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Abstract.  We present a sound and complete axiomatisation for the 
linear time mu-calculus vTL, a language extending standard linear time 
temporal logic with fixpoint operators. The completeness proof is based 
on a new bi-aconjunctive non-alternating normal form for vTL-formulae. 

1 I n t r o d u c t i o n  

This paper solves the problem of providing a complete natural axiomatisation 
for the linear time mu-calculus vTL.  The logic vTL  is an extension of standard 
linear time temporal logic TL by fixpoint operators [3], allowing the expression 
of all w-regular properties (for surveys of the area, see [5, 13]). It is express- 
ively equivalent to Wolper's extended temporal logic E T L  [21, 22]. However, 
requiring only the single nezttime temporal operator, the fixpoint-based vTL  
is syntactically more elegant than ETL,  which requires an infinite family of 
temporal operators. 

Although vTL  is syntactically concise and straightforward, the axiomatisa- 
tion problem for it has turned out to be rather intricate. The main culprit for 
this is the minimal fixpoint operator p, or more exactly, the prevention of infinite 
regeneration of minimal fixpoints when trying to build a model for a consistent 
formula. 

Previously the axiomatisation of vTL  has been addressed by at least Licht- 
enstein [8] and Dam [4]. A closely related question, axiomatising the modal 
mu-calculus, a fixpoint formalism similar to vTL  but interpreted over branching 
structures, has been examined by Kozen [7] and Walukiewicz [19, 20]. 

Generalising, there have been two approaches to showing the satisfiability 
of a consistent formula, the essential problem of the completeness proof of an 
axiomatisation. First, one may try to devise a method of constructing a model 
directly from a given consistent formula. In this line, Kozen [7] introduced the 
concept of aconjunctivity, restricting the structure of minimal fixpoint formu- 
lae to make it easier to build a model of a consistent formula, and showed 
the completeness of an axiomatisation of the modal mu-calculus restricted to 
the aconjunctive fragment of the language. The same approach was pursued 
by Lichtenstein in [8] to show the completeness of an axiomatisation of vTL  
restricted to a class of aconjunctive formulae. 
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Another approach, and the one adopted here, is defining some normal form 
for formulae, and showing that any formula can be provably transformed to 
this normal form. If we know how to build a model for a consistent formula in 
this form, the satisfiability of any consistent formula has been shown. Pushing 
formulae to the normal form can be done inductively, by providing for every 
operator of the language a corresponding transformation. In the context of a 
related calculus SIS ,  the monadic second order theory of one successor, this 
approach was already used early by Siefkes in [12]. In the context of uTL, Dam 
[4] used Biichi automata -like normal forms to show the completeness of an 
axiomatisation of uTL containing an 'impure' axiom stating that a formula and 
its normal form are equivalent. 

The axiomatisation of uTL used here is essentially the same as in [7, 8]. 
The completeness proof is based on a new normal form, the bi-aconjunctive 
non-alternating form for uTL formulae. The crucial proPerty of such formulae is 
that not only is it easy to construct a model of a consistent formula, but the same 
holds also of its negation. In our opinion, the remarkable thing about the normal 
form and the completeness proof here is that after the expressive equivalence of 
the full t, TL  and the fragment in the normal form has been established by a 
purely semantic argument (section 3), the semantic equivalence can be lifted to 
the level of provability rather elegantly on the basis of what is already known 
about aconjunctivity (section 4). 

Very recently, Igor Walukiewicz has presented a completeness proof for an 
axiomatisation of the modal mu-calculus [20], based on disjunctive normal forms, 
resembling nondeterministic tree automata. This result naturally carries over 
from the modal mu-calculus to the the linear mu-calculus uTL, as well. However, 
the proof involves an extremely complex argument using games between tableaux 
and a priority technique to create a winning strategy in a game. In this respect 
the easy negatability of formulae in the bi-aconjunctive non-alternating normal 
form, a property the disjunctive normal form lacks, makes the approach here 
considerably more straightforward. Bar one observation that was used in passing 
in Walukiewicz's work and has been adopted here to give a more elegant solution 
(see proof of Lemma 36), the work presented in the current paper was carried 
out independently. It should be pointed out that the argument presented here 
for uTL does not appear to carry over to the modal case, so Walukiewicz's proof 
is more general in this sense. 

2 P r e l i m i n a r i e s  

Let us recall definitions of linear mu-calculus syntax and semantics, and intro- 
duce some related notation. The language is built from propositions, standard 
boolean connectives, the minimal fixpoint operator p, and a temporal operator, 
the nezttime (9. The maximal fixpoint operator v is introduced as a derived 
operator. To keep the presentation Simple, we assume that all the models on 
which uTL-formulae are interpreted are infinite. This means that we do not 
need separate weak and strong nexttime operators. 
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D e f i n i t i o n  1. 27" (L -~) is the set of finite (infinite) strings of elements of 27, I s] 
is the length of s, and e the empty string. If s = al .. �9 an �9 �9 sl is the element 
ai. Ord is the class of ordinals, and _-< their standard ordering. 

