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Abstract

One source of complexity in the �-calculus is its ability to specify an unbounded number of switches between universal (AX) and
existential (EX) branching modes. We therefore study the problems of satisfiability, validity, model checking, and implication for the
universal and existential fragments of the �-calculus, in which only one branching mode is allowed. The universal fragment is rich
enough to express most specifications of interest, and therefore improved algorithms are of practical importance. We show that while
the satisfiability and validity problems become indeed simpler for the existential and universal fragments, this is, unfortunately,
not the case for model checking and implication. We also show the corresponding results for the alternation-free fragment of
the �-calculus, where no alternations between least and greatest fixed points are allowed. Our results imply that efforts to find a
polynomial-time model-checking algorithm for the �-calculus can be replaced by efforts to find such an algorithm for the universal
or existential fragment.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Automata and logic; �-Calculus; Model checking; Satisfiability

1. Introduction

In model checking, we reason about systems and their properties by reasoning about formal models of systems
and formal specifications of the properties [8]. The algorithmic nature of model checking makes it fully automatic,
convenient to use, and attractive to practitioners. At the same time, model checking is very sensitive to the size of
the formal model of the system and the formal specification. Commercial verification tools need to cope with the
exceedingly large state spaces that are present in real-life designs. One of the most important developments in this
area is the discovery of symbolic methods [5,33]. Typically, symbolic model-checking tools proceed by computing
fixed-point expressions over the model’s set of states. For example, to find the set of states from which a state satisfying
some predicate p is reachable, the model checker starts with the set y of states in which p holds, and repeatedly adds
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to y the set EXy of states that have a successor in y. Formally, the model checker calculates the least fixed point of the
expression y = (p ∨ EXy).

Such fixed-point computations are described naturally in the �-calculus [25,1], which is a logic that contains the
existential and universal next modalities EX and AX , and the least and greatest fixed-point quantifiers � and �. The
�-calculus is an extremely general modal logic. It is as expressive as automata on infinite trees, and it subsumes most
known specification formalisms, including dynamic logics such as PDL [16] and temporal logics such as LTL and
CTL� [10,11] (see [22] for a general result). The alternation-free fragment of the �-calculus (AFMC, for short) [15]
has a restricted syntax that does not allow the nesting of alternating least and greatest fixed-point quantifiers, which
makes the evaluation of expressions very simple [9]. The alternation-free fragment subsumes the temporal logic CTL.

Four decision problems arise naturally for every specification formalism: the satisfiability problem (given a formula
�, is there a model that satisfies �?) checks whether a specification can be implemented, and algorithms for deciding
the satisfiability problem are the basis for program synthesis and control [6,36,37]; the validity problem (given �, do all
models satisfy �?) checks whether the specification is trivially satisfied, and is used as a sanity check for requirements
[29]; the model-checking problem (given a formula � and a model M , does M satisfy �?) is the basic verification
problem; and the implication problem (given two formulas � and �, is �→ � valid?) arises naturally in the context
of modular verification, where it must be shown that a module satisfies a property under an assumption about the
environment [27,35].

The satisfiability, validity, and implication problems for the �-calculus are all EXPTIME-complete [2,16] (since
the �-calculus is closed under negation, it is easy to get EXPTIME completeness for the validity and implication
problems by reductions to and from the satisfiability problem). The model-checking problem for the �-calculus was
first considered in [15], which described an algorithm with complexity O((mn)l+1), where m is the size of M , n is the
size of �, and l is the number of alternations between least and greatest fixed-point quantifiers in �. In [14], the problem
was shown to be equivalent to the nonemptiness problem for parity tree automata, and thus to lie in NP ∩ co-NP. Today,
it is known that the problem is in UP ∩ co-UP [23], 1 and the best known algorithm for �-calculus model checking has
a time complexity of roughly O(mnl/2) [24,31,38], which is still exponential in the number of alternations. The precise
complexity of the problem, and in particular, the question whether a polynomial time solution exists, is a long-standing
open problem.

In this paper we study the complexity of the four decision problems for the existential and universal fragments of the
�-calculus. The existential fragment consists of formulas where the only allowed next modality is the existential one
(EX), and the universal fragment consists of formulas where the only allowed next modality is the universal one (AX).
We consider �-calculus in positive normal form, thus the strict syntactic fragments are also semantic fragments—there
is no way of specifying an existential next in the universal fragment without negation, and vice versa. Both sublogics
induce the state equivalence similarity (mutual simulation) [18,30], as opposed to bisimilarity, which is induced by the
full �-calculus [19]. The existential and universal fragments of the �-calculus subsume the existential and universal
fragments of the branching-time logics CTL and CTL∗. For temporal logics, the universal and existential fragments
have been studied (see, e.g., [27]). As we specify in the table in Fig. 1, the satisfiability, validity, and implication
problems for the universal and existential fragments of CTL and CTL∗ are all easier than the corresponding problems
for the full logics [12,16,27,40]. On the other hand, the model-checking complexities for the universal and existential
fragments of CTL and CTL� coincide with the complexities of the full logics, and the same holds for the system
complexities of model checking (i.e., the complexities in terms of the size of the model, assuming the specification is
fixed. Since the model is typically much bigger than the specification, system complexity is important) [7,28].

In contrast to CTL and CTL�, it is possible to express in the �-calculus unbounded switching of AX and EX
modalities. Such an unbounded switching is an apparent source of complexity. For example, the �-calculus can express
the reachability problem on And-Or graphs, which is PTIME-complete, while the reachability problem on plain graphs
(existential reachability), and its universal counterpart, are NL-complete. Accordingly, the system complexity of the
model-checking problem for the �-calculus is PTIME-complete, whereas the one for CTL and CTL� is only NL-
complete [15,20,28]. By removing the switching of modalities from the �-calculus, one may hope that the algorithms
for the four decision problems, and model checking in particular, will become simpler. Since most specifications assert
what a system must or must not do in all possible futures, the universal fragment of the �-calculus is expressive enough
to capture most specifications of interest. Also, the problem of checking symbolically whether a model contains a

1 The class UP is a subset of NP, where each word accepted by the Turing machine has a unique accepting run.
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Fig. 1. Summary of known and new (in italics) results.

computation that satisfies an LTL formula is reduced to model checking of an existential �-calculus formula. Hence,
our study is not only of theoretical interest—efficient algorithms for the universal and existential fragments of the
�-calculus are of practical interest.

