact ientification, learning from examples, learning from queries,
equivalence queries, multiplicity queries, membership queries, multiplicity automata, probabilistic
automata, unambiguous nondeterministic automata

AMS subject classifications. 68Q68, 68Q70, 68Q75, 68T05

1. Introduction. Learning automata from examples and from queries has been
extensively investigated in the past, and important results have been obtained re-
cently. Early on, it was noticed that the problem of exactly identifying a minimum
automaton consistent with given data is NP-complete [10]. Similar results may be
proved for regular expressions [1]. Even simply approximating the minimum con-
sistent deterministic finite automaton (DFA) problem is not feasible [14]. Gold [10]
proves that polynomial identification in the limit is still possible in the sense that an
inductive inference machine will take polynomial time when processing a new exam-

ple. However, this may seem unsatisfactory since the number of examples needed may
be arbitrarily large. A natural direction generally followed in machine learning (see
Chapter 2.3 in [6] and references therein) was to consider a learner who did not just
passively receive data but who was able to ask queries.

Some questions--called membership queries--may consist of asking an oracle
whether a particular string belongs to the target language. Angluin [2] proved that if
we start from a set of strings that lead to every reachable state in the target automa-
ton, a polynomial number of membership queries is sufficient for exact identification.
However, if such a set of strings is not available, even if we know the size n of the
target automaton, the number of queries needed is exponential in n.

Another possibility is found in equivalence queries: asking an oracle whether a

guess is correct and obtaining a counterexample if it is not. We shall also assume that
the counterexamples have a maximum length m. It may be shown [5] that there is
no polynomial-time algorithm to exactly identify automata from equivalence queries
only. However, there is a polynomial algorithm if both equivalence and membership
queries are used [3].

Received by the editors November 1, 1993; accepted for publication (in revised form) February
14, 1995.

Dimartimento di Informatica, Universit di Torino, 185 Corso Svizzera, 10149 Torino, Italy
(bergadandi.unito.it). The research of this author was supported by the European Union under IV
Framework ESPRIT, Long Term Research Project "ILP2" (contract 20237).

Dipartimento di Matematica Pura ed Applicata, Universit dell’Aquila, Via Vetoio, 67010
L’Aquila, Italy (varricch@univaq.it). The research of this author was partly supported by the Italian
Minister of Universities and by ESPRIT-EBRA project ASMICS (contract 6317).

1268

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1269

Equivalence and membership queries then seem to be a necessary requirement
for learning deterministic finite-state automata. It remains to be seen if stronger for-
malisms may be learned under the same framework. Following preliminary results
reported in [7], this paper gives a positive answer in the direction of behaviors of
nondeterministic finite-state automata, i.e., functions that assign to every string the
number of its accepting paths in a nondeterministic finite-state acceptor. Such func-
tions, as defined in the next section, will be described in the more general framework
of automata with multiplicity.

We introduce the notion of a multiplicity query. In the case of a nondetermin-
istic automaton, a multiplicity query returns the number of accepting paths for a
given string. We show that behaviors of automata with multiplicity may be identi-
fled in polynomial time with multiplicity and equivalence queries. This implies that
they are probably approximately correctly learnable (PAC-learnable) with multiplicity
queries. If we restrict the result to unambiguous nondeterministic automata, multi-
plicity queries must return either 0 or 1 and reduce to membership queries. As a
consequence of our main result, we may then PAC-learn with membership queries a
representation of a regular language L in polynomial time with respect to the size
of an unambiguous nondeterministic automaton that accepts L. This is an improve-
ment over the result of Angluin [3] because there are unambiguous automata such
that the equivalent DFA has an exponentially larger number of states [16]. However,
it must be noted that the learned representation of the regular language is not an
unambiguous nondeterministic automaton. Therefore, unambiguous nondeterminis-
tic finite automata (NFAs) are only shown to be PAC-predictable with membership
queries. Our main result also applies to probabilistic automata. In that case, the mul-
tiplicity of a given string represents the probability of accepting that string. Again,
our main result implies the PAC-predictability of probabilistic automata with mul-
tiplicity queries of this kind. This is an improvement over the results of Tzeng [17],
where stronger queries are needed, giving the probability of reaching a given state
with a given string.

