
Mining Sandboxes

Konrad Jamrozik · Philipp von Styp-Rekowsky · Andreas Zeller
Center for IT-Security, Privacy and Accountability (CISPA), Saarbrücken, Germany

{jamrozik,styp-rekowsky,zeller}@cs.uni-saarland.de

ABSTRACT
We present sandbox mining, a technique to confine an application
to resources accessed during automatic testing. Sandbox mining
first explores software behavior by means of automatic test gener-
ation, and extracts the set of resources accessed during these tests.
This set is then used as a sandbox, blocking access to resources not
used during testing. The mined sandbox thus protects against be-
havior changes such as the activation of latent malware, infections,
targeted attacks, or malicious updates.

The use of test generation makes sandbox mining a fully auto-
matic process that can be run by vendors and end users alike. Our
BOXMATE prototype requires less than one hour to extract a sand-
box from an Android app, with few to no confirmations required
for frequently used functionality.

1. INTRODUCTION
How can I protect my computer from malicious programs? One

way is to place the program in a sandbox, restraining its access
to potentially sensitive resources and services. On the Android
platform, for instance, developers have to declare that an appli-
cation (henceforth referred to as an app) needs access to specific
resources. The popular SNAPCHAT picture messaging application,
for instance, requires permissions to access the Internet, the cam-
era, and the user’s contacts. To install the app the user has to grant
such permissions. If an application fails to declare a permission,
the operating system denies access to the respective resource; if
the SNAPCHAT app attempted to access e-mail or text messages, the
respective API call would be denied by the Android system.

While such permissions are transparent to users, they may be
too coarse-grained to prevent misuse. For instance, SNAPCHAT of-
fers a feature to find friends on SNAPCHAT based on their phone
number. To do this, SNAPCHAT accesses the phone numbers of
the user’s contacts, and sends them to the SNAPCHAT servers. The
permission given by the Android sandbox allows SNAPCHAT to do
much more than that, namely unlimited access to all contacts at
any time. An attacker thus could inject malware into a SNAPCHAT

binary that compromises all contact details; the permissions could
stay unchanged. The issue could be addressed by tightening the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14 - 22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884782

✅ ✅ ✅ ⛔️ ✅ ⛔️ ⛔️

1. Mining

Test Generator App APIs used

2. Sandboxing

User App APIs permitted

� � � �

Monitor

Sandbox

Figure 1: Sandbox mining in a nutshell. The mining phase au-
tomatically generates tests for an application, monitoring the
accessed APIs and resources. These make up the sandbox for
the app, which later prohibits access to resources not accessed
during testing.

sandbox—for instance, by constraining the conditions under which
the app can send the message. But then, someone has to specify and
validate these rules—and repeat this with each change to the app,
as a sandbox that is too tight could disable important functionality.

In this paper, we present sandbox mining, a technique to auto-
matically extract sandbox rules from a given program. The core
idea, illustrated in Figure 1, brings together two techniques, namely
test generation and enforcement, in a principle called test comple-
ment exclusion—disallowing behavior not seen during testing:

Mining. In the first phase, we mine the rules that will make the
sandbox. We use an automatic test generator to systemat-
ically explore program behavior, monitoring all accesses to
sensitive resources.

Sandboxing. In the second phase, we assume that resources not
accessed during testing should not be accessed in produc-
tion either. Consequently, if the app (unexpectedly) requires
access to a new resource, the sandbox will prohibit access, or
put the request on hold until the user explicitly allows it.

To illustrate how test complement exclusion works in practice,
let us mine a sandbox from our SNAPCHAT example application.
During systematic GUI testing, the mining phase determines that
SNAPCHAT indeed requires access to the camera, location, Internet,
and so on. We associate these accesses with the event that trig-
gers them—that is, the individual GUI elements. Thus, we would
find that SNAPCHAT accesses contacts only when the user presses
the “Find friends” GUI button; and it only accesses the friends’
phone numbers. Likewise, accessing the microphone or the loca-
tion would only take place when a message is actually sent.

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

   37



The resulting sandbox is much more fine-grained than the orig-
inal Android sandbox, and easily prevents a number of otherwise
permitted attack schemes. Compromising all contact data, sending
text messages in the background, continuously monitoring the au-
dio or the current location, would all be disallowed, simply because
this behavior is not what we find during testing.

Even more important, though, is that the sandbox also protects
the user against unexpected behavior changes. Assume an app like
SNAPCHAT was malicious in the first place, and placed in an app
store. Then, the attacker would face a dilemma. If the app ac-
cesses all contacts right after the start, this would be detected in
the mining phase, and thus made explicit as a sandbox rule per-
mitting behavior; such a rule (“This app reads all contact details
in the background”) could raise suspicions even with non-expert
users, because there is no apparent functionality in SNAPCHAT that
requires this. If, however, the app stayed benign during mining, it
would be disallowed from accessing contact details in production,
except for phone numbers during the “Find friends” functionality.

To the best of our knowledge, ours is the first approach to lever-
age test generation to automatically extract sandbox rules from
general-purpose applications. Sandbox mining has a number of
compelling features:

Preventing behavior changes. The mined sandbox detects behav-
ior not seen during mining, reducing the attack surface for
infections as well as for latent malicious behavior that other-
wise would activate later.

Fully automatic. As soon as an interface for automatic test gen-
eration is available, such as a GUI, sandbox mining also be-
comes fully automatic. Developers can easily mine and re-
mine sandboxes at any time.

No training in production. In contrast to anomaly detection sys-
tems, we need no training in production, as the “normal” be-
havior would already be explored during testing.

Detailed analysis. Mined sandboxes provide a much finer level of
detail than what would normally be specified or documented
in practice. As they refer to user resources and user actions,
they are readable and understandable even by non-experts.

Adverse and obscure code. In contrast to static code analysis, test
generation and monitoring are neither challenged by large
programs nor thwarted by code that would be deobfuscated,
decrypted, interpreted, or downloaded at runtime only.

Guarantees from testing. The key issue with testing is that it is
incomplete by construction. We turn it to our advantage by
considering the tested behavior a safe subset of all possible
app behaviors, guaranteeing the user will be explicitly asked
to allow behaviors not seen during testing.

Certification. Anyone can mine a sandbox for a given app and
compare its rules against the sandboxes provided by others,
or those of previous versions.

All of this, however, depends on a number of assumptions that can
only be assessed in a practical setting. Our BOXMATE tool1 imple-
ments sandbox mining for the Android platform in a user-friendly
package, consisting of the DROIDMATE test generator and the BOX-

IFY [5] approach to privacy enforcement. After discussing related
work in Section 2, we address three key questions:

Q1 Can test generators sufficiently cover behavior? If some re-
source R is not accessed during mining, later non-malicious
access to R would require user confirmation—the sandbox is
too tight. We run the DROIDMATE test generator on a set of

1
BOXMATE = Sandbox mining, analysis, testing and enforcement

Android apps, checking API coverage (Section 3) and check
when the sandbox would trigger which alarms (Section 4).

Q2 Can we sufficiently reduce the attack surface? If the rules we
mine are too general, there might still be too many ways
for applications to behave maliciously—the sandbox is too
coarse. To this end, we associate resource access with the
GUI elements that trigger them (Section 5), further reducing
the attack surface.

Q3 Can sandbox rules help experts to assess behavior? If the an-
alyzed app is overtly malicious, the mined sandbox will not
prevent this. Section 6 shows how mined sandbox rules help
in assessing and comparing behavior in the first place, reduc-
ing the risk of missing an attack.

After discussing threats to validity and limitations (Section 7), Sec-
tion 8 closes with conclusion and future work.