We determine the complexities of the four decision problems for the universal and existential fragments of the
�-calculus, as well as for the corresponding alternation-free fragments. Our results are summarized in Fig. 1. All the
complexities in the figure except for the NP ∩ co-NP result for MC, ∃MC, and ∀MC model checking are tight. It turns
out that the hope to obtain simpler algorithms for the universal and existential fragments is only partially fulfilled. We
show that while the satisfiability and validity problems become easier for the existential and universal fragments, both
the model-checking and implication problems stay as hard as for the full �-calculus (or its alternation-free fragment).
In particular, our results imply that efforts to find a polynomial time model-checking algorithm for the �-calculus can
be replaced by efforts to find polynomial time model-checking algorithms for the universal or existential fragment.
Note that the picture we obtain for the �-calculus and its alternation-free fragment does not coincide with the picture
obtained in the study of the universal and existential fragments of CTL and CTL�, where the restriction to the universal
or existential fragments makes also the implication problem easier.

One key insight concerns the size of models for the existential and universal fragments of the �-calculus. We prove
that the satisfiability problem for the existential fragment of �-calculus is in NP via a linear-size model property. This
is in contrast to the full �-calculus, which has only an exponential-size model property [26]. This shows that extending
propositional logic by the EX modality and fixed-point quantifiers does not make the satisfiability problem harder. On
the other hand, a similar extension with AX results in a logic for which the linear-size model property does not hold,
and whose satisfiability problem is PSPACE-complete.

A second insight is that, in model-checking as well as implication problems, the switching of EX and AX modalities
can be encoded by the boolean connectives∨ and∧ in combination with either one of the two modalities and fixed-point
quantifiers. Let us be more precise. The model-checking problem for the �-calculus is closely related to the problem of
determining the winner in games on And-Or graphs. The system complexity of �-calculus model checking is PTIME-
hard, because a �-calculus formula of a fixed size can specify an unbounded number of switches between universal
and existential branching modes. In particular, the formula �y.(t ∨EXAXy) specifies winning for And-Or reachability
games, and formulas with alternations between least and greatest fixed-point quantifiers can specify winning for And-
Or parity games. One would therefore suspect that the universal and existential fragments of the �-calculus, in which
no switching between branching modes is possible, might not be sufficiently strong to specify And-Or reachability.
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Indeed, in [14] the authors define a fragment L2 of the �-calculus which explicitly bounds the number of switches
between both AX and EX modalities and ∧ and ∨ boolean operators. This fragment is as expressive as extended CTL�

[14], and it cannot specify reachability in And-Or graphs (the system complexity of model checking is NL-complete).
However, in model checking as well as implication problems, we can consider models in which the successors of a
state are labeled in a way that enables the specification to directly refer to them. Then, it is possible to replace the
existential next modality by a disjunction over all successors, and it is possible to replace the universal next modality
by a conjunction that refers to each successor. More specifically, if we can guarantee that the successors of a state with
branching degree two are labeled by l (left) and r (right), then the existential next formula EXy can be replaced by
AX(l → y) ∨ AX(r → y), and the universal next formula AXy can be replaced by EX(l ∧ y) ∧ EX(r ∧ y). While
these observations are technically simple, they enable us to solve the open problems regarding the complexity of the
universal and existential fragments of the �-calculus.

2. Propositional µ-calculus

The propositional �-calculus (MC, for short) is a propositional modal logic augmented with least and greatest fixed-
point quantifiers [25]. Specifically, we consider a �-calculus where formulas are constructed from boolean propositions
with boolean connectives, the temporal modalities EX and AX, as well as least (�) and greatest (�) fixed-point quantifiers.
We assume without loss of generality that �-calculus formulas are written in positive normal form (negation is applied
only to atomic propositions). Formally, given a set AP of atomic propositions and a set V of variables, a �-calculus
formula is either:

• true, false, p, or ¬p, for p ∈ AP;
• y, for y ∈ V ;
• �1 ∧ �2 or �1 ∨ �2, where �1 and �2 are �-calculus formulas;
• AX� or EX�, where � is a �-calculus formula;
• �y.� or �y.�, where y ∈ V and � is a �-calculus formula.

We say that the variable y is bound in �y.� and �y.�. A variable is free if it is not bound. A sentence is a formula that
contains no free variables. We refer to AX and EX as the universal and existential next modalities, respectively. For
a �-calculus formula �, define the size |�| of � as the size of the DAG representation of �. Note that this is always
smaller than or equal to the number of syntactic symbols occurring in the formula.

The universal �-calculus (∀MC, for short) is the fragment of the �-calculus in which the only next modality allowed
is the universal one. Dually, the existential �-calculus (∃MC, for short) is the fragment in which the only next modality
allowed is the existential one. Note that since �-calculus formulas are written in positive normal form, there is no way
to specify existential next in ∀MC by negating universal next.

A �-calculus formula is alternation-free if, for all y ∈ V , there are respectively no occurrences of �(�) on any
syntactic path from an occurrence of �y(�y) to an occurrence of y. For example, the formula �x.(p∨�y.(x∨EXy)) is
alternation-free, and the formula �x.�y.((p∧x)∨EXy) is not. The alternation-free �-calculus (AFMC, for short) is the
subset of the �-calculus that contains only the alternation-free formulas. We also refer to the universal and existential
fragments of AFMC, and denote them by ∀AFMC and ∃AFMC, respectively.

A �-calculus formula is guarded if for all y ∈ V , all occurrences of y that are in a scope of a fixed-point quantifier
� ∈ {�, �} are also in a scope of a next modality which is itself in the scope of �. For example, the formula �y.(p∨EXy)

is guarded, and the formula EX�y.(p ∨ y) is not. We assume that all �-calculus formulas are guarded. As proved in
[28], every �-calculus formula can be linearly translated to an equivalent guarded one, thus we do not lose generality
with our assumption.

The semantics of �-calculus formulas is defined with respect to Kripke structures. A Kripke structure K = 〈AP, W,

R, w0, L〉 consists of a set AP of atomic propositions, a set W of states, a total transition relation R ⊆ W × W , an
initial state w0 ∈ W , and a labeling L : W → 2AP that maps each state to the set of atomic propositions true in that
state.