2. Multiplicity automata. Automata with multiplicity, also called multiplic-
ity automata, are the most important generalizations of classical automata theory. In
recent years, their significant development has helped in solving old problems in au-
tomata theory. In [11], using multiplicity automata, the decidability of the equivalence
problem for deterministic multitape automata has been solved; in [18], a similar result
has been shown for unambiguous regular languages in a free partially commutative
monoid.

Let M be an NFA. We can consider the so-called behavior of M, which is the
map that associates with any word the number of its different accepting paths. More
generally, we can assign a multiplicity to the initial states, the final states, and the
edges of the automaton so that the corresponding behavior must take into account the
assigned multiplicities. In this way, we can construct a theory which is general enough
to contain classical and probabilistic automata as particular objects. Multiplicity
automata have been extensively studied in theoretical computer science, and we refer
to [8], [9], and [15]; here we recall some notation and definitions.

Let K be a field and A* be the free monoid over a finite alphabet A; we consider
the set KA* of all the applications S A* K. An element S E KA* will be called
a K-subset of A* or simply a K-set. Following the standard notation on K-sets, for
any S E K* and u A*, we will denote S(u) by (S, u). In what follows, we shall
consider (-sets, where (denotes the field of rational numbers.

1270 F. BERGADANO AND S. VARRICCHIO

We denote by nxn the set of all square n x n matrices with entries in Q. We
shall consider Qnxn to be equipped with the row-by-column product; the identity
matrix is denoted by Id. A map #" A* (@nxn is a morphism if #(e) Id and for
any w e A+, w ala2.. "an, a e A, we have it(w)= it(al)it(a2).., it(an). A Q-set
S E QA* is called recognizable or representable if there exists a positive integer n, A,
1’ E Qn and a morphism #" A* -, Q,xn such that for any w A*

(s,

where and - are to be considered row and column vectors, respectively. The triple
(A, it,-) is called a linear representation of S of dimension n or a Q-automaton for S.

A nondeterrninistic automaton is a 5-tuple M (A, Q, E,I, F), where A is the
input alphabet, Q is a finite set of states, E c_ Q x A x Q is a set of edges, and I, F C_ Q
are, respectively, the sets of the initial and final states. Let w ala2...an A*.
An accepting path for w is any sequence (pl,al,p2)(p2, a2,P3)’"(p,an,Pn+)
with pl I, Pn+ F and (p, a, p+) E E for 1 _< _< n. The language accepted
by M is the set L(M) of all the words which have at least one accepting path; M
is unambiguous if for any word w L(M), there exists only one accepting path for
w. We can associate with M a <}-set SM QA*, also called the behavior of M,
defined as follows: for any w A*, (SM, w) is the number of different paths which are
accepting for w. Let Q 1, 2,..., n and let A, - e Qn be the characteristic vectors,
respectively, of I and F; consider the morphism # A* -- <n, defined by #(a)j 1
if (i, a, j) E and #(a)ij 0 otherwise. Then we can easily prove (el. [9, p. 137])
that for any w A*

(S,) ().

In particular, SM is representable and, when M is unambiguous, SM corresponds to
the characteristic function of L(M).

In general, a linear representation (A, #, 7) of dimension n can be regarded as
an "automaton" whose set of states is Q {1, 2,... n}; initial and final states are
defined as Q-subsets of Q, while edges are a <-subset of Q x A x Q. Indeed, A
(resp. 7i) represents the multiplicity of as an initial state (resp. final state) and
#(a),j represents the multiplicity of the edge (i, a, j). Probabilistic automata are
particular Q-automata [13]. A probabilistic automaton P can be represented by
means of a linear representation (A it 7) with the following constraints: -n A 1i=1

nand j=it(a),j 1 for any a A and 6 {1,2,...,n}; moreover, 0 < A < 1,
7 6 {0, 1}, and 0 <_ it(a)i,j <_ 1 for any a E A and i,j {1,2,...,n}. InformallY, A
represents the probability of being an initial state, / is 1 iff is an accepting state,
and it(a),j represents the probability of arriving in state j, starting from state i, and
reading the input symbol a. Then the probability that P accepts when started with
the distribution probability A on Q and reading w is exactly Ait(w)7. Finally, we shall
need the following definitions.