2. BACKGROUND

2.1 Sandboxing
The idea of restricting program operation to only the informa-

tion and resources necessary to complete its operation goes back
to the 1970s. As principle of least privilege [34], it has influenced
the design of computer systems, operating systems, and informa-
tion systems to improve stability, safety, security, and privacy. On
the Android platform, least privilege is realized through sandbox-
ing: First, no application can access the data of other applications.
Second, access to shared user resources (such as location, contacts,
etc.) is available through dedicated APIs only, which are guarded
by permissions. Each application declares the permissions it needs;
the operating system blocks access to other APIs and resources.

In a landmark paper, Felt et al. [17] systematically tested An-
droid APIs to check which permissions would refer to which API.
Besides producing a map between APIs and permissions, they also
found that 33% of Android apps investigated were overprivileged,
that is, they requested more permissions than their APIs would ac-
tually require. PSCOUT [4] uses a combination of static analysis
and fuzz testing to extend this mapping to undocumented APIs, and
found that 22% of permission requests were unnecessary if app de-
velopers confined themselves to documented APIs.

These Android permissions have to be acknowledged by a user
upon app installation; the Google play store also lists each app with
the requested permissions. However, in a survey of 308 Android
users, Felt et al. [18] found that only 17% paid attention to per-
missions during installation, and only 3% of all respondents could
correctly answer three questions regarding permissions. The latest
Android version 6 therefore adopts the iOS security model, asking
for permission interactively and in context at the very moment the
app accesses a sensitive resource. Most permissions such as Inter-
net access are granted by default, though, and the set of confirma-
tions is limited to the most sensitive resources only.

The Android permission model is coarse-grained.

2.2 Analyzing Apps
In contrast to specified rules and permissions, the alternative of

extracting these from an existing system has always been com-
pelling. In a short paper comparing the permission systems of
mobile platforms [3], Au et al. call for “a tool that can automat-
ically determine the permissions an application needs.” This ques-
tion generalizes into “What does an application do?”, which is the
general problem of program analysis.

38



Program analysis falls into two categories: static analysis of pro-
gram code and dynamic analysis of executions. Static code analy-
sis sets an upper bound to what a program can do: If static analysis
determines some behavior is impossible, it can be safely excluded.
Tools like CHEX [26] and FLOWDROID [2] check Android apps for
information flow between sensitive sources and sinks. The COPES

framework [8] uses static analysis to eliminate unneeded permis-
sions for a given Android app.

The challenge of static analysis is overapproximation: The anal-
ysis must often assume that more behaviors are possible than actu-
ally would be. The analysis is undecidable in all generality due to
the halting problem. Also, static analysis is challenged by code
that is decrypted, interpreted, or downloaded at runtime only—
techniques used by benign and malicious Android apps alike. If
static analysis can safely determine that some behavior is impossi-
ble, though, the behavior no longer needs to be checked at runtime.

Static analysis produces overapproximation.

Dynamic analysis works on actual executions, and thus is not
limited by code properties. In terms of program behavior, it sets a
lower bound: Any (benign) behavior seen in past executions should
be allowed in the future, too. Consequently, given a set of execu-
tions, one can learn program behavior from these and infer security
policies. However, obfuscated or encrypted code makes it harder to
infer the behavior’s intent. In their seminal 1996 paper [19], Forrest
et al. learned “normal” behavior as short-range correlations in the
system calls of a UNIX process, and were successfully able to detect
common intrusions on the sendmail and lpr programs. Since then, a
number of techniques have been used for automatic anomaly detec-
tion; Chandola et al. [13] provide a detailed survey. Most related to
BOXMATE is the work of Provos [32], learning and enforcing poli-
cies for system calls on UNIX systems.

Since Android programs come in interpretable byte code, the
platform offers several opportunities to monitor dynamic behav-
ior, including system calls (AASandbox [11]), data flow (TAINT-

DROID [14]), traces (CROWDROID [12]), or CPU and network ac-
tivity (ANDROMALY [35]); all these platforms can be used both to
monitor application behavior (and report results to the user) as well
as to detect malicious behavior (as a violation of explicit rules or
as determined by a trained classifier). Neuner et al. [31] as well as
Lindorfer et al. [25] provide a comprehensive survey of trends and
available techniques.

Dynamic behavior can also be abstracted and summarized us-
ing internal state, following the pioneering work of Ernst et al. on
dynamic invariants [16] and the suggestion of Engler et al. that
deviations in behavior would help in inferring errors [15]. Baliga
et al., for instance, would learn kernel data structure invariants to
detect rootkits [7]. As they refer to internal state, the diagnostics
of these approaches cater more to developers than to users or ad-
ministrators, though; however, they also share the general idea of
learning “normal” behavior to detect “abnormal” behaviors.

The joint problem of all these approaches is the fundamental
limitation of dynamic analysis, namely incompleteness: If some
behavior has not been observed so far, there is no guarantee that
it may not occur in the future. Given the high cost of false alarms,
this implies that a sufficiently large set of executions must be avail-
able that covers known behaviors. Such a set can either come from
tests (which then typically would be written or conducted at sub-
stantial effort), or from production (which then requires a training
phase, possibly involving classification by humans). In the domain
of network intrusion detection, the large variation of “benign” traf-
fic in operational “real world” settings is seen as a prime reason
why machine learning is rarely employed in practice [37].

Dynamic analysis requires sufficiently many
“normal” executions to be trained with.

2.3 Test Generation
Rather than write tests or collect executions during production,

one can also generate them. In the security domain, the main pur-
pose of such generated executions is to find bugs. Introduced by
Miller et al. [29], fuzz testing automatically exercises sensitive tools
and APIs with random inputs; no interaction or annotation is re-
quired. Today, fuzz testing is one of the prime methods to find
vulnerabilities: The Microsoft SAGE fuzzing tool [20], for instance,
“has saved millions of dollars to Microsoft, as well as to the world
in time and energy, by avoiding expensive security patches to more
than 1 billion PCs.” [21].

For the Android platform, recent years have seen a raise of pow-
erful test generators exercising Android apps. MONKEY [30] is a
simple fuzz tester, generating random streams of user events such
as clicks, touches, or gestures; although typically used as robust-
ness tester, it has been used to find GUI bugs [24] and security
bugs [28]. While MONKEY generates pure random events, the DYN-

ODROID tool [27] focuses on those events handled by an app, get-
ting higher coverage while needing only 1/20 of the events. Given
an app, all these tools run fully automatically; no model, app code,
or annotation is required. Other recent Android test generators like
PUMA [23] or ANDLANTIS [10] achieve high levels of robustness,
while BRAHMASTRA [9] is good at covering 3rd party components.

All these testing tools still share the fundamental limitation of
execution analysis: If a behavior has not been found during test-
ing, there is no guarantee it will not occur in the future. Attackers
can easily exploit this by making malicious behavior latent: For
instance, our malicious SNAPCHAT variant would start sending ma-
licious text messages only after some time, or in a specific network,
or when no dynamic analysis tool is run, each of which would de-
feat observation during testing.

Testing cannot guarantee the absence of malicious behavior.

2.4 Consequences
Program analysis, sandboxing, and test generation are all ma-

ture technologies that are sufficiently robust to be applied on a
large scale. However, each of them has fundamental limitations—
sandboxes need rules, dynamic analysis needs executions, and test-
ing does not provide guarantees. Combining the three, however,
not only mitigates these weaknesses—it even turns them into a
strength. The argument, first presented in a keynote at the ICPC 2015
conference [38], is as follows:

With modern test generators, we can generate as many execu-
tions as needed. These executions can feed dynamic analysis, pro-
viding and summarizing insights into what happens in them. By
construction, these insights are incomplete, and other (in particular
malicious) behavior is still possible. The key idea of this paper is
to turn the incompleteness of dynamic analysis into a guarantee—
namely by having a sandbox enforce that anything not seen yet will
not happen. To the best of our knowledge, this is the first work
bringing together test generation, dynamic analysis, and sandbox-
ing; it is their combined strength we explore in this paper.