Given a Kripke structure K = 〈AP, W, R, w0, L〉 and a set {y1, . . . , yn} of free variables, a valuation V : {y1, . . . , yn}
→ 2W is an assignment of subsets of W to the variables in {y1, . . . , yn}. For a valuation V , a variable y, and a set
W ′ ⊆ W , denote by V[y ← W ′] the valuation mapping y to W ′, and y′ to V(y′) for all y′ �= y. A formula � with



T.A. Henzinger et al. / Theoretical Computer Science 354 (2006) 173 –186 177

atomic propositions from AP and free variables {y1, . . . , yn} is interpreted over the structure K as a mapping �K from

valuations to 2W . Thus, �K(V) denotes the set of states that satisfy � under the valuation V . The mapping �K is defined
inductively as follows:

• trueK(V) = W and falseK(V) = ∅.
• For p ∈ AP, let pK(V) = {w ∈ W | p ∈ L(w)} and (¬p)K(V) = {w ∈ W | p /∈ L(w)}.
• (�1 ∧ �2)

K(V) = �K
1 (V) ∩ �K

2 (V).

• (�1 ∨ �2)
K(V) = �K

1 (V) ∪ �K
2 (V).

• (AX�)K(V) = {w ∈ W | ∀w′. if (w, w′) ∈ R then w′ ∈ �K(V)}.
• (EX�)K(V) = {w ∈ W | ∃w′.(w, w′) ∈ R and w′ ∈ �K(V)}.
• (�x.�)K(V) =⋂ {W ′ ⊆ W | �K(V[x ← W ′]) ⊆ W ′}.
• (�x.�)K(V) =⋃ {W ′ ⊆ W | W ′ ⊆ �K(V[x ← W ′])}.
By the Knaster–Tarski theorem, the required fixed-points always exist. For a sentence, no valuation is required. For a
state w ∈ W of the Kripke structure K, and a sentence �, we write K, w � � iff w ∈ �K.

The �-calculus is a very expressive logic, and most temporal logics used in specification and verification can be
translated to the �-calculus. Moreover, the temporal logics LTL and universal CTL can be translated to the universal
fragment of the �-calculus [8,10].

3. Satisfiability and validity

The satisfiability problem for a �-calculus sentence � is to decide whether there is a Kripke structure K and a
state w in it such that K, w � �. The validity problem is to decide whether K, w � � for all K and w. Note that � is
satisfiable iff ¬� is not valid. The satisfiability and validity problems for �-calculus and its alternation-free fragment
are EXPTIME-complete [2,16]. In this section we study the satisfiability and validity problems for the universal and
existential fragments.

Theorem 1. The satisfiability problem for ∀MC and ∀AFMC is PSPACE-complete.

Proof. For a ∀MC formula �, let [�] denote the linear-time �-calculus formula [25] obtained from � by omitting all
its universal path quantifiers. It is easy to see that � is satisfiable iff [�] is satisfiable. Indeed, a model for [�] is also
a model for �, and each path in a model for � is a model for [�]. Since the satisfiability problem for the linear-time
�-calculus and its alternation-free fragment is PSPACE-complete [39], so is the satisfiability problem for ∀MC and
∀AFMC. �

Since both ∃MC and ∃AFMC subsume propositional logic, the satisfiability problem for these logics is clearly hard for
NP. We show that the satisfiability problem is in fact NP-complete. To show membership in NP, we prove a linear-size
model property for ∃MC.

Lemma 2. Let � be a formula of ∃MC. If � is satisfiable, then it has a model with at most O(|�|) states and O(|�|)
transitions.

Proof. The proof is similar to the one used in [27] to show a linear-size model property for ∃CTL. We proceed by
induction on the structure of ∃MC formulas. With each ∃MC formula �, we associate a set S� of models (Kripke
structures) that satisfy �. We define S� by structural induction. The states of the models in S� are labeled by both the
atomic propositions in AP and the variables free in �. We use S�1

→ S�2
to denote the set of models obtained by

taking a model M1 from S�1
, a model M2 from S�2

, adding a transition from the initial state of M1 to the initial state
of M2, and fixing the initial state to be the one of M1.

For models M1 and M2 such that M1 and M2 agree on the labeling of their initial states, let M1 ⊕M2 denote the
model obtained by fixing the initial state to be the initial state of M1, redirecting transitions to the initial state of M2
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Fig. 2. Linear-size models.

into the initial state of M1, and adding transitions from the initial state of M1 to all the successors of the initial state of
M2. We use S�1

∩∗ S�2
to denote the set of models

{M1 ⊕M2 | M1 ∈ S�1
, M2 ∈ S�2

, and M1 and M2 agree on the labeling of their initial states}.
Finally, we use S�(#) ↓, where # is an atomic proposition not in AP, to denote the set of models obtained from a model
in S�(#) by adding transitions from states labeled by # to all the successors of the initial state, and removing # from the
labels of states. We can now define S� as follows. Note that we do not consider the case where � = x, for x ∈ V , as
we assume that � is a sentence.

• Strue is the set of all one-state models over AP.
• Sfalse = ∅.
• Sp, for p ∈ AP, is the set of all one-state models over AP in which p holds.
• S¬p, for ¬p ∈ AP, is the set of all one-state models over AP in which p does not hold.
• S�1∨�2

= S�1
∪ S�2

.
• S�1∧�2

= S�1
∩∗ S�2

.
• SEX�1

= Strue → S�1
.

• S�x.�1(x) = S�1(�1(false)).
• S�x.�1(x) = S�1(#∧(�1(true))) ↓.

For example, if AP = {p}, and � = �x.�1(x) with �1(x) = EX(p ∧ x) ∧ EX(¬p ∧ x), then �1(# ∧ (�1(true))) =
EX(p∧ #∧EXp∧EX¬p)∧EX(¬p∧ #∧EXp∧EX¬p), and S� contains the two models obtained from the model
M1 described in Fig. 2 by labeling the initial state by either p or ¬p. Also, if AP = {p, q} and � = EXp ∧ (�y.q ∨
(p ∧ EXy)), then S� contains the models obtained from the models M2 and M3 described in Fig. 2 by completing
labels of p or q that are left unspecified with all possible valuations.

The models in S� are “economical” with respect to states that are required for satisfaction of formulas that refer to
the strict future. For example, the initial state of models in SEX�1

has a single successor that satisfies �1, and models
in S�y.�(y) that do not satisfy �(false) in the initial state are required to satisfy �(false) in a successor state.