DEFINITION 2.1. For any string u A* and a Q-set S, the Q-set Su is defined
by (Vw e A*)(S, w) (S, uw).

DEFINITION 2.2. For any set of strings E C_ A*,

S------E T iff (Vw 6 E)(S, w): (T, w).
S-- T stands for S ----A* T.

We shll use an oracle for answering multiplicity queries for any string w, i.e., for
providing the value of (S, w), where S is the trget Q-set.

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1271

3. Observation tables. Based on previous work by Angluin on deterministic
finite-state automata [3], we now introduce the concept of an observation table for a
Q-set S.

DEFINITION 3.1. Let S E (A*; an observation table is a triple 2/" (P, E,T),
where P and E are sets of strings, P is prefix-closed, E is suffix-closed, and T
(PLJPA)E - gives observed values of S, i.e., for all strings w E (P3PA)E, T(w)

Consequently, an observation table provides particular values for the target Q-set
S. Such values are obtained by means of multiplicity queries once the sets P and E
are fixed. In Angluin’s method for the exact identification of regular languages, the
set P corresponds to states in an accepting DFA and the table contains some of the
transitions. Here P determines a set {Slu E P} that will be useful in defining the
target Q-set S via linear dependencies. We then have the corresponding notions of
closed and consistent observation tables.

DEFINITION 3.2. An observation table (P, E,T) is closed iff Vu E P, Va E A,
there exists a coefficient a E Q for each v E P such that

(1) Sa ----E E aS.
vEP

DEFINITION 3.3. An observation table (P, E,T) is consistent iff for any choice

of coefficients/v E Q for each v E P,

E/S ----E 0 =V (Va E A) ESa =--E O.
vEP vEP

In Angluin’s work (see also [2]), a natural notion of completeness was defined for
P that required that all states in the target DFA have a representative in P. Here we
have an analogous notion that requires that {Slu E P} be sufficient to establish all
of the linear dependencies needed.

DEFINITION 3.4. P is a complete set of strings for S iff Vu E P, Va E A, there
exists a coefficient)v E Q for each v E P such that

=_

vEP

When a table (P, E, T) is consistent and P is complete, the linear dependencies
that are observed on E are valid for any string in A*, as proved in the following.

THEOREM 3.5. Let (P,E,T) be a consistent observation table, where P is a
complete set of strings for S; then

(4) E/S =--E 0 E/3vS =- O.
vP vP

Proof. We shall prove the theorem by induction on lYl by showing that for any
yEA*,

}2 o o.
vEP vEP

Base. y e and the thesis is trivially true.
Inductive step. Let y wb with b E A.

1272 F. BERGADANO AND S. VARRICCHIO

By using the completeness, of P a sufficient number of times, given v E P, we may
find coefficients A,v, u E P, such that

(6) & ,s.
uEP

Then for x e E,

vP vP vP uP

() z,(&,x)= (s, x),
uPvP uP

where u vAu,..
vP

By the inductive hypothesis, veP vSvw E 0; then, using (6),

vP uP uP

Again using the consistency of the table, we have

(s) s 0,
uP

and, using this in (7), veP vSwb E O.
This completes the proof of (5). The theorem then follows from the fact that,

since e E,

Consequently, the linear dependencies that show the gable is cloed are also valid
in A*.