3. GENERATING APP TESTS
Let us now detail how DROIDMATE, the test generator of BOX-

MATE, operates. Conceptually, DROIDMATE generates tests by ex-
ploring the Application under Test (AuT), that is, by interacting at

39



runtime with its GUI elements (called views in Android) and rea-
soning about the AuT behavior to influence further GUI interaction.

DROIDMATE installs on an Android device an .apk file contain-
ing the AuT and then launches the AuT’s main activity.2 During
start, and then again after each generated interaction, DROIDMATE

monitors which sensitive Android APIs and user resources the AuT
accesses. As the exploration progresses, all the observed and mon-
itored behavior of the AuT is being used to decide which GUI ele-
ment to interact with next or if to terminate the exploration. The
data from the exploration is sufficient to replay the test, either man-
ually or automatically.

The exploration takes place in a loop between an exploration
strategy and an exploration driver. The exploration strategy algo-
rithm is given in Algorithm 1. It operates on a high abstraction
level, taking as input the GUI state and returning an exploration ac-
tion. The GUI state contains an abstract representation of the GUI,
hiding all the implementation details irrelevant for deciding what to
explore next. The exploration action in turn is an abstract represen-
tation of a possibly multi-step operation on the Android device like
click, long-click, reset or terminate. The exploration driver then
translates this abstract representation into actual operations on the
device, executes them, reads the resulting GUI state and API calls
logs, and returns control to the exploration strategy.

The actual exploration strategy currently implemented in DROID-

MATE is inspired by DYNODROID [27]. The key idea is to interact
with views (GUI elements) randomly, but give precedence to views
that have been interacted with the least amount of times so far. If
multiple views have been interacted with minimal amount of times,
we pick one randomly. A view interaction is either a click or a long
click (2 seconds). Interaction can happen only with views that are
enabled as well as clickable, long-clickable, or checkable.

Each view is considered unique in its given context—that is,
within the set of views that can be interacted with and appear on
the same screen. Thus, if a view appears in different contexts (i.e.,
surrounded by different GUI elements), it will be explored again in
each of them. Contexts are different if they differ by at least one
view. A view can differ by its fully qualified class name, its re-
source ID (if any), its content description (if any) and the rectangle
describing its location on the screen. It can also differ by its label,
unless the view’s class has Switch or Toggle in its name.

Every 30 interactions, DROIDMATE restarts the AuT . We thus
avoid getting stuck in abnormal situations such as no views being
available for interaction, the app having crashed, or another app
having been launched. A view that led to a reset gets black-listed
and will not be interacted with again. The exploration terminates
when the configured time limit is reached or when there are no
views that can be interacted with after two resets in a row.

3.1 Distinguishing Resources
While running, DROIDMATE monitors sensitive Android API calls,

using the monitoring techniques discussed in Section 4. An API is
sensitive if it is governed by a permission. We use the set of sen-
sitive APIs used in the APPGUARD privacy-control framework [6].
This set of 97 APIs focuses on crucial privacy-related resources an
average user should be concerned about.3

For each call of a monitored API, DROIDMATE records

1. The fully qualified name of the API called, including class
and method name and parameter and return types;

2If the AuT accesses an external account, such as SNAPCHAT, its
login and password must be provided.
3The full API list is provided in the linked experimental data pack-
age (Section 8).

Algorithm 1 Exploration strategy.

Require: GUI State S
Ensure: Exploration action A

1: procedure DECIDE(S)
2: if TERMINATE(S) then
3: A ← terminate exploration
4: else
5: if RESET(S) then
6: A ← reset exploration
7: else
8: A ←EXPLOREFORWARD(S)
9: end if

10: end if
11: UPDATEINTERNALSTATE(S,A)
12: return A;
13: end procedure
14:
15: procedure EXPLOREFORWARD(S)
16: C ← view context of S
17: VS ← views in C with minimal number of interactions so

far
18: V ← pick at random from VS
19: A ← choose interaction action with V
20: UPDATEKNOWNVIEWCONTEXTS(C)
21: UPDATEINTERACTIONSCOUNT(V ,C)
22: return A
23: end procedure

2. The thread ID and the entire thread call stack trace of the API

call (starting at Thread.run() or Dalvik’s native main());
3. Properties of the triggering view like displayed text, associ-

ated resource ID, screen bounds, etc.

As most Android resources are uniquely identified by their spe-
cific set of APIs, we can ignore parameter values in most cases:
they determine irrelevant details, e.g. a call to LocationManager
.requestLocationUpdates(listener) determines which listener to in-
form when a location has changed. Yet we are interested only if
appropriate call to LocationManager was made at all.

However, one set of Android API methods heavily depend on
the parameter values to identify the correct resource accessed and
therefore get special treatment. These are ContentResolvers—that
is, database equivalents frequently used in Android. Knowing only
that ContentResolver.query() was called is not enough, as the query
may relate to all kinds of sensitive resources. For ContentResolver
calls, DROIDMATE therefore also monitors the URI identifying the
exact database, e.g. content://com.android.contacts/data/phones.
Sometimes, URIs end with the numeric identifier of particular in-
stance of the resource being accessed: we consider all API calls
differing only by this number as equivalent.

3.2 Mining SNAPCHAT
As an example of how DROIDMATE explores application behav-

ior, let us again consider the SNAPCHAT application. Figure 2 lists
the number of unique APIs discovered during testing; the actual
APIs (in order of discovery) are listed in Figure 3, including the
identifiers of the GUI elements that triggered them:

API 1 After a click on the login_button on the start view, SNAPCHAT

opens a socket (API 1) which allows establishing a connec-
tion to a HTTP server. It also opens the camera (API 2),
queries the current location (API 3) and accesses account info
via a URL connection (API 4).

40



0 3,600 7,200 10,800

0

5

10

seconds

A
P

Is
se

en

SNAPCHAT 4.1.07, APPGUARD APIs

Figure 2: DROIDMATE per-app API saturation. After 10 min-
utes (600 seconds), DROIDMATE has discovered 11 sensitive APIs
used by SNAPCHAT.

API 5 Taking a picture (camera_take_snap_button) starts monitor-
ing the current location.

API 6 Recording a video sets the video and audio sources for record-
ing, initializing the media recorder.

API 8 Later, DROIDMATE finds the SNAPCHAT “My friends” button
(the unlabeled element), which requires accesses to the im-
age library.

API 9 SNAPCHAT allows for finding friends based on their phone
number, requiring access to contacts.

API 10 Saving a picture stores it to a database.

API 11 Previewing a snap deletes it after the preview is done.

[Button com.snapchat.android:id/login_button]
1 java.net.Socket: void <init>
2 android.hardware.Camera.open()
3 android.location.LocationManager.getLastKnownLocation()
4 java.net.URLConnection openConnection()

[Button com.snapchat.android:id/camera_take_snap_button]
5 android.location.LocationManager.isProviderEnabled()

[Button com.snapchat.android:id/camera_take_snap_button
(long-click)]
6 android.media.MediaRecorder.setAudioSource()
7 android.media.MediaRecorder.setVideoSource()

[unlabeled GUI element]
8 android.content.ContentResolver.query()

uri = content://media/external/images/media
[Button com.snapchat.android:id/contacts_permission_button]

9 android.content.ContentResolver.query()
uri = content://com.android.contacts/data/phones

[ImageButton com.snapchat.android:id/picture_save_pic]
10 android.content.ContentResolver.insert()

uri = content://media/external/images/media
[RelativeLayout com.snapchat.android:id/
snap_preview_relative_layout]
11 android.content.ContentResolver.delete()

uri = content://media/external/images/media/<number>

Figure 3: The 11 SNAPCHAT calls to sensitive APIs discovered
by DROIDMATE, and the events (in []) that first trigger them.