D e f i n i t i o n 2 .  Fix a countable set Z of propositions. The formulae of v T L  are 
defined by the abstract syntax: 

r : := z 17r I r ^ r er  ~z.r  

where z varies over Z.  In/~z.r each occurrence of z in r is required to be positive, 
i.e. in the scope of an even number of negations. The derived operators V, ==~, 
r T,  .1_ are as usual, and vz stands for ~z.r = -,pz.',r The symbol ~r 
refers to both  the p and t~-operators. The notation r _ r means that  r is a 
subformula of r 

An occurrence of a variable z in a formula r is bound if[ it is within a subfor- 
mula trz.r I _ r and free otherwise. If  r r  Cn are formulae and z l , . . . ,  Zn 
variables, r 1 6 2  Cn/zn] is the result of simultaneously substituting each 
r for all free occurrences of zi in r If some free variable z I of r would be 
captured by a fixpoint crz' of r in the substitution, the bound variable z' in r is 
systematically renamed. 

An occurrence of a variable z in a formula r is guarded iff it is in a subformula 
of the type |162 A formula r is guarded iff for every fixpoint subformula az . r  ~ 
of r every occurrence of z in r is guarded. 

D e f i n i t i o n  3. A m odelis an infinite sequence of sets of propositions, M E (2z)  ~. 
The set of states of M satisfying a formula r denoted I]r is defined by 

IIZIIM = {i �9 N I z �9 Mi}, II"n•llM = N \ IIr lie A r -"- IIr n IlCtlIM, 
II|162 = {i  �9 g l i + 1 �9 IIr II~'z'r = A { W  C_ g I IIr C_ W},  
where M[W/z] is defined by: M[W/z], = M , U ( z }  i f / � 9  W, M[W/z]i = Mi \ {z} 
i f i � 9  

A formula r is true at state i of M,  denoted by M, i ~ r i~r i �9 IIr A 
formula r is universally valid, denoted by ~ r iff M, m ~ r for all models M 
and all states m of M. A formula r is satisfiable iff there exists a model M and 
a state m of M such that  M, m ~ r 

D e f i n i t i o n 4 .  For all ordinals tr �9 Ord, the fizpoint approximants I~az.r and 
tJ~z.r are defined inductively by: ~t~162 = .1_, t~~162 = T, ~ + 1 z . r  = r162 
~tXz'r = V~x/~ '~z . r  and L, Xz.r = A,~.~x t'~z.r where ~ is a limit ordinal. 

P r o p o s i t i o n 5  ( K n a s t e r - T a r s k i ) .  /~z.r = V,~ ft~z.r and t~z.r = A~ t~z . r  �9 

D e f i n i t i o n 6 .  The closure of a formula r denoted cl(r is the minimal set of 
formulae that  contains r and fulfils: if r A r  �9 cl(r then r r  �9 cl(r if --r �9 
cl(r or |162 �9 cl(r then r �9 c1(r and if pz . r  �9 c1(r then r162 �9 cl(r 

Using the derived operators, every formula can be expressed in a form where 
negations are applied only to atomic propositions, i.e. in the positive normal 
form as defined e.g. in [13]. 
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~ p p l i c a t i o n  ~ application 

VL i, F u { ~ v ~ b ' } , d  VR i, F U { r  
i, r u  {~b}, d i, r U  {~b'}, d 

i, r u { ~ ^ ~ ' } , d  
A 

i, r u {0 ,~ '} ,  d 

i, r u { ~ . ~ } ,  d i, r u {~}, d 2 a 1 U 
i, r u {u}, d. (u, az.~) i, r u {~[u/z]}, d 

i, r u { e ~ l , . . . , |  d 
| i + 1 ,  {~bl . . . .  ,~bk}, d 3 

Note: 1: u does not appear in d 2: d(u) = az.(~ 
3: r c_ Z u {-~z I z ~ Z}.  
In each rule, F is disjoint from the other set 

Fig. 1. Tableau rules 

Def in i t ionT .  A formula r is in positive normal form (abbr. pn~ iff it only 
contains atomic propositions, their negations, and the V, A, | p and u-operators. 

If r is a formula, pnf(r is the unique formula in positive normal form ob- 
tained from r by pushing negations inwards using DeMorgan's laws and the rules 
-,6)r = |162 ~pz .r  = uz.',r and --uz.r = pz.-,r 

Next, we give a tableau-like account of t ruth in a model, related to [2, 8, 15, 
17]. For this, the notation is extended with definition constants and lists [14]. 