CoaoaaY a.6. et (P, E,T) be consistent observation tble, where P is
complete set of strings for S; then for a A,

(10 s s s s.
vP vP

Pro@ Since P is complete, S evS for some v Q. Therefore, if
Su vvSv, then ve(- v)Sv. O. By Theorem a., ve(-
v)Sv 0, and

vP vP. he learning algorghm, As is explained in what follows, there are stages
in which the learning process builds a consistent and closed table. Here we only want
to show how from such a table (P, N, T), we can guess a Q-set M(P, E, T) by basing
its representation upon the existing linear dependencies:

Let P {1,..., k}, with 1 e.

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1273

For all a E A, compute (a) that satisfies

(11) Su,a =--E

Such a matrix exists because the table is closed. Moreover, the values of
can be computed by solving the system of linear equations (Sua, v) = j x,j(S,, v)
with v E E in the unknowns xi,j.

Let (1,0,...,0) and ((Sul,e), (Su,e),..., (Su,e)). The value of
(Su, e) is found in the table since uj P and e E E. Obviously, ft(a)u,,u is the value
at row and columnj of the matrix (a). Let t(ala2,..ar) ft(al)ft(a2)...ft(ar),
ai A. Define the constructed Q-set M with (M, w) t(w)/.

THEOREM 4.1. if P is a complete set of strings for S and (.P, E, T) is a closed
and consistent table, then M(P, E, T) S.

Proof. Again, let P {u,..., uk} with u e. Since the table is closed, for any
a e A Sua =--E j ft(a),S and by Corollary 3.6, Su,a - (a),Su, This
may be easily generalized to any string t in A by induction on Iti, we derive

f(t)u, Su. In fact let t = sb with b E A. By the induction hypothesis, we have

Sus =- k ft(S)u,uSu, which implies that Su,sa k (S)u,u Sua. On the other
hand, from Sua --- f(a),uSuj we derive Su =- ’. ft(s)u,,uft(a)u,uSu
j f(sa)u,,Su. Then

(12) t) (s,,,,,

Since u=e, we have

(S, t) = E(t)l, (s, e) (t)/= (M, t).
J

We are now left with three problems: (i) closing a table; (ii) making a table con-
sistent; (iii) making P complete. However, we will obtain completeness only indirectly
and will return to it later.

4.1. Closing a table. Given a table (P E,T) and u P, suppose that Su is
linearly independent of {Svlv P} with respect to E in the sense that there are no
coefficients Au,v such that Su -E EvP)u,vSv. In this case ua is added to P, and
the table is again checked for closure.

This procedure must terminate; more precisely, if the correct Q-set S is repre-
sentable with (S, x) A#(x),. where A, E Qn and # A* Qnn is a morphism,
then at most n strings can be added to P when closing the table.

In fact, it should be noted that when ua is added to P as indicated above, the
dimension of {Att(v)lv e P} as a subset of the vector space Qn is increased by one.
Otherwise, i#(ua) would be equal to veP vi#(v) for some coefficients v and

(Su, x) = (S, uax) = i#(ua)#(x) = EA#(v)#(x)/ E flv(Sv, x),

i.e., Sua would depend linearly on {S, lv e P}. Since the dimension of {.#(v)lv e P}
is at most n, we cannot close the table more than n times. The above discussion does
not depend on E.

1274 F. BERGADANO AND S. VARRICCHIO

4.2. Making tables consistent. Given a table (P, E, T) and a symbol a E A,
consider the systems of linear equations

vEP vEP

with/v as unknowns. Check if every solution of system (a) is also a solution of system
(b). In this case, the table is consistent. Otherwise, let/, v E P, be some solutions
of (a) that are not solutions of (b) and let x E such that -vEP/.(S., x) 0. Add
ax to E. A method for checking whether every solution of (a) is also a solution of (b)
is outlined in 4.4.

Suppose that S has a linear representation (A, #, 7) of dimension n; there cannot
be more than n such additions to E because every time a new string ax is added, the
dimension of {#(w)/Iw E} is increased by one. In fact, if #(ax)’7 EwEE
then

E (Sva, x) E

vEP wEE

wE vP

wE vP

i.e., ax would not have been added to E.