These APIs characterize the resources that SNAPCHAT accesses—
or more precisely, the resources it accessed in our DROIDMATE run.
So are these 11 APIs an exhaustive list? This is the problem of test-
ing, which does not give guarantee of whether all has been seen;
and this is why we use sandboxing, to prevent yet unseen, poten-
tially malicious behavior.

4. MONITORING AND ENFORCING
Besides a test generator, the second component of BOXMATE is

the sandbox mechanism itself, monitoring (and possibly prevent-
ing) program behavior. Just as with test generation, we wanted a
technique that allows any user to sandbox any application on an

Figure 4: The BOXMATE sandbox in action. Calling a sensitive
API not seen during mining requires confirmation by the user.
To facilitate readability, API names are automatically mapped
into the respective Android permissions, which are then shown
in user-readable form.

unmodified Android device. To this end, we leveraged the BOXIFY

tool by Backes et al. [5].

4.1 Monitoring in a Nutshell
The BOXMATE monitoring component uses the BOXIFY frame-

work for fine-grained policy enforcement [5]. BOXIFY is a novel ap-
proach for Android application sandboxing, which provides tamper-
protected reference monitoring for stock Android without the need
for root privileges. BOXIFY uses app virtualization and process-
based privilege separation to encapsulate untrusted applications in
a restricted execution environment within the context of another,
trusted sandbox application. To establish a restricted execution en-
vironment, BOXIFY leverages Android’s isolated process feature,
which allows apps to completely de-privilege selected components.
By loading untrusted apps into de-privileged, isolated processes,
BOXIFY avoids modifying apps and provides strong security guar-
antees. Sensitive I/O operations are relayed through a separate,
privileged broker process monitoring and enforcing policies.

The BOXMATE sandbox works in two modes. During mining, it
records and distinguishes all calls to sensitive APIs; as discussed
in Section 3.1, this recording includes the current call stack, the
thread ID as well as security-relevant parameter values. During en-
forcement, it checks whether the API call is allowed by the mined
sandbox rules; if not, it can either have the call return a mock object
containing fake data, or flag the call, asking the user for permission,
naming the API and possible relevant arguments (Figure 4). If the
user declines permission, the call is denied. Being based on BOX-

IFY, only calls to sensitive methods incur an overhead of 1–12% per
call [5], resulting in practically no runtime performance overhead.

As an example of how the BOXMATE sandbox operates, again
consider the SNAPCHAT saturation curve in Figure 2. Any sensitive
API not accessed during testing–that is, any call to an API not listed
in Figure 3—would be flagged by the BOXMATE sandbox. Note
how the BOXMATE sandbox is already much more fine-grained than,
say, the standard Android permission model. In the Android per-
mission model, for instance, SNAPCHAT would simply get arbitrary
access to all contacts. In the BOXMATE model, though, SNAPCHAT

is only allowed to read contact phone numbers; any other informa-
tion is neither accessed nor changed. These are important features
to know, and possibly to enforce, too.

4.2 Evaluation
Since any sensitive API not explored during testing implies a po-

tential false alarm during production, we evaluate the risk of false

41



Table 1: Evaluation Subjects. Open https://play.google.com/store/apps/details?id=〈Identifier〉 for details.
Name Version Category Rank Identifier (links to Web page)
Adobe Reader 11.1.3 Productivity 1 com.adobe.reader
AntiVirus Security – FREE 3.6 Communication 5 com.antivirus
Barcode & QR Scanner barcoo 3.6 Shopping 6 de.barcoo.android
CleanMaster – Free Optimizer 5.1.0 Tool 1 com.cleanmaster.security
Currency converter 1.02 Finance 9 com.frank_weber.forex2
eBay 2.5.0.31 Shopping 1 com.ebay.mobile
ES Task Manager(Task Killer) 1.4.2 Business 10 com.estrongs.android.taskmanager
Expense Manager 2.2.3 Finance 24 at.markushi.expensemanager
File Manager (Explorer) 1.16.7 Business 1 com.rhmsoft.fm
Firefox Browser for Android 28.0.1 Communication 7 org.mozilla.firefox
Job Search 2.3 Business 6 com.indeed.android.jobsearch
PicsArt – Photo Studio 4.1.1 Photography 1 com.picsart.studio
Snapchat 4.1.07 Social 4 com.snapchat.android

0 3,600 7,200
0

1

Adobe Reader

0 3,600 7,200
0

20

40

AntiVirus

0 3,600 7,200
0

5

10

barcoo

0 3,600 7,200
0

5

10

CleanMaster

0 3,600 7,200
0

1

2

Currency Cvtr
0 3,600 7,200

0

5

eBay

0 3,600 7,200
0

2

4

ES Task Manager
0 3,600 7,200

0

1

Expense Mgr

0 3,600 7,200
0

5

10

File Manager
0 3,600 7,200

0

5

10

15

Firefox

0 3,600 7,200
0

1

Job Search

0 3,600 7,200
0

5

10

PicsArt

Figure 5: Per-app saturation for the apps in Table 1. As in Figure 2, the y axis is APIs seen, the x axis is seconds spent.

alarms: How likely is it that sandbox mining misses functionality,
and how frequently will users thus encounter false alarms? We ad-
dress this issue from two angles: We evaluate how quickly the set
of APIs is saturated (Section 4.2.1) and we check BOXMATE against
18 use cases reflecting typical app usage (Section 4.2.2).

4.2.1 Exploration
While a finer-grained access model reduces the attack surface, it

also brings the risk of false alarms. In Figure 2, just 10 minutes
of mining is enough. The question is whether other apps can be
also quickly mined, covering all the frequently used functions. To
this end, we computed the same API saturation for twelve more
apps (Table 1) from the top downloads of the Google Play Store.
Figure 5 shows the respective API saturation charts; these are the
same charts as we have already seen for SNAPCHAT in Figure 2. We
see that ten charts “flatten” before one hour mark and the remaining
two before two hours.

Automatic test generation can quickly cover resource usage.

4.2.2 Use Cases
We now know DROIDMATE stops discovering new calls to sen-

sitive APIs before two hours pass. But does this mean that the
most important functionality is actually found at all? To answer
this question, we defined use cases for each of the analyzed apps,
reflecting their most important usages. We derived the use cases
from the app’s main purpose as stated in its description—viewing
a PDF document with Adobe Reader, scanning the system with An-
tiVirus Security, sending a picture with SNAPCHAT, and so on. Ta-
ble 2 provides a full list of the defined use cases.

We implemented all these use cases as automated test cases, al-
lowing for easy assessment and replication of our experiments. On
average, implementing a single use case and having it replay re-
liably took us 2–3 hours of work. This perhaps surprisingly high
implementation effort was due to inaccuracies in the uiautomator
framework as well as the general difficulty of hand-scripting user
interactions (which in turn may further motivate the use of auto-
mated exploration frameworks such as DROIDMATE).

After having BOXMATE extract the sandbox for a given app, the
central question for the evaluation would be whether (and if so,
how) these use cases would be impacted by the sandbox.