De f in i t i onS .  Fix a set /4 of definition constants. The notion of an extended 
formula is as that  of a formula, but allowing definition constants in place of free 
atomic propositions. A definition list is a finite sequence d = (ul,  r  (u,~, r 
where every ui E L! and r is an extended formula, all ui are distinct, and if u 
occurs in r then u = uj for some j < i. For every ul, define d(ui) = r We say 
that  ui is active in r iff either ul occurs in r or there is some uj, i < j ,  such 
that  uj occurs in r and ui is active in d(uj). If r is an extended formula and d 
a definition list, r is defined by r = r and r (u, r = (r162 If F 
is a set of extended formulae, F[d] = {r I r E F}.  

D e f i n i t i o n 9 .  Let ~b be a formulain pnf. A tableau T for r is an infinite sequence 
T = (il , / '1,  dl)(i2,/ '2, d2). �9 �9 where 

�9 every ij E N,  I'j is a finite set of extended formulae in pnf, and dj is a 
definition list containing all definition constants in Fj, 

�9 every (ij+l,  Fj+I,  dj+l) is derived from (ij, Fj, dj) by applying one of the 
rules in figure 1, and 

�9 ( i l ,  r l ,  dl) = (1 ,  {r e). 
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We say that  j E N is a | of T i f f  the (D-rule is applied at point j of 
T. For every j E N, the rule applied at point j induces a dependency relation 
---,C Fj x Fj+I by: 

�9 if the rule is not | the formula in Fj to which the rule is applied depends 
on the resulting formulae (e.g. r V r --. r for VL) and r ---* r for every other 
eer  

�9 if the rule is | |162 ---* r for every formula of the form |162 E Fj. 
For any n E N, a sequence r162 is a dependency sequence from point n iff 
every r E Fn+i and r ~ r relative to the rule applied at point n + i. A 
tableau is proper iff there is no n E N,  u E hl and infinite dependency sequence 
r162 from point n such that  tin(u) = pz.r for some r and r = u for 
infinitely many i E N.  A tableau agrees with a model M iff for every (D-point j 
of T and every z E Z,  if z E/~j then z E Mij,  and if-~z E/~j then z ~ Mij. 

Notice that  as a special case, the (D-rule allows deriving (i + 1, 0, d) from 
(i, 0, d) for any i and d. 

P r o p o s i t i o n l 0 .  Let r be a guarded formula in pnf and M a model. Then 
M, 1 ~ r iff there is a proper tableau T for r agreeing with M. 

Pro o f .  Standard, see e.g. [15, 17, 8, 14]. 

3 N o r m a l  f o r m s  

In this section we introduce a normal form for vTL-formulae, the bi-aconjunctive 
non-alternating form, and show that  the fragment of vTL  consisting of formulae 
in this normal form has the same expressive power as the whole vTL.  

The concept of aconjunctivity was introduced by Kozen [7] as a technical 
restriction, stating intuitively that  in a formula p z . ( . . . r  A r  the minimM 
fixpoint pz cannot be regenerated in both r and r 

D e f i n i t i o n 1 1 .  Let ~z.r be a formula, and ff~ a subformula of it. We say that  
z is active in r iff either 

�9 there is a free occurrence of z in fit, or 
�9 there is a free occurrence of some z ~ in et such that  r is a subformula of 

~zl.r ", ~zt.r  is a subformula of ~rz.r and z is active in ~z1.r ". 

Defini t ion 12. Let ~z.r be a formula in pnf. We say that  ~z.r is aconjunctive 
with respect to z iff there is no subformula r A r of crz.r such that  z is active 
in both r and r A formula r in pnf  is aconjunctive iff every subformula of 
type pz.r  ~ of r is aconjunctive with respect to z. An arbitrary formula r is 
aconjunctive iff pnf(r is. 

The new concept of bi-aconjunctivity requires not only that  a formula itself 
is aconjunctive, but Mso that  its dual is, as well. 

D e f i n i t i o n l 3 .  A formula r is bi-aconjunctive iff r and -~r are aconjunctive. 
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In the same way that  the alternation of existential and universal quantific- 
ation leads to arithmetical and analytical hierarchies in recursion theory, the 
alternation of minimal and maximal  fixpoints in mu-calculi leads to a hierarch- 
ical classification of formulae [6, 11]. In the normal form we are working with 
formulae that  are extremely low in this hierarchy, and do not have any essential 
alternation of fixpoints. 

D e f i n i t i o n l 4 .  Let ~b be a formula in pnf. We say that  ~ is non-alternating 
iff 

�9 there are no formulae vz.ff I and/~z ' .d"  such that  ff ~ vz.~b' ,~/tzl.~b" and z 
occurs free in/~zl.~b ", and -- 

�9 there are no formulae/~z.ff' and vz'.ff" such that  ff _ #z.~'  <3 vz'.ff" and z 
occurs free in vz ' .d" ,  

An arbitrary formula ff is non-alternating iff pnf(ff) is. 