4.3. The algorithm. We may now describe the procedure for exactly identifying
from multiplicity queries and counterexamples.

T ,- ({e},{e},T), where
Repeat

make the table closed and consistent (P and E are extended and the en-
tries of T are filled in by multiplicity queries); while closing the table, the
hypothesized Q-set M is obtained;
ask for a counterexample t to M(P, E, T) by means of an equivalence query;
add t and its prefixes to P

until M is correct.

The main loop makes the table closed and consistent as described in 4.1 and 4.2
and then constructs a guess M which is based on the observed linear dependencies.
We shall now prove that if S has a linear representation (/k, #, 7) of dimension n, after
at most n equivalence queries, we will have a correct guess, i.e., M S. We need the
following result.

LEMMA 4.2. Let u P and t uA*, and suppose that for every x A* such
that t uxz, Sx depends linearly on {Svlv P}. Then for every prefix ux of t, after
the table has been made closed and consistent during the execution of the algorithm,
we have

(13)
vEP

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1275

where re" A* --, Qak is the morphism that corresponds to the observed linear depen-
dencies as computed in (11), which is obtained when closing the table.

Proof (by induction on Ixl).
Base. x and Su =--E -veP [t(e)u,vSv since/t(e) is the identity matrix.
Inductive step. Let x yb and assume that Suy =--E -veP [t(y),Sv.
Since uy is a prefix of t, Sy must depend linearly on (S, lv E P}, i.e.,

This along with the inductive hypothesis gives

(15) E(a (y),v)S ----E 0.
vP

Then, since the table is consistent,

(16) E(a f(y),)Sb =--E O, i.e., E avS,b =--E E f(Y),Svb.
vP vP vP

Using (14) again, we have

(17) Su =--E E [t(y)u,vSb.
vP

Since v E P, we may substitute Sb EweP (b)v,S, in the previous equation,
which yields

THEOREM 4.3. Let (S, t) : (M, t). Then there is a prefix to of t such that Sto is
linearly independent of {Slv P}.

Proof. If all prefixes to of t would make Sto depend linearly on {Slv P},
then, by setting u e in the previous lemma and because e E, (S, t) (St,)
Ep f(t),v(Sv, e) t(t). Then, however, (M, t) J(t)/would not be different
from (S, t). [:]

COROLLARY 4.4. If S has a linear representation of dimension n, then after at
most n iterations, the algorithm stops.

Proof. Again suppose that the correct Q-set S is representable with (S,x)
Att(x)y, where A, y Qn and tt A* -- Qnn. The algorithm will ask for a coun-
terexample t and will add t and all of its prefixes to P. By Theorem 4.3, at each
iteration, some prefix to of the counterexample t is such that Sto is linearly inde-
pendent of {Slu P}. However, (Sto,X) (S, fox) #(to)#(x)’y and for u P,
(S,x) (S, ux) A#(u)#(x)/. Consequently, the dimension of {A#(u)lu P}
is increased by one when to is added to P. In fact, if by way of contradiction,
i#(to) -epSA#(u) before t and its prefixes were added to P, then for all
x e A*, (Sto,X) Att(to)tt(x)/ EupSu)(u)(x), EupSu(Su,x), i.e.,
Sto would depend linearly on {Sulu P}. However, the dimension of {A#(u)lu E P}
cannot be larger than n. [:]

1276 F. BERGADANO AND S. VARRICCHIO

4.4. Complexity analysis. All we need to do is reorganize some of the previous
results and determine the complexity of computing the linear dependencies. Let n be
the dimension of a linear representation of S. We have the following:

The main loop in the algorithm is repeated at most n times (Corollary 4.4).
IEI _< (4.2).
For the cardinality of P, the discussion is slightly more involved. From the

discussions of 4.1 and 4.3, we see that every time either (i) a string is added to
P while closing the table or (ii) a counterexample is processed, the dimension of
{A#(v)lv E P} is increased by at least one. The worst case is when this always
happens with the counterexamples and the main loop in the algorithm is repeated
exactly n times, because the prefixes of the counterexamples also need to be added
to P. If m is the maximum length of a counterexample, then IP[_< nm.