The “app” column in Table 2 summarizes the number of confir-
mations a user has to provide in the APPGUARD APIs set. The Pics-
Art “Apply effect” accesses an existing photo from SD card, which
was not found during testing. The eBay “Find by Search” use case
requires login credentials, while we explicitly didn’t gave them to
DROIDMATE forcing it to explore only the functionality available
without logging. The use case in turn explores GUI parts available
only after logging, causing the need for confirmation. This answers
Q1: Only in 2 out of 18 use cases, each encompassing up to dozens
of sensitive API calls, would a user need to confirm API access. This
is actually fewer confirmations than in Android 6, where first access
to every permission group has to be explicitly confirmed once per
app [1].

Mined sandboxes require fewer user confirmations
than standard OS security facilities.

4Despite our best efforts, neither we nor DROIDMATE could get bar-
coo 3.6 to use the camera and scan something on our devices.

42



Table 2: Use cases. Confirmations required with APPGUARD API calls (“app” column); and (event, api) pairs (“event” column).
App Use Case Functions Confirmations per: app event
Adobe Reader View Document What’s New, Help, Open first document – –
AntiVirus Scan Activate, Scan now, View scan results – –

barcoo Search for product Search “pillow” in search box, View results4 – 1
CleanMaster Scan Scan system, Resolve all, Report – 3
Currency Cvtr Convert currency Enter “159”, Swap currencies – –
eBay Find by search Accept terms, Sign in, Search “pillow”, View first search result 1 1
ES Task Mgr Kill task Kill first listed task – –
Expense Mgr Add and edit expense Add an expense of $15.80 for “Pills” in Category “Health” – –

Delete expense Open history, Delete first entry – –
View and set budget Set a total budget of $7.00 in the “other” category – –

File Manager View and create dir View directories, create new directory “temp_utc” – –
Firefox Open URL Go to “google.com” – –
Job Search Search for job Search a job for “sales” in “New York, NY”, Select first result – –
PicsArt Apply effect Apply “twilight” effect on recent photo, Save on SD card 1 2
Snapchat Take snap Log in, Take snap, Add caption, Set retention, Send snap to self, View it – 1

Take video Log in, Take video, Pick color, Draw Line, Save to gallery, Add to story – –
Find friend Log in, Add friend from contacts, Allow Access – –
Edit friend Log in, Search friend “abc”, Block “abc”, Unblock “abc”, Delete “abc” – –

Total confirmations required (out of 18 use cases) 2 8

allowed
during sandboxing

prohibited
during sandboxing⛔️

benign
behavior

malicious
behavior

True Negative

False Negative True Positive

False Positive

(benign behavior
 seen or allowed)

(malicious behavior
  seen or allowed)

(benign behavior 
 raising a false alarm)

(malicious behavior 
 detected and prevented)

✅

Figure 6: Confusion matrix. Program behavior is either be-
nign or malicious; if it is not seen during mining (test gener-
ation), it is prohibited during sandboxing. The three risks are
false positives (benign behavior not seen during testing and thus
requiring confirmation during sandboxing), false negatives al-
lowed (malicious behavior allowed because of too coarse sand-
box rules), and false negatives seen (malicious behavior seen
during mining, but not recognized as such, and thus allowed).

5. FINE-GRAINED ACCESS CONTROL

5.1 The Risks of Misclassification
User confirmations, as evaluated in Section 4.2, is only the first

of the key questions we have to assess. In all generality, BOXMATE

is an automatic system that decides on whether behavior should be
allowed or not. As we do not assume a specification of what makes
benign or malicious behavior, user confirmations, or false positives,
is just one of two essential risks, illustrated in Figure 6:

False positive. A false positive occurs when benign behavior is
mistakenly prohibited by the sandbox, degrading user expe-
rience and functionality. In our setting, a false alarm comes
to be if some benign behavior is not seen during mining, and
thus not added as allowed to the sandbox rules; it induces the
access to be confirmed by the user. The number of confir-
mations can be reduced by better testing as well as coarser-
grained sandbox rules, as evaluated in Section 4.2.

False negative. A false negative occurs when malicious behavior
is mistakenly allowed by the sandbox, thus increasing the
attack surface. In our setting, a false negative can come to be
in two ways:

False negative allowed. The inferred sandbox rule may be
too coarse, and thus allow future malicious behavior.
This issue can be addressed by having finer-grained
sandbox rules, as evaluated in Section 5.4.

False negative seen. The application may be malicious in
the first place. Then, we risk to mine this malicious
behavior during testing, such that it would get included
in the sandbox rules. This issue can be addressed by
identifying malicious behavior during testing already—
a task made considerably simpler through the “disclose
or die” principle imposed by BOXMATE (Section 6).

As with any classifier, a measure that decreases the rate of false
negatives typically leads to a greater rate of false positives, and
vice versa. Generally, the more benign behavior we see during min-
ing and allow in our rules (true negatives), the fewer false alarms
we will encounter during sandboxing. However, if the mined rules
overapproximate and thus also allow possible malicious behavior,
we increase the risk of false negatives. If the mined rules are too
specific, though (say, only allow the exact behavior seen during
mining), we again encounter false positives during sandboxing. In
this section, we thus evaluate more fine-grained rules, with the aim
of reducing the risk of a false negative allowed (Figure 6).

5.2 User-Driven Access Control
By default, BOXMATE simply checks whether the app as a whole

uses the same APIs as found and distinguished during recording;
we call this per-app access control. This policy allows for quick
saturation during mining, and thus few false alarms during enforce-
ment; however, it may be too coarse to prevent some attacks. For
instance, once we have seen that SNAPCHAT can read contact phone
numbers, any function within SNAPCHAT, including background
tasks, would be allowed to do that. However, as we have seen
in Figure 3, SNAPCHAT accesses phone numbers only to allow the
user to find other SNAPCHAT users among his friends. How about
restricting contact access to this functionality only?

43



To this end, BOXMATE implements a more fine-grained access
control policy. During sandboxing, per-event access control also
verifies whether the API call was triggered by the same event as
during mining:

1. During mining, BOXMATE records pairs (event, api), where
event is the identifier of the event-triggering GUI element and
api is the sensitive API called by the event handler.

2. During sandboxing, upon each call to a sensitive API api′

triggered by a GUI element event′, BOXMATE checks whether
(event′, api′) was already found during mining; if not, the
call is flagged.

Since our “events” are interactions with named GUI elements, and
as our API calls all refer to user-owned resources, the BOXMATE per-
event access control realizes the principle of User-Driven Access
Control [33, 36], namely tying access to user-owned resources to
user actions in the context of an application.

5.3 Distinguishing Events
Since we want to recognize earlier events, we need a means to

uniquely identify an event. To this end, BOXMATE applies the fol-
lowing rules to identify events. All views (GUI elements) in An-
droid have three features:

• A resource identifier r that associates views and program-
matic actions (“login_button”);

• A text label l possibly displayed on the screen (“Login”);

• A content description d that can be read out loud to the user
as an accessibility feature (“Login”).

While most of these features are defined in an XML layout file, all
of them can also be defined or changed at run time; hence the need
for a dynamic analysis.

BOXMATE stores an event e as a tuple e = (id, action):

id by default is the resource identifier r; if r is empty, id = d
instead; and if d is empty as well, id = l instead. We pre-
fer identifiers to labels since the latter may change during
operation—for instance when changing the app’s language.

action is the user interaction that triggers the event; for buttons,
this is either a click or a long click.

With these rules, two buttons are different even if they sport the
same text (“Ok”), as long as they have different resource identifiers.

The following rules apply for special events:

• If all of r, l, and d are empty, e has the special value unlabeled.
All unlabeled events are treated as one.