Let us now define the normal form that  forms the basis of the completeness 
proof  in next section. 

D e f i n i t i o n l S .  We say that  a formula ff is in the bi-aconjunctive non-alternating 
normal form (abbreviated banan-form) iff 

�9 ff is guarded, 
�9 ~ is bi-aconjunctive, and 
�9 ~ is not alternating. 

To understand the motivation behind this normal form, it may help to relate 
it to au tomata  on infinite objects. The automata  having an exact correspond- 
ence with vTL-formulae in banan-form are a restricted form of weak alternating 
automata  [10] on s t r ings)  

Notice some easy properties of formulae in the normal form. 

L e l n m a  16. Let 4, 4' be formulae in banan-form. Then ~ ,  | ~ A q~' and 
~[~'/z] are in banan.form. 

P r o o f .  Straightforward. 

The rest of this section is dedicated to showing the expressive equivalence of 
the class of formulae in banan-form and the whole t/TL, i.e. showing that  for an 
arbitrary formula 4, there is a formula 4' in the banan-form such that  ~ ~ r 4' .  
Let us see first that  alternation is not essential. 

L e m m a  17. For any formula 4, there exists a non-alternating formula 4' such 
that ~ ~ ~ q~'. 

1 The restriction is: in accepting (rejecting) components, V (A) branching is allowed 
only when at least one of the successors belongs to a strictly lower component. 
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name ] application name I application 

r u { C v r  r U { r 1 6 2  
v r u {r r u {r A r u {r r 

1 t' r u {r162 
r u {|162 e~k} 

@ {r Ck} 
Note: I : [ C Z U { - ~ z [ z E Z } .  

In each rule, F is disjoint from the other set 

Fig. 2. Tableau t~ee rules 

P ro o f .  Take any formula r By [8, Thm. 7.7] [21, Thm. 2.13] vTL  and SIS,  
the monadic second-order theory of one successor, are expressively equivalent, 
i.e. there is an SiS-formula Cs equivalent to r 

As a consequence of the McNaughton's theorem [9], we know that  S1S and 
WS1S,  the weak monadic second-order theory of one successor, are expressively 
equ.ivalent (see e.g. [16, Thm. 4.6]), i.e. there is a WS1S-formula Cws equivalent 
to r  hence equivalent to r 

Moreover, from the results of [1] and [10] relating W S n S  and non-alternating 
fixpoint calculi, we can see as a special case that  W S 1 S  and alternation-free 
uTL are expressively equivalent, i.e. there is a non-alternating vTL-formula Ce 
equivalent to Cws, therefore equivalent to r 

An alternative argument establishing the claim is by mapping a uTL-formula 
directly to a Biichi-automaton [17, 4], mapping this to an ETL-formula [18], and 
mapping the ETL-formula back to a non-alternating vTL-formula [8, section 
7.5.7]. 

Next we show that  for any non-alternating formula r there is an equivalent 
formula r in the banan-form. For this, let us first show the claim for formulae 
with only minimal fixpoints. 

D e f i n i t i o n l S .  Let r be a guarded formula in pnf without any subformulae 
of the form ~z.r A tableau tree Tr  for r is a finite tree labelled with sets of 
formulae, such that  

�9 The root of Tr is labelled with {r 
�9 The sons of each internal node of Tr  are derived by applying one of the rules 

in figure 2. Depending on the rule applied at a node t, t is called a V, A,/~ or 
Q-node, respectively. 

�9 Each leaf t of Tr  is labelled with a set /~ U { |162  |162 k > O, where 
/~ _C Z U {-~z [ z E Z}, and the same set labels a @node earlier on the path 
from the root to the current node. If a leaf t is labelled with 0, it is a proper 
leaf, otherwise it is a loop leaf. The earlier (D-node with the same label is 
called the loop node corresponding to t, and denoted by l(t). 
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I t  is easy to see tha t  for any guarded r with only minimal  fixpoints, we can 
produce a tableau tree T r  for r by just  applying the derivation rules in any 
order. Each branch of the tree must  eventually reach a leaf, since there are only 
finitely many  different sets of formulae tha t  can be produced by the derivations. 

D e f i n i t i o n  19. Let r be a guarded formula in pnf  without any subformulae of 
the form uz.r  and Tr a tableau tree for r For any node t of Tr, define the 
formula At by A~ = h ( r  n ( z  u I z e z})) ,  where r is the label of t. 