For every a E A and for every u P, the table needs to be closed. This
amounts to solving at most knm systems of IEI equations in [PI unknowns--in the
worst case, n simultaneous equations in nm unknowns. This can be done with Gauss’s
method with complexity O(nam). Consequently, the complexity of closing the table
is O(kn4m2). We assume that the entries of the table are rational numbers of limited
size; otherwise, the basic arithmetic operations involved in solving the systems of
equations would be of arbitrary complexity. In general, it will be sufficient to require
the entries of the table to be polynomial in n.

Checking for consistency was described in 4.2 and requires the algorithm to
confront the two systems of equations

with/v as unknowns. The table is consistent if every solution of (a) is also a solution
of (b). This is the same as checking whether the IEI equations of system (b) do not
add additional constraints, i.e., if the corresponding vectors of coefficients depend
linearly on those of system (a). In the worst case, this operation requires checking
whether there exists a solution for n systems of nm equations in n unknowns with
complexity O(n4m). Since the operation must be performed for every a A, the
overall complexity of checking for consistency is O(kn4m). The reason why we have
at most n systems of nm equations in n unknowns is as follows. As explained above, in
the worst case, IEI n and IPI nm. Let P {ul,..., Unm} and E {el,..., en}.
Then system (a) is of the following type:

/1 (Su C1) -- -t- inm (Unm, el) 0

/1 (-Ul, en)Jl-""" Jr-/nrn (unm, en)---0.
For each of the n equations of system (b) of the type

1 (S1, aei +... + nm S,r aei 0,

we have to check whether the coefficients (Sk, aei) depend linearly on those of system
(a), i.e., we have to check whether there exists a solution for the following system of
nm equations in n unknowns:

l(Ul,el)Jr-...nt-n(u,en) (ul,aci)

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1277

Filling the table is a task of lower complexity with respect to those considered
above and does not influence the final result. In fact, in the worst case, the table is
of size IEIIPI n2m. Each multiplicity query for filling one entry of the table will
be for a string of length at most m + 2n + 1. In fact, strings in P get as long as m
when a counterexample is found, and one character may be added to them at most
n times when closing the table. Strings in E are obtained by adding a one-character
prefix to strings previously added to E, and this may be done at most n times. An
extra character a E E is added at the time of the multiplicity query between a string
in P and a string in E. This is done for all a E E. The overall complexity of filling
the table is O(kn2m(n + m)).

Since the main loop is repeated at most n times, the overall complexity of the
algorithm is O(kn5m2). Together with the fact that when the main loop terminates,
M S, this establishes our main result.

THEOREM 4.5. Recognizable Q-sets may be exactly identified in polynomial time

from queries and counterexamples.
This may be seen as a generalization of Angluin’s result for finite-state automata

[3]. It should be noted that Theorem 4.1 was the inspiration behind the algorithm
but has not been used to obtain the above result. In particular, the completeness of
P was not directly verified in the algorithm nor used in the proofs. However, when
the algorithm terminates, the set P must be complete, as shown below.

5. Complete sets of strings. If u P, because tables are kept closed during
the execution of the learning algorithm, for any a A,

(18) S = E/(a),vS.
vEP

In order to proceed with our discussion, we need an assumption that is quite obvious:
if also ua P, then the linear dependencies for Sa are chosen in the easiest way, i.e.,
with

(19) t(a)u,ua 1 and t(a)u,v 0 for v = ua.

Equation (19) is acceptable without loss of generality because it provides a hypothe-
sized value that satisfies (18). If ua P, then any choice of is acceptable as long
as it satisfies (18). If this choice is made, the following holds.

LEMMA 5.1. Let u P, and suppose that when ua P, (a)u,v is chosen as in
equation (19), then for any v P, ft(u), 1 if v u ft(u), 0 otherwise.