• If the thread ID is not equal to 1 (the GUI thread), e has the
special value background. Again, all background events are
treated as one.

• If the app is reset (restarted), e has the special value reset.
This captures events occurring during the program start.

5.4 Evaluation
Let us see how per-event access control works in our SNAPCHAT

example. Within SNAPCHAT, the contacts_permission_button (API 9
in Figure 3) is the only trigger we found for accessing contacts or
their phone numbers. Hence, enforcing per-event access control
would always require that the user press this specific button before
contacts can be accessed. Finding friends on SNAPCHAT is proba-
bly a rare, if not one-time only event for most users. Thus, even if
an attacker worked around the restriction by manipulating this very

0 3,600 7,200 10,800

0

10

20

30

seconds

(e
ve

nt
,

ap
i)

p
ai

rs
se

en

SNAPCHAT 4.1.07, APPGUARD APIs

Figure 7: DROIDMATE per-event API saturation. After 60 min-
utes (3,600 seconds), DROIDMATE has discovered 32 unique
(event, api)-pairs used by SNAPCHAT.

functionality (say, by sending contact data to a different address),
the attack surface is still greatly reduced.

The downside of per-event access control is that it may raise
false alarms more easily. This either translates into a longer mining
phase, allowing DROIDMATE to find more (event, api) pairs, or into
a greater risk of false alarms. This is illustrated in Figure 7, show-
ing the saturation of (event, api) pairs during mining. In contrast to
Figure 2, we see that it takes more than an hour of testing until the
chart flattens at over 90% of all (event, api)-pairs ever explored. A
similar late saturation can also be seen when mining (event, api)-
pairs for the other twelve apps, as summarized in Figure 8.

Fine-grained policies take longer to mine.

How does the finer granularity impact false alarms? In Table 2,
the “event” column shows the set of alarms encountered. We see
that the higher granularity comes at the expense of six more con-
firmations: In the barcoo “Search for Product” use case, an unla-
beled button not triggered during testing requests the current loca-
tion. CleanMaster requires three confirmations: two for changes
to configuration when a scan is started or a report is sent, and
one when a handle to PowerManager$WakeLock is acquired af-
ter the scan is finished. PicsArt registers a content observer of
content://com.picsart.studio.provider/user.update when a “gallery”
button is pressed. In the SNAPCHAT “Take video” use case, a “sta-
tus” button accesses the external media the video is saved in. In
all cases, the alarm would be raised right after the user presses the
appropriate button; the user thus is in the appropriate context to un-
derstand why the respective function requires access to, say, the lo-
cation or the external media, and thus make an informed decision.
This is similar to the model imposed upon users in Android 6—
except that with BOXMATE, we can already eliminate most alarms
during testing. Also, we require the permission anew for each but-
ton, not only once per app, thus further reducing attack surface.

Fine-grained policies increase the risk of false alarms.

On top, our model brings several additional benefits. By tying
API calls to user interaction, any stealthy call from the background
would be automatically prohibited. Thus, none of the apps could
suddenly start sending text messages, turn the microphone on, track
the location, or access sensitive contact or calendar data without the
user initiating or acknowledging access.5 We find this a nice thing
to have, and answer Q2:

Fine-grained policies reduce the attack surface.

5The exception is if this is already part of the app’s normal
operation—as in CleanMaster and VirusScan.

44



0 3,600 7,200
0

1

Adobe Reader

0 3,600 7,200
0

20

40

60

AntiVirus

0 3,600 7,200
0

20

40

barcoo

0 3,600 7,200
0

20

40

CleanMaster

0 3,600 7,200
0

2

4

Currency Cvtr
0 3,600 7,200

0

10

20

eBay

0 3,600 7,200
0

10

20

ES Task Manager
0 3,600 7,200

0

1

Expense Mgr

0 3,600 7,200
0

5

10

File Manager
0 3,600 7,200

0

10

20

Firefox

0 3,600 7,200
0

1

Job Search

0 3,600 7,200
0

20
40
60

PicsArt

Figure 8: Per-event saturation for the apps in Table 1. As in Figure 7, the y axis is (event, api) pairs; the x axis is seconds spent.

6. ASSESSING SANDBOXES
At this point, we have one risk left—namely the risk of a false

negative seen (Figure 6): If malicious behavior is already present
during mining, the mined sandbox will not prevent it in the future.
This feature is actually a strength of BOXMATE, as it puts malware
writers into a “disclose or die” dilemma: Either the malware writer
activates the malicious behavior during testing already—and only
then will it be allowed during production; or she does not activate
the behavior—and then the sandbox will prohibit it in the future.
In practice, this means that even an attempt for malicious behavior
always will be detectable in the first place, as the appropriate API

calls will have to be made during testing and mining already, and
eventually show up as sandbox rules.

While mined sandbox rules by themselves do not (and cannot)
tell whether behavior is malicious or benign, or intended or unin-
tended, they do explicitly record what an application does and what
not as it comes to privacy. Mined sandboxes can thus assist in well-
established techniques to assess behavior and establish trust:

Checking behavior. Anyone can mine a sandbox from a given
app, checking which APIs are being used by which func-
tionality; this alone already gives a useful overview about
what the app does and why. As these rules come from con-
crete executions, one could easily assess concrete resource
identifiers, such as file or host names, or URLs accessed. A
mined sandbox easily serves as input for manual and auto-
matic threat assessment.

Comparing and certifying sandboxes. As users and experts alike
can mine sandboxes, they can also publish and compare their
findings. This allows for independent certification and reval-
idation schemes, as well as trust networks. Again, anything
not found will automatically be prohibited by the sandbox.

Open privacy. With the “disclose or die” dilemma, vendors would
also be motivated to disclose app behavior as it comes to re-
sources being accessed. In the long run, this would lead to
open discussions of what all apps do in terms of privacy; very
much as in the open source movement, but without forcing
vendors to disclose their source code.

Mining normal behavior. We have designed BOXMATE to be eas-
ily applicable to arbitrary binaries. We can thus automat-
ically assess large sets of apps, extracting rules of normal
behavior that may even be tied to app descriptions [22].

These features can all be helpful in answering the third and last
key question, namely whether mined sandboxes can help to assess
behavior—and thus prevent the risk of a false negatives seen (Fig-
ure 6). Since at this point, the ability of sandboxes to assess and
compare behavior is only secondary, a full-fledged evaluation is

0 3,600 7,200 10,800

0

5

10

seconds

A
P

Is
se

en

SNAPCHAT 4.1.07, APPGUARD APIs

SNAPCHAT 5.0.34.6, APPGUARD APIs

Figure 9: DROIDMATE per-app API saturation, comparing
SNAPCHAT versions. The upper thin red line is the newer
SNAPCHAT 5 version.

beyond the scope of this paper. However, let us give an example of
how sandbox mining helps to assess program behavior.

SNAPCHAT version 5, released in February 2015, is a redesign
of the original SNAPCHAT version 4 described in this paper. We
have run BOXMATE on the new SNAPCHAT version, comparing the
resulting sandbox with the original sandbox as mined for version 4.

Figure 9 contrasts the API saturation charts for the two versions;
we can see that the new SNAPCHAT 5 accesses the same amount of
sensitive resources as the old SNAPCHAT 4 version, but the APIs are
somewhat different. Overall, we found SNAPCHAT 5 accesses four
sensitive APIs not seen during the exploration of SNAPCHAT 4:

1. Usage of the Android 4.x AudioRecord interface (the old ver-
sion used the Android 1.x MediaRecorder interface instead)

2. Read/Write access to image thumbnails through methods of
ContentResolver interface like query(), openFileDescriptor()
and insert(), while reading the SNAPCHAT privacy policy.