Fix a distinct fresh variable zt for every (D-node t of Tr .  Define a formula  Ct 
for every node t of Tr inductively by: 

�9 i f t  is a V-node, Ct -" r  Vr where t l  and t~ are the sons o f t  
�9 if t is a A or p-node, Ct = r162 where t ~ is the son of t 
�9 if t is a |  and is not the loop node for any leaf, then r -- At A |162 

where t ~ is the son of t 
�9 if t is a (D-node and it is a loop node for some leaf, then Ct -- pz~.A~ h |162 

where t ~ is the son of t 
�9 if t is a proper leaf, Ct = T 
�9 if t is a loop leaf, Ct -- zl(~) 

Finally, define the formula  CTr as r where t is the root of Tr. 

L e m m a  20. Let r be a guarded formula in pnf without any subformulae of the 
form •z.r Then there is a formula r in banan-form such that ~ r r r 

P r o o f .  Let Tr be tableau tree for r I t  is easy to see tha t  CTr is in banan-form.  
Let us show tha t  ~ r ~ CTr. By Prop. 10, for any model M,  

�9 M, 1 ~ r iff there is a proper tableau T = (il ,  F1, d l ) . . ,  for r agreeing with 
M,  and 

�9 M, 1 ~ Cwr iff there is a proper tableau T '  = (i~, F~, d~) . . .  for Ca, r agreeing 
with M 

Since r has no subformulae of the form uz. r  any tableau T for r is proper iff 
there is some n E N such tha t  Fj = 0 for all j > n. The same holds for CTr and 
any tableau T ~ for CTr- As it is easy to read a tableau T ~ for r agreeing with 
M,  f rom a tableau T for r agreeing with M,  and vice versa, this means tha t  we 
can read a proper tableau T ~ for CTr agreeing with M f rom any proper tableau 
T for r agreeing with M,  and vice versa. 

A formula  with only minimal  fixpoints can be viewed as an al ternating finite 
au tomaton  on finite strings. The tableau tree construction corresponds then to 
mapping  such a u t o m a t a  to normal  non-deterministic finite a u t o m a t a  on finite 
strings. 

Generalising this result to all non-al ternating formulae is done inductively 
on the syntactic al ternation depth of formulae. Notice tha t  even non-al ternat ing 
formulae, i.e. formulae without any proper alternation, can still be syntactically 
alternating. 

D e f i n i t i o n 2 1 .  Define the syntactic alternation classes IIn and ~Un for all n E N 
as the minimal  sets fulfilling: 
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�9 //0 = F0 is the set of all formulae in pnf without any fixpoint operators 
�9 if r is in pnf and has no subformulae of the form vz.r and r  E 

En U H,~, then ~b[r Cra/zm] E ET,~+i 
�9 if r is in pnf and has no subformulae of the form #z.r and r  r E 

En U / / , ,  then r162 r E / /n+l  

L e m m a 2 2 .  For any non-alternating formula r there exists a formula r in 
banan-form such that ~ r r r 

Proof .  Any non-alternating formula r can be trivially transformed into pnf, 
and further, into an equivalent guarded non-alternating formula by the trans- 
formations of [2, subsection 2.4]. Therefore it is enough to show the claim for 
all guarded non-alternating formulae in pnf. This is done by induction on the 
syntactic alternation depth hierarchy. 
I n d u c t i o n  basis:  If r E/-/0 = F0, choosing r = r fulfils the claim. 
I n d u c t i o n  s tep:  Let r  r E 27n U Fin. By induction assumption, there 
are formulae r  r  in banan-form such that ~ r r r for all 1 < i < m. 

Take any r in pnf which has no subformulae of the form vz.r By Lemma 
20, there exists a formula r in banan-form such that ~ r r r By Lemma 
16, r162162  is in banan-form. Since ~ r162162 r 

' , r the claim holds for r 1 6 2  r and therefore 
for the class 27,+1. 

Take then any r E //,+1, and define r = pnf(-~r It is easy to see that 
r E ~,+1. By the above there is a r in banan-form such that ~ r r r  
implying ~ r r -~r r162 -~r Furthermore, by Lemma 16, -~r is in banan-form, 
so the claim holds for r and therefore for the c lass / / ,+l-  

Now the expressive equivalence of the whole vTL and the fragment of for- 
mulae in banan-form is immediate. 

T h e o r e m  23. For any formula r there exists a formula r in banan-form such 
that ~ r r r 

Proof .  Direct from Lemmas 17 and 22. 

It needs to be pointed out that the previous theorem does not imply that 
for every r there is a r in banan-form such that ~ ,rz.r r crz.r although 
~z.r would be well-defined, i.e. although z would occur only positively in r this 
does not necessarily hold of r In the mapping of Lemma 20, the positivity of 
free variables in the formula is preserved. However, in the mapping of Lemma 
17 from an arbitrary formula to an equivalent non-alternating formula this does 
not appear to be possible. 