It is not hard to prove, by induction on the structure of �, that each model in S� has O(|�|) states and O(|�|)
transitions. Recall that we are using a dag representation of the formulas, so the sizes of the models remain linear.

We now prove, by an induction on the structure of �, the following three claims.

(1) For every model M ∈ S�, we have that M satisfies �.
(2) For every model M that satisfies �, there is a model M ′ ∈ S� such that M and M ′ agree on the labeling of their

initial states.
(3) For every model M ∈ S�, and any Kripke structure M ′ that agrees with M on the labeling of the initial states,

M ⊕M ′ and M ′ ⊕M are both models of �.

Note that Claim (2) implies that if � is satisfiable, then S� is not empty. Thus, the two claims together imply that if � is
satisfiable, then it has a satisfying model in S�, which is guaranteed to be of size linear in |�|. Further, once we prove
Claim (1), we get Claim (3) since all formulas are existential, and therefore closed under embeddings of models.
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The proof for � of the form true, false, p, ¬p, and �1 ∨ �2 are easy. For the other cases, we proceed as follows.

• Let � = �1 ∧�2. By induction hypothesis, all models in S�1
and S�2

satisfy �1 and �2, respectively. Take a model
M from S�, and let M = M1⊕M2 where M1 is in S�1

and M2 is in S�2
. By claim (3), we know that M1⊕M2 is a

model for �1 as well as �2. Hence, it is a model of �.
Claim (2) is straightforward: any model M of � is also a model of �1. Therefore, there exists a model in S�1

that
agrees with M on the labeling of the internal states, and thus there exists a model in S� with the same labeling.
• Let � = EX�1. By the induction hypothesis, all models in S�1

satisfy �1. Hence, (1) follows immediately from the
definition of S�. To see (2), consider a model M that satisfies �. Since Strue is the set of all one-state models over
AP, it contains a model M ′ that agrees with M on the labeling of their initial states.
• Let � = �x.�1(x). By the semantics of �-calculus, a model that satisfies �1(�1(false)), satisfies � as well. Hence,

(1) follows immediately from the definition of S�. To see (2), consider a model M that satisfies �. Since �-calculus
has a finite-model property [2,16], we can without loss of generality consider M to be finite. In this case, for some
i > 0, the model M satisfies �i

1(false). We construct a model M ′ that satisfies �1(�1(false)) and agrees with M

on the label of the initial state. Let # be a proposition not in AP, and consider the formula �1(# ∧ �i−1
1 (false)). By

attributing by # exactly all the states of M that satisfy (�i−1
1 (false)), the model M can be attributed by # to satisfy

�1(#∧�i−1
1 (false)). Moreover, since � is guarded, the initial state of M is attributed by # only if there is a self-loop

in the initial state. Such a self-loop can be unwound, so we can assume that the initial state of M is not attributed
by #.

Next, we use the observation that if � is satisfiable, so is �1(false). If not, then for any Kripke structure K, we claim
that �K = ∅, which is a contradiction to the satisfiability of �. To see the claim, notice that by the semantics of the
�-calculus, �K

1 (V[x ← ∅) = ∅, and therefore ∅ is a fixpoint (hence the least fixpoint) of �1.
Let N be a model of �1(false). The structure M ′ is obtained from M by replacing all states attributed by # with N

(i.e., all transitions leading into a state attributed by # are redirected to the initial state of N ). Then, M ′ is a model of
�1(�1(false)), and agrees with M in the labeling of the initial states.

• Let � = �x.�1(x). By the semantics of �-calculus, a model M satisfies � iff M satisfies �i
1(true), for all i�0.

Consider a model M ∈ S�. By the definition of S�, the model M satisfies �1(true), and the states attributed # satisfy
�1(true) as well. Since �1(true) is existential, the states attributed # continue to satisfy �1(true) after the new edges
are added. In fact, it is not hard to see that after the new edges are added, the states attributed # also satisfy �1(#).
Thus, for all i�1, the model M can be unfolded (i− 1) times to show M satisfies �i

1(true), and we are done. To see
(2), let M be a model of � and let # be a proposition not in AP. Then, M satisfies �1(�1(true)), and by attributing by
# exactly all the states that satisfy �1(true), it can be attributed by # to satisfy �1(# ∧ �1(true)). As in the previous
case, since � is guarded, we can ensure that this leaves the labeling of the initial state unchanged, possibly after
unwinding a self-loop in the initial state. In addition, adding transitions from states attributed by # to all successors
of the initial state, leaves the label of the initial state unchanged, and thus results in a model in S� that agrees with
M on the labeling of their initial states.

Notice that the proof requires that the only allowed modalities are existential in order to prove Claim (3). Claim (3) is
required in order to show the case � = �1 ∧ �2. �

Note that the �-calculus with both universal and existential next modalities has only an exponential-size model
property (there is a �-calculus sentence � such that the smallest Kripke structure that satisfies � is of size exponential
in |�|). Thus, the linear-size model property crucially depends on the fact that the only next modality that is allowed
is the existential one. In fact, the construction for conjunction in the above proof works only because the allowed next
modality is existential, and in general, the combination M ⊕M ′ of a model for �1 and a model for �2 is not a model
for �1 ∧ �2. The linear-size model theorem shows that the satisfiability problem for ∃MC and ∃AFMC is in NP.

Theorem 3. The satisfiability problem for ∃MC and ∃AFMC is NP-complete.

Since a formula � is satisfiable iff ¬� is valid, and since negating an ∃MC formula results in a ∀MC formula and
vice versa, the following theorem is an immediate corollary of Theorems 1 and 3.
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Theorem 4. The validity problem is co-NP-complete for ∀MC and ∀AFMC, and is PSPACE-complete for ∃MC
and ∃AFMC.

Since ECTL (respectively, ECTL�) formulas can be converted into ∃MC formulas with a linear (respectively, expo-
nential) blow-up [10], we get again the linear model theorem for ECTL [27] and an exponential size model theorem
for ECTL�.

4. Model checking

The model-checking problem for the �-calculus is to decide, given a Kripke structure K and a �-calculus formula �,
the set of states in K that satisfy �. In this section we study the model-checking problem for the universal and existential
fragments of the �-calculus. We show that in contrast to the case of satisfiability, the model-checking problem for the
restricted fragments is not easier than the model-checking problem for the �-calculus, and the same is true for the
alternation-free fragments.