3. Access of the user’s line1 phone number (after clicking on
the mobile_number button)

4. Usage of the Android 4.x PowerManager interface, forcing
the device screen to stay on while the message is sent
(send_to_bottom_panel_send_button button).

Since DROIDMATE records the events associated with each call,
we can place each API into context, and thus determine why they
would be required. The most sensitive data, the user’s phone num-
ber, is only accessed after the user has clicked on the appropriate
button, acknowledging access. Just as we compared the respec-
tive sandboxes to determine what has changed in SNAPCHAT, any
expert could also have determined other changes between old and
new versions of possibly less trustable programs; the differences
could even be presented in a form amenable for end users.

A user wishing to preserve privacy settings could also run the
untrusted SNAPCHAT 5 version within the trusted sandbox mined

45



from SNAPCHAT 4, with any new API accesses being detected by
the SNAPCHAT 4 sandbox. Then, she would have to confirm access
once in each of the four situations:

1. When recording audio (for the AudioRecord interface),

2. When sending a message (for the PowerManager interface),

3. When reading the SNAPCHAT privacy policy, and

4. When sending the message, forcing the device to stay on.

Each case would inform the user that there is a new feature—and
thus enable her to detect, assess, and prevent potentially malicious
behavior changes.6 Our answer to Q3 is thus positive:

Mined sandboxes can help
in assessing and comparing app behavior.

7. THREATS AND LIMITATIONS
Although our results demonstrate the principal feasibility of sand-

box mining, we would not generalize our findings into external va-
lidity. Our sample of programs is small, is all on Android, and
all GUI-based. For other programs and platforms, we may have
to devise different or additional test generators, possibly requiring
models of the program input structure as well as the sensitive re-
sources to be monitored and protected. These test generators may
be less successful in exploring program behavior, leading to more
false alarms.

The set of use cases we have compiled for assessing the risk of
false alarms (Table 2) does not and cannot cover the entire range of
functionality of the analyzed apps. While we assume that the listed
use cases represent the most important functionality, other usage
profiles may yield different results.

Finally, keep in mind that in the absence of a specification, a
mined policy can never express whether behavior is benign or ma-
licious; and thus, our approach cannot eliminate the risks of both
false alarms and missed attacks. However, by detecting and pre-
venting unexpected changes, our approach is set to reduce both
these risks, even in the absence of specifications. On top, exist-
ing specifications for benign or malicious behavior would be very
easily integrated.

8. CONCLUSION AND FUTURE WORK
The purpose of testing always has been to detect abnormal be-

havior. In this work, we give testing a new purpose, namely to ex-
tract normal behavior—a task that testing arguably is much better
suited to, and even more so in the security domain. By exclud-
ing behavior not seen during testing, we turn the incompleteness
of testing into a guarantee that bad things not seen so far cannot
happen. This principle of test complement exclusion works well in
practice: In our experiments, automatic test generators sufficiently
covered program behavior, reducing the risk of false alarms. Fur-
thermore, fine-grained per-event access rules can be used to further
reduce the attack surface, and the mined sandbox rules can help
to assess program behavior, both reducing the risk of false nega-
tives. All in all, we thus obtain a fully automatic solution to security
promising several benefits at little cost.

Besides general goals such as robustness and scalability, our fu-
ture work will focus on the following topics:

Better test generation. Any improvement in automatic test gene-
ration—where “improvement” is not so much the ability to

6Note that whether the user sees these alarms as “false” entirely
depends on the trust the user puts in the new SNAPCHAT version.

detect bugs, but rather coverage of “normal” behavior—will
decrease the number of false alarms. The long-term goal is
to explore behavior as quickly as a human tester would.

Alternate input sources. Test generation for Android apps is made
easy by the fact that the GUI and its structure are easily acces-
sible and explorable for test generators. We are investigating
novel ways of inferring input structure from arbitrary pro-
grams and input sources, such that these input sources can
be triggered, too.

Access control policies. Mining tighter and more detailed security
policies will catch more unexpected “abnormal” behavior.
We are exploring further policies, involving file or network
names accessed, callers, call sequences, GUI sequences, or
information and data flow from and to sensitive resources;
and in all cases, we have to search for sweet spots that mini-
mize both the attack surface and the number of false alarms.

Remining at runtime. If some application functionality is avail-
able only after specific interaction (e.g., a login/password
combination, an in-app purchase, or a special code to enter a
maintenance mode), we might not see it during mining. One
possible way to overcome this issue could be to re-mine new
functionality once user executes the interaction.

Computed resources. On platforms like UNIX and WINDOWS, sen-
sitive resources are accessed as files whose paths would be
computed at runtime from configuration files, environment
variables, and other external influences. We are working on
sandbox rules that express variability across configurations,
yet are tight enough to keep the attack surface small.

Threat models. The evaluation of all these options will require
systematic and objective evaluation. Besides further expand-
ing our use cases, we are working on creating benchmarks
for typical threats, such that we can automatically assess the
effectiveness of the above options.

For more information on DROIDMATE and BOXMATE, including source
code as well as all experimental data, see our site

http://www.boxmate.org/

Acknowledgments. Michael Backes, Marcel Böhme, Juan Pablo
Galeotti, Alessandra Gorla, and Christian Rossow provided useful
feedback on earlier revisions of this paper. Ahmad Shahzad as-
sisted in feasibility studies. Florian Gross and Konstantin Kuznetsov
provided app binaries. This work was funded by an European Re-
search Council (ERC) Advanced Grant “SPECMATE – Specification
Mining and Testing”.

9. REFERENCES
[1] Android 6 permission system.

https://developer.android.com/preview/
features/runtime-permissions.html. Retrieved
2015-08-27.

[2] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E.,
BARTEL, A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND

MCDANIEL, P. FlowDroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for
Android apps. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (New York, NY, USA, 2014), PLDI ’14,
ACM, pp. 259–269.

[3] AU, K. W. Y., ZHOU, Y. F., HUANG, Z., GILL, P., AND

LIE, D. Short paper: A look at smartphone permission
models. In Proceedings of the 1st ACM Workshop on

46



Security and Privacy in Smartphones and Mobile Devices
(New York, NY, USA, 2011), SPSM ’11, ACM, pp. 63–68.

[4] AU, K. W. Y., ZHOU, Y. F., HUANG, Z., AND LIE, D.
PScout: Analyzing the Android permission specification. In
Proceedings of the 2012 ACM Conference on Computer and
Communications Security (New York, NY, USA, 2012), CCS
’12, ACM, pp. 217–228.

[5] BACKES, M., BUGIEL, S., HAMMER, C., SCHRANZ, O.,
AND VON STYP-REKOWSKY, P. Boxify: Full-fledged app
sandboxing for stock android. In 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015. (2015), pp. 691–706.

[6] BACKES, M., GERLING, S., HAMMER, C., MAFFEI, M.,
AND VON STYP-REKOWSKY, P. AppGuard–fine-grained
policy enforcement for untrusted Android applications. In
Data Privacy Management and Autonomous Spontaneous
Security, J. Garcia-Alfaro, G. Lioudakis,
N. Cuppens-Boulahia, S. Foley, and W. M. Fitzgerald, Eds.,
Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2014, pp. 213–231.

[7] BALIGA, A., GANAPATHY, V., AND IFTODE, L. Automatic
inference and enforcement of kernel data structure invariants.
In Proceedings of the 2008 Annual Computer Security
Applications Conference (Washington, DC, USA, 2008),
ACSAC ’08, IEEE Computer Society, pp. 77–86.