4 A x i o m a t i s a t i o n  

This far we have operated purely on the semantic level. Let us define now the 
axiomatic system, essentially the same as in [7, 8], and show its completeness on 
the basis of the semantic expressive equivalence shown in the previous section. 
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Def in i t i on24 .  We say that  a formula r is provable and write t- r iff it is 
derivable in the following deductive system. 
Axiom schemas: 
a x l  All propositional tautologies 
ax2 |162 r (|162 |162 
ax3 |162 ** -~|162 

Rules  o f  in fe rence :  
modus  ponens: from r and r ~ r infer r 
necessitation: from r infer |162 
fixpoint induction: from r162 =~ r infer pz.r =~. r 

We say that  a formula r is consistent iff not ~- -~r 

Showing the soundness of this axiom system is easy. 

Theorem25  (Soundness) .  / f } - r  then ~ r 

Proof .  All instances of the axiom schemas are clearly universally valid, and 
the modus ponens and necessitation rules validity-preserving. To see that  also 
the fixpoint induction rule preserves universal validity, assume that  ~: pz.r ::~ 
r As by Prop. 5, pz.r -- V~ p~z.r there is an {~ such that  ~: p~z.r ::~ 
but ~ p~'z.r =~ r for all ~' -< ~. This ~ cannot be 0 or a limit ordinal. 
Consequently, there are M, m such that  M, m ~ p~z.r A -~r and by definition 
of p~, M, m ~ r 1 6 2  A -~r But as ~ p~- l z . r  ~ r and z occurs only 
positively in r ~ r162 ::~ r162 implying M, m ~ r162 A -~r i.e. 
V= r162 r 

For the completeness proof, we need some technicM lemmas. 

Lemma 26 (Subst i tut ion) .  I f  ~- r then ~- r162 

Proof .  Induction on the length of the proof of ~- r 

Let us show first that  the axiomatisation is complete in the class of all acon- 
junctive formulae. This follows easily from Kozen's results for the modal mu- 
calculus [7]. However, as the result is extended slightly in Lemma 35, a proof of 
it is sketched down here, as well. The formulation of the proof presented here is 
due to Stirling. 

De f in i t i on27 .  A tableau T -- (i~, F1, dl)(i2, F2, d2) �9 �9 �9 is consistent iff A Fj[dj] 
is consistent for every j > 1. 

Lemma 28. Let r be a guarded formula in pnf. I f  there is a proper consistent 
tableau T for r then r is satisfiable. 

Proof .  Given a proper consistent tableau T = (il, F1, d1)(i2,/"2, d2) . . ,  for r 
define a model M by: for every k E N, Mk =/~j  [di] N Z,  where j is the unique 
| of T such that  ij -- k. Then M, 1 ~ r by Prop. 10. 
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application ~ application 

a' i, F U {az.r d, d" 
i, F U {u}, d', d s' 1 

Uv i, FU{u}, d,d" 2 
i, r u {~[~/~]}, d, d" 

ut~ i, F u {u}, d, d" 
i, r u {r d, d "  3 

Note: 1: 
2: 
3: 

u does not appear in d, d' = d. (u, az.r d• = d, .  (u, az.r 
d(u) = vz . r  

d = (ul ,  ~ z l . ~ )  . . .  (u . ,  ~ . . r  ~ = ~ ,  
d(u,~) = #z.~ and d'(um) =/~z.(~b A a), then 
d"(ui) = d'(ui) for 1 _< i < m, d"(ui) = d(ui) for m < i _< n, and 
d"(u, , )  = #z.(,k A a A -, A F[d=]) where 
d=(~, )  = d ' ( ~ )  for a < i < ~ ,  d=(~ , )  = d(u~) for m < i < 

Fig. 3. Strong tableau rules 

It is easy to see that  for any tableau element (i, F, d), if A F[d] is consistent, 
then some tableau rule can be applied to (i, F, d) to yield an elemeht (i', F', d') so 
that  A F'[ d~] is consistent. Therefore, it is easy to construct a consistent tableau 
T for any consistent formula r However, there is nothing in this construction 
to guarantee that  the resulting T would be proper as well as consistent. To this 
purpose we use a technique similar to Kozen's [7] for strengthening minimal 
fixpoints, based on the following lemma. 

L e m m a  29. I f  r A pz.r  is consistent and z does not occur free in r then 
r ^ r 1 6 2  A ~ r  is consistent.  

Proo f .  If r162 A --r A r is inconsistent, ~- r162 A -~r =~ -~r hence 
e r162 A -~r ~ /~z.(r A -~r By fixpoint induction rule then i- pz.r =:> 
#z.(r A --r implying F pz.r :=~ -~r i.e. pz.r A r is inconsistent. 