The model-checking problem for the �-calculus is closely related to the problem of determining the winner in
games on And-Or graphs. We first review here some definitions that will be used in the reduction of the model-checking
problem for the full �-calculus to the model-checking problem for the fragments. A two-player game graph is a directed
graph G = 〈V, E〉, with a partition Ve ∪ Vu of V . The game is played between two players, player 1 and player 2. A
position of the game is a vertex v ∈ V . At each step of the game, if the current position v is in Ve, then player 1 chooses
the next position among the vertices in {w | 〈v, w〉 ∈ E}. Similarly, if v ∈ Vu, then player 2 chooses the next position
among the vertices in {w | 〈v, w〉 ∈ E}. The game continues for an infinite number of steps, and induces an infinite path
� ∈ V �. The winner of the game depends on different conditions we can specify on words in V �. The simplest game is
reachability. Then, the winning condition is some vertex t ∈ V , and player 1 wins the game if � eventually reaches the
vertex t . Otherwise, player 2 wins. A richer game is parity. In parity games, there is a function C : V → {0, . . . , k−1}
that maps each vertex to a color in {0, . . . , k − 1}. Player 1 wins the parity game if the maximal color that repeats in �
infinitely often is even.

A strategy for player 1 is a function �1 : V ∗ × Ve → V such that for all u ∈ V ∗ and v ∈ Ve, we have �1(u · v) ∈
{w | 〈v, w〉 ∈ E}. A strategy for player 2 is defined similarly, as �2 : V ∗ × Vu → V . For a vertex s ∈ V , and
strategies �1 and �2 for player 1 and player 2, respectively, the outcome of �1 and �2 from s, denoted �(�1, �2)(s),
is the trace v0, v1, . . . ∈ V � such that v0 = s and for all i�0, we have vi+1 ∈ �1(v0 . . . vi−1, vi) if vi ∈ Ve, and
vi+1 ∈ �2(v0 . . . vi−1, vi) if vi ∈ Vu. Finally, a vertex s ∈ V is winning for player 1 if there is a strategy �1 of player 1
such that for all strategies �2 of player 2, the outcome �(�1, �2)(s) is winning for player 1. When G has an initial state
s, we say that player 1 wins the game on G if s is winning for player 1 in G.

We start by considering the system complexity of the model-checking problem for the universal and existential
fragments of the �-calculus; that is, the complexity of the problem in terms of the model, assuming the formula is
fixed. As discussed in Section 1, the system complexity of AFMC model checking is PTIME-complete, and hardness
in PTIME [20] crucially depends on the fact that an AFMC formula of a fixed size can specify an unbounded number
of switches between universal and existential branching modes. As we prove in Theorem 5 below, the setting of model
checking enables us to trade an unbounded number of switches between universal and existential branching modes
by an unbounded number of switches between disjunctions and conjunctions. The idea is that in model checking,
unlike in satisfiability, we can consider models in which the successors of a state are labeled in a way that enables
the formula to directly refer to them. Then, it is possible to replace the existential next modality by a disjunction
over all successors, and it is possible to replace the universal next modality by a conjunction that refers to each
successor.

Theorem 5. The complexity and system complexity of ∀AFMC (so, also of ∃AFMC) model checking is PTIME-
complete.

Proof. Membership in PTIME follows from the linear time algorithm for AFMC [9]. For hardness, we reduce the
problem of deciding a winner in a reachability game to model checking of a ∀AFMC formula of a fixed size. Since one
can model check a specification � by checking ¬� and negating the result, the same lower bound holds for ∃AFMC.
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Deciding reachability in two-player games is known to be PTIME-hard already for acyclic graphs with branching
degree two, where universal and existential vertices alternate, and both s and t are in Ve [17]. Given a bipartite and
acyclic game graph G = 〈V, E〉 with branching degree two, a partition of V to Ve and Vu, and two vertices s and t in
Ve, we construct a Kripke structure K = 〈AP, W, R, w0, L〉 and a formula in ∀AFMC such that K, w0 � � iff player 1
wins the reachability game on G from state s and with target t . Notice that the AFMC formula �x.t ∨ EXAXx (where
the proposition t holds exactly at the state t) exactly encodes the set of states that can alternating-reach the target t in
the graph G, we show how to encode this formula in the existential and universal fragments.

We do the proof in two steps. First, we transform the graph G to another graph G′, with some helpful properties, and
then we construct the Kripke structure K from G′. Essentially, in G′ each universal vertex is a left or right successor
of exactly one existential vertex. Formally, G′ = 〈V ′, E′〉, where V ′ = Ve ∪ V ′u, and V ′u and E′ are defined as follows.
Let Ee = E ∩ (Ve×Vu) and Eu = E ∩ (Vu×Ve). Recall that each vertex in Ve has two successors. Let Ee = El

e ∪Er
e

be a partition of Ee so that for each v ∈ Ve, one successor vl of v is such that 〈v, vl〉 ∈ El
e and the other successor vr

of v is such that 〈v, vr 〉 ∈ Er
e . Note that a vertex u may be the left successor of some vertex w1 and the right successor

of some other vertex w2; thus, El
e(w1, u) and Er

e(w2, u). The goal of G′ is to prevent such cases.

• V ′u ⊆ Vu×{l, r}×Ve is such that (v, l, w) ∈ V ′u iff (w, v) ∈ El
e and (v, r, w) ∈ V ′u iff (w, v) ∈ Er

e . Thus, each edge
〈w, v〉 ∈ Ee contributes one vertex (v, l, w) or (v, r, w) to V ′u. Intuitively, visits to the vertex (v, l, w) correspond
to visit to v in which it has been reached by following the left branch of w, and similarly for (v, r, w) and right.
• E′e = {〈v, (vl, l, v)〉 : 〈v, vl〉 ∈ El

e} ∪ {〈v, (vr , r, v)〉 : 〈v, vr 〉 ∈ Er
e }. Also, E′u = {〈(v, d, w), u〉 : 〈v, u〉 ∈ Eu}, and

E′ = E′e ∪ E′u.

The size of G′ is linear in the size of G. Indeed |V ′| = |Ve|+ |Ee| and |E′| = |E′e|+ |E′u|� |Ee|+ 2|Eu|. It is not hard
to see that player 1 can win the game in G iff he can win in G′. Note that the branching degree of G′ remains two. The
construction of G′ ensures that the two successors of an existential vertex v can be referred to unambiguously as the
left or the right successor of v.