[8] BARTEL, A., KLEIN, J., LE TRAON, Y., AND

MONPERRUS, M. Automatically securing permission-based
software by reducing the attack surface: An application to
Android. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software
Engineering (New York, NY, USA, 2012), ASE 2012, ACM,
pp. 274–277.

[9] BHORASKAR, R., HAN, S., JEON, J., AZIM, T., CHEN, S.,
JUNG, J., NATH, S., WANG, R., AND WETHERALL, D.
Brahmastra: Driving apps to test the security of third-party
components. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014.
(2014), pp. 1021–1036.

[10] BIERMA, M., GUSTAFSON, E., ERICKSON, J., FRITZ, D.,
AND CHOE, Y. R. Andlantis: Large-scale Android dynamic
analysis. CoRR abs/1410.7751 (2014).

[11] BLÄSING, T., BATYUK, L., SCHMIDT, A.-D., CAMTEPE,
S., AND ALBAYRAK, S. An Android application sandbox
system for suspicious software detection. In Malicious and
Unwanted Software (MALWARE), 2010 5th International
Conference on (Oct 2010), pp. 55–62.

[12] BURGUERA, I., ZURUTUZA, U., AND NADJM-TEHRANI,
S. Crowdroid: Behavior-based malware detection system for
Android. In Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices
(New York, NY, USA, 2011), SPSM ’11, ACM, pp. 15–26.

[13] CHANDOLA, V., BANERJEE, A., AND KUMAR, V.
Anomaly detection: A survey. ACM Comput. Surv. 41, 3
(July 2009), 15:1–15:58.

[14] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2010), OSDI’10,
USENIX Association, pp. 1–6.

[15] ENGLER, D., CHEN, D. Y., HALLEM, S., CHOU, A., AND

CHELF, B. Bugs as deviant behavior: A general approach to
inferring errors in systems code. SIGOPS Oper. Syst. Rev. 35,
5 (Oct. 2001), 57–72.

[16] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., AND

NOTKIN, D. Dynamically discovering likely program
invariants to support program evolution. In Proceedings of
the 21st International Conference on Software Engineering
(New York, NY, USA, 1999), ICSE ’99, ACM, pp. 213–224.

[17] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND

WAGNER, D. Android permissions demystified. In
Proceedings of the 18th ACM Conference on Computer and
Communications Security (New York, NY, USA, 2011), CCS
’11, ACM, pp. 627–638.

[18] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E.,
AND WAGNER, D. Android permissions: User attention,
comprehension, and behavior. In Proceedings of the Eighth
Symposium on Usable Privacy and Security (New York, NY,
USA, 2012), SOUPS ’12, ACM, pp. 3:1–3:14.

[19] FORREST, S., HOFMEYR, S. A., SOMAYAJI, A., AND

LONGSTAFF, T. A. A sense of self for Unix processes. In
Proceedings of the 1996 IEEE Symposium on Security and
Privacy (Washington, DC, USA, 1996), SP ’96, IEEE
Computer Society, pp. 120–.

[20] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D.
Automated whitebox fuzz testing. In Proceedings of Network
and Distributed Systems Security (NDSS 2008) (July 2008),
pp. 151–166.

[21] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Sage:
Whitebox fuzzing for security testing. Queue 10, 1 (Jan.
2012), 20:20–20:27.

[22] GORLA, A., TAVECCHIA, I., GROSS, F., AND ZELLER, A.
Checking app behavior against app descriptions. In
Proceedings of the 36th International Conference on
Software Engineering (New York, NY, USA, 2014), ICSE
2014, ACM, pp. 1025–1035.

[23] HAO, S., LIU, B., NATH, S., HALFOND, W. G., AND

GOVINDAN, R. PUMA: Programmable UI-automation for
large-scale dynamic analysis of mobile apps. In Proceedings
of the 12th Annual International Conference on Mobile
Systems, Applications, and Services (New York, NY, USA,
2014), MobiSys ’14, ACM, pp. 204–217.

[24] HU, C., AND NEAMTIU, I. Automating GUI testing for
Android applications. In Proceedings of the 6th International
Workshop on Automation of Software Test (New York, NY,
USA, 2011), AST ’11, ACM, pp. 77–83.

[25] LINDORFER, M., NEUGSCHWANDTNER, M.,
WEICHSELBAUM, L., FRATANTONIO, Y., VAN DER VEEN,
V., AND PLATZER, C. ANDRUBIS – 1,000,000 apps later:
A view on current Android malware behaviors. In Proc. 3rd
International Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security (BADGERS)
(2014), ACM.

[26] LU, L., LI, Z., WU, Z., LEE, W., AND JIANG, G. Chex:
Statically vetting android apps for component hijacking
vulnerabilities. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security (New York, NY,
USA, 2012), CCS ’12, ACM, pp. 229–240.

[27] MACHIRY, A., TAHILIANI, R., AND NAIK, M. Dynodroid:
An input generation system for Android apps. In
Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering (New York, NY, USA, 2013),
ESEC/FSE 2013, ACM, pp. 224–234.

47



[28] MAHMOOD, R., ESFAHANI, N., KACEM, T., MIRZAEI, N.,
MALEK, S., AND STAVROU, A. A whitebox approach for
automated security testing of Android applications on the
cloud. In Proceedings of the 7th International Workshop on
Automation of Software Test (Piscataway, NJ, USA, 2012),
AST ’12, IEEE Press, pp. 22–28.

[29] MILLER, B. P., FREDRIKSEN, L., AND SO, B. An
empirical study of the reliability of UNIX utilities. Commun.
ACM 33, 12 (Dec. 1990), 32–44.

[30] Monkey: UI/Application exerciser. http://developer.
android.com/tools/help/monkey.html.
Retrieved 2015-02-01.

[31] NEUNER, S., VAN DER VEEN, V., LINDORFER, M.,
HUBER, M., MERZDOVNIK, G., MULAZZANI, M., AND

WEIPPL, E. R. Enter sandbox: Android sandbox
comparison. CoRR abs/1410.7749 (2014).

[32] PROVOS, N. Improving host security with system call
policies. In Proc. USENIX Security (2003), USENIX
Association, pp. 18–32.

[33] ROESNER, F., KOHNO, T., MOSHCHUK, A., PARNO, B.,
WANG, H. J., AND COWAN, C. User-driven access control:
Rethinking permission granting in modern operating
systems. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy (Washington, DC, USA, 2012), SP ’12,
IEEE Computer Society, pp. 224–238.

[34] SALTZER, J., AND SCHROEDER, M. The protection of
information in computer systems. Proceedings of the IEEE
63, 9 (Sept 1975), 1278–1308.

[35] SHABTAI, A., KANONOV, U., ELOVICI, Y., GLEZER, C.,
AND WEISS, Y. “Andromaly”: a behavioral malware
detection framework for android devices. Journal of
Intelligent Information Systems 38, 1 (2012), 161–190.

[36] SHIRLEY, J., AND EVANS, D. The user is not the enemy:
Fighting malware by tracking user intentions. In Proceedings
of the 2008 Workshop on New Security Paradigms (New
York, NY, USA, 2008), NSPW ’08, ACM, pp. 33–45.

[37] SOMMER, R., AND PAXSON, V. Outside the closed world:
On using machine learning for network intrusion detection.
In Proceedings of the 2010 IEEE Symposium on Security and
Privacy (Washington, DC, USA, 2010), SP ’10, IEEE
Computer Society, pp. 305–316.

[38] ZELLER, A. Test complement exclusion: Guarantees from
dynamic analysis. In Proc. International Conference on
Program Comprehension (ICPC) (2015). Abstract of invited
keynote.

48