D e f i n i t i o n  30. Let r be a formula in pnf. A strong tableau T for r is an infinite 
sequence T = (il, F1, dl, d~)(i2, 1"2, d2, d~). . ,  where 

�9 every (ij, Fj, dj) is as in Def. 9, and d~ is a definition list such that  if dj = 
(ul,  az1. r  (un, azn.r  d~ = (ul, ~rz1.r A c q ) . . .  (un, a z , . r  A an) for 
some formulae ai (possibly T), 

�9 every (ij+l, Fj+I, dj+l, d~+l) is derived from (ij, Fj, dj, d~) by one of the rules 
VL, VR, A or | which are as in figure 1 or by or', Uv or Up in figure 3, and 

�9 ( i l ,  F1, dl, d~) = (1, { r  e, e). 
A strong tableau T being proper is defined as in Def. 9. T is consistent iff for 
every j E N,  A Fj Ida] is consistent. 

L e m m a  31. Let r be an aconjunctive formula in pnf, and T a (strong) tableau 
for r For every j G N and u E 11 such that dj(u) = pz.r for some z and r 
the constant u is active in at most one formula r E Fj. 



434 

Proof .  The claim holds trivially for the first element of T. All the (strong) 
tableau rules except A clearly preserve the validity of the claim, and A preserves 
it thanks to the aconjunctivity of r 

L e m m a  32. Let r be an aconjunctive formula in pnf. I f  r is consistent, there 
is a consistent strong tableau T for r 

Proof .  Let (i, F, d, d')  be an element of a strong tableau such that  A F[d,] is 
consistent. It is easy to see that  if any of rules A, | ~r' or Uy can be applied to it, 
then for the resulting element (i ' , /" ' ,  d', d") ,  A/" ' [d"]  is consistent. By Lemmas 
29 and 31 the same holds for the Up rule. If VL and VR rules can be applied to 
(i, F, d, d'), then at least one of them yields a (i', F ' ,  d', d" )  such that  A F ' [ d  ~'] is 
consistent. As some rule is always applicable, this means that  we can construct 
a consistent strong tableau T for r starting from the element (1, {r e, e). 

L e m m a  33. Let r be a guarded formula in pnf, and T a strong tableau for r I f  
T is consistent, then T is proper. 

Proof .  Assume that  T = (il, 1"1, dl, d~) . . ,  is not proper, and take the smallest 
m E g such that  for some k E N and n > m, dk = (ul,  6'z1.r (un, ~z,~.r 
dk(um) = IZZm.r and Um E Fj for infinitely many j .  For every j E N define 
Fj = {r �9 Fj lure not active in r 

As r is guarded, there is an infinite sequence of indices j l ,  j 2 . . .  such that  
the Up-rule is applied to um at point jh -- 1 of T for every h �9 N. By Lemma 
31 this means that  for all h �9 N, /"jh-1 = /"jh-1 U {urn} and ' r ; h_ l  = r ;h ,  
i m p l y i n g b A  ' ' ' ' ' ' F~h_l[d~h_l] ~ AFjh[d~]  and F u,~[d~h] :~ - , A F ~ [ d ~ ] .  By the 
choice of m we can assume without loss of generality that  for every rn' < m, 
if dk(um,) = l~zm'.r then urn, ~ Fj for all j _> j l ,  meaning that  the Up-rule 
is not applied to any of ul , . . . ,urn-1  at any point j > j l .  Remembering the 
above, this implies that  ~- um[d~] ::~ "~AFjh[d~h] for all j >_ jh and all h �9 N. 
Furthermore, i s _ d s rjh[d~] c cl(/"j,[ j,]) for all h �9 N. 

Since cl(Fj,[d~,]) is finite, there are some h < l such that  F]~[d~.] = F;,[d~,]. 
But then t- hrj,_l[d~,_l] ~ (urn[d;,_1] A hF~,_~[d~,_~]) ~ (-~hr~.[d;~] ^ 
A F~, [d~,]) => .l_, implying that  T is not consistent. 

P r o p o s i t i o n 3 4 .  Let r be a guarded aconjunctive formula. I f  r is consistent, 
then r is satisfiable. 

Proof .  As f- r r pnf(r we can assume that  r is in pnf. If r is consistent, by 
Lemmas 32 and 33, there is a proper consistent strong tableau and therefore a 
proper consistent tableau T for r By Lemma 28 this means that  r is satisfiable. 

L e m m a  35. Let r and X be formulae such that 
* r A ux.X is well-formed and consistent, 
* r is guarded, aconjunctive and in pnf, and 
�9 there exists a guarded aconjunctive formula 2 in pnf such that b" X r X. 