The graph G′ = 〈V ′, E′〉, together with s and t , induces the Kripke structure K = 〈AP, V ′, E′, s, L〉 described below.
The set of atomic propositions AP = {t, l}. For readability, we also introduce the shorthand r for ¬l. The proposition
t holds in (and only in) the state t , and the propositions l and r hold in the left and right successor respectively for an
existential node. Thus, l ∈ L(〈v, l, w〉) and r ∈ L(〈v, r, w〉). Finally, let � be the ∀AFMC formula

�y.t ∨ (AX(¬l ∨ AXy) ∨ AX(¬r ∨ AXy)).

It is now easy to see that player 1 can win the reachability game for t from s in G′ iff K, s � �. This construction also
proves PTIME-completeness for model checking ∃AFMC, since K, s � � iff K, s /� ¬�, and � is in ∃AFMC iff ¬� is
in ∀AFMC. �

We now consider the model-checking problem for ∀MC and ∃MC. We show that there is a polynomial time reduction
from an instance of the �-calculus model-checking problem to an instance of the ∀MC (or ∃MC) model-checking
problem. This shows that the model-checking problem for the restricted logics are polynomial time equivalent to the
model-checking problem for the full �-calculus: the existence of a polynomial time algorithm for the restricted logic
implies the existence of a polynomial time algorithm for the full logic. We say a problem P is as hard as a problem P ′
if P and P ′ are polynomial time equivalent, that is, there are polynomial reductions from instances of P to instances
of P ′ and vice versa.

Theorem 6. The model-checking problem for ∀MC (so, also for ∃MC) is as hard as the model-checking problem for
the �-calculus.

Proof. The idea is similar to the proof of Theorem 5, only that instead of talking about winning a reachability game,
we talk about winning a parity game [13], to which and from which �-calculus model checking can be reduced [14].
Without loss of generality, we assume that existential and universal vertices alternate (the game graph is bipartite),
and each node has exactly two successors. We also assume that each vertex in Vu has the same color as the incoming
existential nodes (otherwise, we can duplicate nodes and get an equivalent game with this property). We assume that
each vertex of G is labeled by the color C(v), thus we can refer to G as a Kripke structure with AP = {0, . . . , k − 1}:
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the proposition i holds at vertex v iff C(v) = i. From [13], player 1 wins the parity game G at an existential vertex
s ∈ Ve iff

G, s � �k−1xk−1 . . . �x1.�x0.

( ∨
i∈[0...(k−1)]

(i ∧ EXAXxi)

)
, (1)

where �n = � if n is even, and �n = � if n is odd.
The formula above uses both universal and existential next modalities. By transforming G to a Kripke structure K as

in the proof of Theorem 5, we can use left and right labels to vertices in the graph and use only one type of branching
mode. Formally, let K be the Kripke structure induced by G. Then, player 1 wins the parity game in G at a node s iff

K, s � �k−1xk−1 · · · �x1.�x0.

( ∨
i∈[0...(k−1)]

(i ∧ ((AX(¬l ∨ AXxi)) ∨ (AX(¬r ∨ AXxi))))

)
. (2)

Since K, s � � iff K, s /� ¬�, and � is in ∃MC iff ¬� is in ∀MC, the construction also proves the result for ∃MC. �

If the syntax of the �-calculus is equipped with next modalities parameterized by action labels, then the above result
follows immediately, because there is no distinction between existential and universal next modalities. Our proof shows
that the result follows even if no such labeling is available.

5. Implication

The implication problem for a logic asks if one specification logically implies another specification; formally, given
formulas � and � of the logic, if the formula � → � is valid. It arises naturally in modular verification [27,35],
where the antecedent of the implication is the assumption about the behavior of a component’s environment, and the
consequent is a guarantee about the behavior of the component. For logics closed under negation, the implication
problem is equivalent to validity: a formula � is valid iff true→ �. Thus, the implication problem for the �-calculus
is EXPTIME-complete. However, for the existential and universal fragments of the �-calculus, this is not the case:
the implication problem combines both universal and existential formulas, and is more general than satisfiability or
validity.

Theorem 7. The implication problem for ∃MC and ∃AFMC (so, also for ∀MC and ∀AFMC) is EXPTIME-complete.

Proof. For formulas �1 and �2 of ∃MC, we have that �1 → �2 iff the formula �1∧¬�2 is not satisfiable. Membership
in EXPTIME follows from the complexity of the satisfiability problem for the �-calculus. Note that ¬�2 is a formula
of ∀MC, thus we cannot apply the results of Section 3.

To prove hardness in EXPTIME, we do a reduction from the satisfiability problem of AFMC, proved to be EXPTIME-
hard in [16]. Given an AFMC formula �, we construct a formula �A of ∀AFMC and a formula �E of ∃AFMC such
that the conjunction � = �E ∧ �A is satisfiable iff � is satisfiable. For simplicity, we assume that � is satisfied iff it
is satisfied in a tree of branching degree two. Note that while our assumption does not hold for all AFMC formulas,
the EXPTIME-hardness of the satisfiability problem for AFMC holds already for such formulas, which is sufficiently
good for our goal here.

Intuitively, the formula �E would require the states of models of � to be attributed by directions so that at least
one successor is labeled by l and at least one successor is labeled by r . In addition, �A would contain a conjunct that
requires each state to be labeled by at most one direction. Thus, states that are labeled by l cannot be labeled by r , and
vice versa. Then, the other conjunct of �A is obtained from � by replacing an existential next modality by a disjunction
over the successors of a state.

Formally, the formula

�E = �y.EX(l ∧ y) ∧ EX(r ∧ y)
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requires each state (except for the initial state) to have at least two successors, labeled by different directions, and the
formula

�1
A = �y.((¬l) ∨ (¬r)) ∧ AXy

requires each state to be labeled by at most one direction.
Then, the formula �2

A is obtained from � by replacing a subformula of the form EX	 by the formula AX(r ∨ 	) ∨
AX(l ∨ 	). We show that for every � such that � is satisfiable iff it is satisfiable in a model of branching degree two,
we have that � is satisfiable iff �E ∧ �1

A ∧ �2
A is satisfiable. First, if � is satisfiable, then there is a tree of branching

degree two that satisfies it. This tree can be attributed with l and r so that it satisfies the formula �E ∧ �1
A ∧ �2

A, by
labeling the left successor of each node with {l,¬r} and the right successor of each node with {¬l, r}. On the other
hand, assume that the formula �E∧�1

A∧�2
A is satisfiable in a model M . The subformula �E∧�1

A guarantees that each
state of M has at least one successor that is not labeled l and at least one successor that is not labeled r . Accordingly,
each subformula of the form AX(r ∨ 	)∨ AX(l ∨ 	) is satisfied in a state w of M iff w has a successor that satisfies 	,
thus w satisfies EX	. Hence, the model M also satisfies �. �

The above proof constructs, given a formula � of the �-calculus, two formulas �E and �A such that �E is an
existential formula, �A is a universal formula, and � is satisfiable iff �E ∧ �A is satisfiable. However, one cannot in
general construct formulas �E and �A such that �E ∧�A is equivalent to �. This can be proved considering two states
of a Kripke structure that are similar, but not bisimilar, and the formula of �-calculus that distinguishes them.