Proof (by induction on]ul).
Base. Since/ is a morphism, (e) must be the identity matrix, i.e.,/(e), 1

when v e and is 0 elsewhere, which is what we need to prove.
Inductive step. Let u xa, where x P as u P and P is prefix-closed.

(20) t(xa), E t(x).,wt(a),v.

By the inductive hypothesis, /(x), 0 except when w x, where it is equal
to 1. Then the right-hand side of the previous equation reduces to

(21) t(x)e,xt(a)x,v 1 (a)x,v.

1278 F. BERGADANO AND S. VARRICCHIO

By (19) and because xa u c P, this is equal to 1 when v xa and is 0
elsewhere. []

LEMMA 5.2. Under the same assumptions as in Lemma 5.1, for u P,

Proof.

zGP

By the previous lemma, the right-hand side is equal to

(23) (u),uft(W)u,v 1 ft(W)u,v.
THEOREM 5.3. Suppose that when ua P, f(a), is chosen as in equation (19).

Then when M =_ S,

(24) Sua E fz(a),,S.
vEP

Consequently, when the guess M is correct, P must be complete.
Proof. We shall show that both sides of (24), when applied to any string x A*

produce the same value.

(25)

(ua, X) (S, ?.tax) (M, uax)

E fz(uax),(S,e)
vEP

E ft(aX)u,v(Sv,) (by Lemma 5.2).
v6P

E f(a)u,v(S, vx) E ft(a)u,v(M, vx)
v6P vP

v6P w6P

(a), (z),(Sw,e) (by Lemma
vP wP

wPvP

P

This is equal to (25) after substituting v for w. [3

Therefore, the completeness of P may be seen as a characterization of success
when we learn that S, at least when [t(ua) for ua P, is chosen as to verify (19).
Moreover, it may be noted that if we start with a prefix-closed set P which is already
complete, by virtue of Theorem 4.1, S may be exactly identified in polynomial time
by means of multiplicity queries only. The algorithm is as follows:

1. 7" +-- (P, {e}, T), where T is filled in with multiplicity queries.
2. Make the table 7" consistent, and fill in missing values with queries.
3. Output M(T).
The table will certainly be closed since P is complete, and by Theorem 4.1, the

final guess M must be correct. This result should be compared with [2], where a
similar framework is described for finite-state automata: a regular language may be
exactly identified in polynomial time using only membership queries, if we are given
a complete set of representatives for Nerode’s equivalence classes.

LEARNING BEHAVIORS OF AUTOMATA FROM QUERIES 1279

6. PAC-learnability and extensions. The learning method above also leads
to some PAC-learnability results. If we do not require exact identification of the
target @-set but are only interested in PAC-learnability, equivalence queries may be
eliminated. Instead of asking an equivalence query, the algorithm will sample example
strings and check whether the Q-set learned at some stage is correct for these strings.
The technique follows strictly from that used for DFAs in [3]. Consequently, Q-
automata are polynomially PAC-learnable when multiplicity queries are allowed. As a
further consequence, nondeterministic automata may be PAC-predicted in polynomial
time with multiplicity queries. It should be noted that negative results have been
proved if only membership queries are available [4]. We do not have the proper
PAC-learnability of NFAs with multiplicity queries because the representation that is
learned is a Q-automaton, not an NFA.

If a nondeterministic automaton is unambiguous, the corresponding Q-set S will
be such that for any string w, (S, w) is either 0 or 1. In this case, then, multiplicity
queries reduce to ordinary membership queries. Now suppose that a regular language
L is recognized by an unambiguous NFA M with a corresponding Q-set S. This
paper gives an algorithm for PAC-learning a representation of S in polynomial time
with respect to the number of states of M if membership queries are allowed. In
other words, regular languages are polynomially predictable using membership queries
with respect to the representation of unambiguous nondeterministic automata. The
importance of this lies in the fact that there are unambiguous NFAs such that the
equivalent DFA has an exponentially larger number of states [16]. We then have
a substantial improvement over previous results that established predictability with
respect to a deterministic representation. It should be emphasized that the result only
holds for unambiguous NFAs, and general NFAs are not predictable with membership
queries, as shown in [4].