Then r A vz.X is satisfiable. 
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n a m e  ] 

UvX 

application 

i, F u {u}, d, d ~ 
~, r u {u, ~[u/~l}, d, d" 

| 

Note: 

i, r u { |  |  d, d" 
2 

i + 1, {01,. .- ,0k}, d, d" 

1: d(u) = vx.X and Uv X has not been applied after previous application of | 
2: :,r' c_ z u {--,.~ I z ~ z }  u g~ u {--,u I u ~ ux}  where 

~ = {u ~ L, I d(~)  = ~ . •  
and for every u G Ux N F the Uvx-rule has been applied to u 
after previous application of | 

Fig. 4. Modified strong tableau rules 

P r o o f .  Let us modify slightly the rules for a strong tableau by adding a new 
U~x-rule and modifying the Q-rule as in figure 4, and by requiring that  the 
U~-rule is not applied to a constant u such that  d(u) = ~x.X. Notice that  as x 
does not necessarily occur only positively in ~, we can have negated occurrences 
of a constant u corresponding to ~x.X in a tableau. 

Since t- X 4:~ ~ implies t- vx .X r X[vx.X/X] ~r ~[vx.X/X] by Lemma 26, the 
Uvx-rule preserves consistency. As in Lemma 32, the consistency of r A vx.X 
implies then the existence of a consistent strong tableau (with the modified rules) 
T = (il ,  F1, dl, d~) . . ,  for r A vx.x .  As in Lemma 33 the consistency of T means 
that  it is proper, as well. 

Define a model M on the basis of T as in the proof of Lemma 28, and define a 
set W C g b y W - - { k E g i 3 j e N ,  u e U : i j  = k ,  u E F j  a n d d j ( u ) = v x . X } .  
For every w E W, we can read from T a proper tableau witnessing M[W/x] ,  w 

by Lemma 10. Since t- X r X, this implies by Theorem 25 that  M[W/x] ,  w ~ X 
for all w E W. As 1 E W, this implies M, 1 ~ vx.X. From T we can also read a 
proper tableau witnessing M, 1 ~ r Consequently, M, 1 ~ e A v x . X ,  as required. 

The following lemma is the heart  of the completeness proof. Essentially it 
shows that  we can lift the expressive equivalence of the whole v T L  and the 
fragment of formulae in banan-form from the level of semantics to the level of 
provability. 

L e m m a  36. For any formula r there exists a formula r in banan-forra such 
that t- 5 r r 

P r o o f .  We show the claim by induction on the structure of the formula 5- As 
before, we assume that  r is writ ten using just  the A, -% Q and #-operators. 
I n d u c t i o n  basis :  For an atomic r choosing r = r clearly fulfils the claim. 
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Induc t i on  s t ep  for  A, -% 0 :  Suppose that for r r we have ' ' r r in banan- 
form such that ~- r r r and ~- r r r By Lemma 16 r A r -~r and 
|162 are in banan-form and clearly F- r A r r r A r ~- -"r r --r and 
F |162 r |162 
Induc t i on  s tep  for  /~: Suppose that for r we have a r  in banan-form such 
that F- r r r By Theorem 23, there exists a formula r in banan-form such 
that ~ pz.r r r If we have 1- #z.r r r the induction step is satisfied, as r is 
in banan-form. Suppose then that ~/pz.r r r This means that either 

1 17/pz.r =~ r or 
2 ~/r ~ l,z.r 

In case 1 we must have ~/r162 :=~ r as otherwise }- pz.r :=~ r could be 
derived by the fixpoint induction rule. 2 This means that r162162 is consistent. 
As F- r r r by Lemma 26 F r162 r r162 implying that r162 A -"r is 
consistent. Since r and r are in banan-form, by Lemma 16 r162 A --r is in 
banan-form, hence guarded and aconjunctive. As it is consistent, by Prop. 34 it 
is satisfiable, i.e. there are M, m such that M, m ~ r162 A -"r 

Since 1- r162 r r162 by Theorem 25 ~ r162 r r162 which implies 
M, m ~ r162 h -~r By the choice of r we know that ~ r r162 pz.r which 
implies ~ r162 r r162 i.e. ~ r162 r pz.r Consequently, M, m 
pz.r A -"r But this contradicts ~ #z.r r r meaning that case 1 cannot hold. 

In case 2, lb A ~#z.r = r A vz.~r is consistent. As F r r r by 
Lemma 26 ~- -"r r -"r Since r is in banan-form, by Lemma 
16 --,r is in banan-form, hence guarded and aconjunctive. But then by 
Lemma 35 C Avz.-"r = r A~pz.r is satisfiable, contradicting ~ pz.r r162 r 
i.e. case 2 cannot hold either. 

Consequently, t- pz.r ~ r r which concludes the induction step. 

Based on this lemma, the completeness of the axiomatisation follows easily. 

T h e o r e m  37. I f  a formula r is consistent, then r is satisfiable. 

Proof .  Direct from Lemma 36, Proposition 34, and Theorem 25. 

C o ro l l a ry38  (Comple t enes s ) .  / f ~  r then F-r 

Proof .  If ~ r then -"r is not satisfiable, therefore not consistent, implying 
1- ---~r i.e. 1- r 
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