The proofs of Theorems 6 and 7 make use of the fact that the successors of a state in a Kripke structure can be
attributed by new atomic propositions, corresponding to the successor’s direction. Alternatively, one could have used
the fact that the existential and universal fragments of �-calculus embody the �-calculus over binary trees (see [1]). We
find our direct proof more illuminating, especially for readers not familiar with �-calculus over binary trees.

Note that the implication problem for ∀CTL� and ∃CTL� is EXPSPACE-complete [27], and hence easier than the
satisfiability problem for CTL�, which is 2EXPTIME-complete. The above construction does not work for ∃CTL�, as
the formula �E used to label the states of a model by directions specifies an unbounded number of unfoldings of the
structure. On the other hand, the number of unfoldings expressible by an ∃CTL� formula is bounded by the size of the
formula; thus, the formula �E does not have an equivalent formula in ∃CTL�.

6. The alternation hierarchy

The existential and universal �-calculi still contain the second source of complexity of the �-calculus: alternation of
fixpoint operators.

A formula 
 is in the classes ��
0 and ��

0 iff it contains no fixpoint operators. The class ��
n+1 is constructed by taking

��
n ∪��

n and closing under (i) boolean operations, (ii) modal operations EX and AX, and (iii) �x.
, for 
 ∈ ��
n+1, and

(iv) substitution of 
′ ∈ ��
n+1 for a free variable of 
 ∈ ��

n+1 provided that no free variable of 
′ is captured by 
.
The class ��

n+1 is {
 | ¬
 ∈ ��
n+1}. The alternation depth of a formula � is the least n such that � ∈ ��

n+1 ∩��
n+1

[34,3,15]. A formula � is (n + 1)-strict if it is equivalent to some formula in ��
n+1 and there is no formula �′ in ��

n

that is equivalent to �. The alternation hierarchy is strict if for each n > 0, there is an n-strict formula.
It is known [3,4] that the �-calculus alternation hierarchy is strict, that is, there is a class of transition systems such

that for each n�0, there is a formula 
n in the class ��
n , such that the semantics of 
n is not equivalent to the semantics

of any ��
n−1 formula. We show a similar theorem for the restricted logics.

We define the classes �∃MC
n , �∃MC

n for ∃MC (respectively, �∀MC
n , �∀MC

n for ∀MC) as for the classes ��
n and ��

n ,
but replacing condition (ii) by (ii′) modal operation EX (respectively, (ii′) modal operation AX). We show that the
alternation hierarchy of ∃MC (and so also ∀MC) is strict. This shows that restricting the expressive power in terms of
the next modalities does not restrict the expressiveness of alternating fixpoint operators.

Theorem 8. The existential �-calculus ∃MC alternation hierarchy is strict. The universal �-calculus ∀MC alternation
hierarchy is strict.
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The proof of the theorem takes the proof in [4] and adds to it the same construction as in Theorem 6.
Before we proceed, we have to convert the results of [4] that talk about transition systems to corresponding results

on Kripke structures. In particular, the models considered in [4] are labeled transition systems (S, AP,→) with a set
S of states, AP of labels, and→⊆ S × AP× S of labeled transitions. Moreover, the �-calculus is defined using labels
on the next-modalities rather than on the states, that is, the formulas are inductively defined as

� ::= true | false | x | �1 ∧ �2 | �1 ∨ �2 | 〈p〉�1 | [p]�1 | �x.�1 | �x.�1,

for variables x and labels p ∈ AP. Let us call this variant the labeled �-calculus. In order to apply the results, we must
be able to translate labeled �-calculus formulas over transition systems to �-calculus formulas over Kripke structures.
For our purposes, we restrict attention to binary transition systems, where each state has two successor states, one
reachable with an edge labeled l and the second with an edge labeled r . Each binary transition system T can be
translated to a Kripke structure K(T ) over the atomic propositions {l, r}, by moving the labels on the edges to labels
on the successor nodes. We claim the following results. For any labeled �-calculus formula � over a binary transition
system, there exists an ∃MC formula T (�) over Kripke structures with the same alternation depth such that s ∈ �T iff
s ∈ T (�)K(T ). The translation simply pushes the labels on the next-modalities to the successor states, and is obtained
by inductively replacing each occurrence of 〈l〉�1 to EX(l ∧ T (�1)), and 〈r〉�1 to EX(r ∧ T (�1)). For example,
the formula �x.〈l〉x ∧ 〈r〉x is translated to �x.EX(l ∧ x) ∧ EX(r ∧ x). Conversely, for any �-calculus formula � on
Kripke structures over the atomic propositions {l, r} (not just existential), we can show there exists a labeled �-calculus
formula � over binary transition systems with the same alternation depth such that T (�) is equivalent to � on all Kripke
structures. As expected, we first translate � to T (�) by recursively replacing EX�1 to 〈l〉(l ∧ T (�1))∨ 〈r〉(r ∧ T (�1))

and AX�1 to 〈l〉(l ∧ T (�1)) ∧ 〈r〉(r ∧ T (�1)). Then, this transformed formula is written in disjunctive normal form
[21], and each conjunction l ∧ r is replaced by false. Finally, the propositions l and r are replaced by true to get the
formula �. Notice that in both translations, the alternation depth of the formula is not affected.

As a result, if � is a strict formula on binary transition systems, then its translation T (�) is a strict formula on Kripke
structures. Thus, we can use the results of [4] via this translation, and we omit this explicit intermediate translation step
in what follows for clarity.