PAC-predictability is also established for probabilistic automata if multiplicity
queries are allowed. As explained in 2, probabilistic automata may be represented
by particular Q-automata, and therefore they may be PAC-predicted with multiplic-
ity queries. Again, we do not prove proper PAC-learnability because the learned
representation is not a probabilistic automaton. In this case, multiplicity queries
correspond to asking for the exact probability of accepting a given string. Previous
results [17] required stronger types of queries. An interesting open problem is whether
the present algorithm can be extended to the case where the oracle only provides an
approximate probability of accepting some string. This would be more natural since
one could think of estimating the probability by reading the string with the target
probabilistic automaton several times.

Acknowledgments. We would like to thank the anonymous referees for the
many remarks that helped us improve upon the initial version of this article.

REFERENCES

[1] D. ANGLUIN, On the complexity of minimum inference of regular sets, Inform. and Control, 39
(1978), pp. 337-350.

[2] , A note on the number of queries needed to identify regular languages, Inform. and
Control, 51 (1981), pp. 76-87.

[3] , Learning regular sets from queries and counterexamples, Inform. and Comput., 75
(1987), pp. 87-106.

[4] D. ANGLUIN AND M. KHARITONOV, When won’t membership queries help?, in Proc. 23rd Sym-
posium on the Theory of Computing, Association for Computing Machinery, New York,
1991, pp. 444-454.

1280 F. BERGADANO AND S. VARRICCHIO

[5] D. ANGLUIN, Negative results for equivalence queries, Mach. Learning, 5 (1990), pp. 121-150.
[6]. F. BERGADANO ’AND D. GUNETTI, Inductive Logic Programming: From Machine Learning to

Software Engineering, MIT Press, Cambridge, MA, 1996.
[7] F, BERGADANO AND S, VARRICCHIO, Learning behaviours of automata from multiplicity and

equivalence queries, in Proc, 1994 Italian Conference on Algorithms and Complexity, Lec-
ture Notes in Comput. Sci., 778, Springer-Verlag, Berlin, New York, Heidelberg, 1994,. 4-.

[8] J. BERSTEL AND C. REUTENAUER, Rational Series and Their Languages, Springer-Verlag,
Berlin, 1988.

[9] S. EILENBERG, Automata, Languages and Machines, Vol. A, Academic Press, New York, 1974.
[10] M, E. GOLD, Complexity of automaton identification from given data, Inform. and Control, 37

(1978), pp. 302-320.
[11] T. HARJU AND J. KARHUMAKI, Decidability of the multiplicity equivalence problem of multitape

finite automata, Proc. 22nd Symposium on the Theory of Computing, Association for
Computing Machinery, New York, 1990, pp. 477-481.

[12] B. K. NATARAJAN, Machine Learning: A Theoretical Approach, Morgan Kaufmann, San Mateo,
CA, 1991.

[13] A. PAZ, Introduction to Probabilistic Automata, Academic Press, New York, 1991.
[14] L. PTT AND M. K. WARMUTH, The minimum consistent DFA problem cannot be approximated

within any polynomial, J. Assoc. Comput. Mach., 40 (1993), pp. 95-142.
[15] A. SALOMAA AND M. SOITTOLA, Automata Theoretic Aspects of Formal Power Series, Springer-

Verlag, New York, 1978.
[16] R. E. STEARNS AND H, B. HUNT, On the equivalence and containment problems for unam.

biguous regular expressions, regular grammars, and finite automata, SIAM J. Comput., 14
(1985), pp. 598-611.

[17] W. TZENG, Learning probabilistic automata and markov chains via queries, Mach. Learning, 8
(1992), pp. 151-166.

[18] S. VARRICCHIO, On the decidability of the equivalence problem for partially commutative ratio-
nal power series, Theoret. Comput. Sci,, 99 (1992), pp. 291-299.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