We now recollect the proof of [3,4], where the alternation hierarchy of the �-calculus is shown by reducing formulas
of �-arithmetic to it, and using the strictness for �-arithmetic formulas. The �-arithmetic is a logic obtained by adding
fixpoint operators to formulas in first-order arithmetic. For a full definition see [32]. We define syntactic alternation
classes for the �-arithmetic in a way similar to the syntactic alternation classes of the �-calculus. Set variables and
first-order formulas are �0 and �0 formulas. Then, �n+1 formulas and set terms are constructed from �n∪�n formulas
and set terms by closing under the first order connectives ∧, ∨, ∀, ∃, and ∈, and forming the formula �(x, X)
 for

 ∈ �n+1. Also, if 
 is in �n, then ¬
 is in �n. The definition of n-strictness for �-arithmetic formulas is similar to
the definition in the case of �-calculus. We say that a set X ⊆ N is arithmetic �n-hard if it is definable by a �n formula
but not definable by a �n−1 ∪�n−1 formula. It is shown in [32] that the hierarchy of sets of integers definable by �n

formulas of the �-arithmetic is a strict hierarchy.
A Kripke structure K = 〈AP, W, R, w0, L〉 is recursively presented if AP and W are (recursively codeable as)

recursive sets of numbers, and R and L are recursive. For a �-calculus formula � ∈ ��
n , [4] shows that the set of states

�K on any recursively presented Kripke structure K of branching degree two is an arithmetic �n−1 set of integers, that
is, for the �-calculus formula � in ��

n and the recursively presented Kripke structure K, we can write a �n formula
�(z) of �-arithmetic with a free individual variable z such that K, s � � iff �(s) holds.

Conversely, for any arithmetic �n formula �(z) in �-arithmetic with a free individual variable z, there is a recursively
presented Kripke structure K of branching degree two and a ��

n+1 formula � of the �-calculus such that �(s) iff K, s � �.
Thus, if �(z) is not a �n−1 definable set, then �K is not ��

n definable, that is, if �(z) is �n-hard, then so is �K. Now, take
an n-strict �n formula �(z) of �-arithmetic, and construct the recursively presented Kripke structure T and �-calculus
formula � in �n+1 as above. From this, we can recursively construct a parity game G of rank n + 1, consisting of
states (s, 
) of pairs of states s of T and subformulas 
 of �, such that G, (s, 
) � �n+1 iff T , s � �. Here, �n is the
winning condition from Eq. (1) in a parity game with n indices [13]. Thus, �G

n+1 is also an arithmetic �n-hard set. This
is used in [3,4] to show that the �-calculus alternation hierarchy is strict.

Now, using the same construction as in Theorem 6, we label the edges in G with directions to get the game G′ and
a formula 
n+1 of ∀MC (Eq. (2)) such that G, s � �n+1 iff G′, s � 
n+1. This shows that 
G′

n+1 encodes an arithmetic
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�n set. Since the alternation hierarchy is strict for �-arithmetic formulas, this also shows that the alternation hierarchy
is strict for ∀MC and hence ∃MC formulas (since formulas of arbitrary arithmetic complexity can be encoded).

7. Discussion

We studied the complexity of the satisfiability, validity, model-checking, and implication problems for the universal
and existential fragments of the �-calculus and its alternation-free fragment. We proved that the linear-size model
property, which is known for ∃CTL, holds also for ∃MC. Interestingly, the property does not hold for ∃CTL�, which is
less expressive than ∃MC. Thus, the picture we obtain for ∃MC and ∃AFMC is different than the one known for ∃CTL�

and ∃CTL. For the universal fragments ∀MC and ∀AFMC, the picture does agree with the one known for ∀CTL� and
∀CTL, and the complexity of the satisfiability problem coincides with the complexity of the linear-time versions of the
logics (obtained by omitting all universal path quantifiers).

We showed how labeling of states with directions makes the model-checking and implication problems for the
universal and existential fragments as hard as for the full logics. While such a labeling is straightforward in the case of
model checking, it is not always possible for implication. Indeed, in the case of CTL� and CTL, formulas cannot specify
a legal labeling, making the implication problem for ∀CTL� and ∃CTL� strictly easier than the implication problem for
CTL�, and similarly for CTL. In contrast, we were able to label the directions legally using a ∀AFMC formula, making
the implication problems for ∀MC and ∃MC as hard as the one for MC, and similarly for the alternation-free fragments.
Another way to see the importance of the fixed-point quantifiers is to observe that the implication problems for Modal
Logic (�-calculus without fixed-point quantifiers) and its universal and existential fragments are co-NP-complete.

Finally, the equivalence problem for a logic asks, given formulas � and �, if the formula � ↔ � is valid. The
equivalence problem for the �-calculus is EXPTIME-complete, by easy reductions to and from satisfiability. This gives
an EXPTIME upper bound for the equivalence problem for ∃MC and ∀MC. By a reduction from satisfiability or validity
(whichever is harder), we also get a PSPACE lower bound. However, the exact complexity for the equivalence problem
for the universal and existential fragments of the �-calculus remains open (also for the alternation-free fragments).

The gap above highlights the difficulty in studying the universal and existential fragments of the �-calculus. It is easy
to see that in all formalisms that are closed under complementation (in particular, full MC), equivalence is as hard as
satisfiability. Indeed, � and � are equivalent iff (�∧¬�)∨ (�∧¬�) is not satisfiable. When a formalism is not closed
under complementation, equivalence is not harder than implication, and is not easier than satisfiability or validity,
whichever is harder. In the case of CTL, for example, it is easy to see that the equivalence problems for ∀CTL and
∃CTL are PSPACE-complete, as implication has the same complexity as satisfiability or validity (whichever is harder).
The same holds for word automata: if we identify the existential fragment with nondeterministic automata, and the uni-
versal fragment with universal automata, then in both cases the language-containment problem (the automata-theoretic
counterpart of implication) has the same complexity as the harder one of the nonemptiness and universality problems
(the automata-theoretic counterparts of satisfiability and validity). Once we do not allow fixed-point quantifiers, the
same holds for the �-calculus: the equivalence problem for Modal Logic and its universal and existential fragments is
co-NP-complete, as the co-NP-hardness of the implication problem applies already for the validity problem. So, in all
the cases we know, except for the universal and existential fragments of CTL� and the �-calculus and its alternation-free
fragment, the above immediate upper and lower bounds do not induce a gap, and the exact complexity of the equivalence
problem is known.
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