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Abstract

We present faster and dynamic algorithms for the following
problems arising in probabilistic verification: Computation
of the maximal end-component (mec) decomposition of
Markov decision processes (MDPs), and of the almost sure
winning set for reachability and parity objectives in MDPs.
We achieve the following running time for static algorithms
in MDPs with graphs of n vertices and m edges: (1) O(m ·
min{ √m, n2/3 }) for the mec decomposition, improving the
longstanding O(m ·n) bound; (2) O(m ·n2/3) for reachability
objectives, improving the previous O(m · √m) bound for
m > n4/3; and (3) O(m · min{ √

m, n2/3 } · log(d)) for
parity objectives with d priorities, improving the previous
O(m · √m · d) bound. We also give incremental and
decremental algorithms in linear time for mec decomposition
and reachability objectives and O(m · log d) time for parity
objectives.

Keywords. (1) Probabilistic verification; (2) Parity
objectives; (3) Graph decomposition; (4) Dynamic graph
algorithms; (5) Maximal end-components.

1 Introduction

We study algorithmic problems on graphs and a gen-
eralization of them, called Markov decision processes
(MDPs), that arise in probabilistic verification. The
input to a probabilistic verification problem is a system
that exhibits probabilistic behavior and a specification
(set of desired behaviors), and the algorithmic problem
is to answer whether the system satisfies the specifica-
tion [6].

We first present a graph problem that lies at the
core of many algorithms in probabilistic verification.
Given a directed graph G = (V,E) with a finite set
V of vertices, a set E ⊆ V × V of directed edges, and a
partition (V1, VP ) of V , an end-component U ⊆ V is a
set of vertices such that (a) the graph (U,E ∩U ×U) is
strongly connected; (b) for all u ∈ U∩VP and all (u, v) ∈
E we have v ∈ U ; and (c) either |U | ≥ 2, or U = {v} and
there is a self-loop at v (i.e., (v, v) ∈ E). Note that if U1

and U2 are end-components with U1∩U2 �= ∅, then U1∪
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U2 is an end-component. A maximal end-component
(mec) is an end-component that is maximal under set
inclusion. Every vertex of V belongs to at most one
maximal end-component. The maximal end-component
(mec) decomposition consists of all the maximal end-
components of V and all vertices of V that do not
belong to any maximal end-component. Maximal end-
components generalize strongly connected components1

for directed graphs (VP = ∅) and closed recurrent sets
for Markov chains (V1 = ∅). We present faster and
dynamic algorithms for computing the maximal end-
component decomposition.

In probabilistic verification, systems are frequently
modeled as a generalization of graphs, calledMarkov de-
cision processes (MDPs). The generalization is needed
to model two different kind of “behaviors” at ver-
tices [10]. More specifically there are two types of ver-
tices, namely the vertices in V1, that are regular vertices
in graph algorithmic setting, i.e., where the algorithm
can choose which out-edge to follow, and the vertices
in VP , that are vertices where the out-edge is chosed
randomly according to a given distribution δ. The for-
mer vertices are called player-1 vertices, the latter are
called random vertices, and the probability distribution
is called probabilistic transition function. The proba-
bilistic transition function is a distribution over all out-
neighbors of a vertex2 and can be different for differ-
ent random vertices. More formally, a Markov decision
process (MDP) P = ((V,E), (V1, VP ), δ) consists of a
directed MDP graph (V,E), a partition (V1,VP ) of the
finite set V of vertices, and a probabilistic transition
function δ: VP → D(V ), where D(V ) denotes the set
of probability distributions over the vertex set V . Note
that (a) a directed graph is a special case of an MDP
with VP = ∅ and (b) a Markov chain is a special case
of an MDP with V1 = ∅. MDPs are used to model
and solve control problems in systems such as stochastic
systems [9], concurrent probabilistic systems [6], prob-
abilistic systems operating in open environments [17],

1In this paper we use scc or strongly connected component for
a maximal strongly connected component.

2More formally we require that for all u ∈ VP and all v ∈ V
we have (u, v) ∈ E iff δ(u)(v) > 0.
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and under-specified probabilistic systems [1].
There are two types of problems, called objectives,

on MDPs that this paper addresses: (1) Reachability
objectives and (2) parity objectives. Formally, an objec-
tive ψ is a (measurable) subset of infinite walks in the
MDP graph. Given an objective ψ, qualitative analy-
sis asks for the computation of the almost-sure winning
set for ψ (denoted by 〈〈1〉〉almost (ψ)), which is the set
of vertices A such that player 1 can ensure that a walk
started at A belongs to ψ with probability converging
to 1 as the length of the walk goes to∞. We say that ψ
can be ensured with probability 1. Given an MDP and
a set T ⊆ V of target vertices a Reachability objective,
denoted by Reach(T ), consists of all infinite walks in the
MDP graph that visit a vertex in T at least once. Given
an MDP and a priority function p : V → { 0, 1, . . . , d }
that maps vertices to integer priorities a Parity objec-
tives, denoted by Parity(p), consists of all infinite walks
in the MDP graph for which the minimum priority ver-
tex that is visited infinitely often on the walk is even.

In the design and analysis of probabilistic systems
it is natural that the systems under verification are
developed incrementally by adding choices or removing
choices for player 1. Hence there is a clear motivation
to obtain dynamic algorithms for qualitative analysis
and mec decomposition for MDPs that achieve a better
running time than recomputation from scratch when
edges (u, v) with u ∈ V1 are inserted or deleted.

Applications. Parity objectives are a canonical way to
define desired behaviors of systems, such as safety, live-
ness, fairness, etc [22]. Thus MDPs with parity objec-
tives provide the theoretical framework to study prob-
lems such as the verification and the control of stochas-
tic systems. Furthermore, qualitative analysis of MDPs
is important as there are many applications where we
need to know whether the correct behavior arises with
probability 1. For instance, when analyzing a random-
ized embedded scheduler, we are interested in whether
every thread progresses with probability 1 [8]. And even
in settings where it suffices to satisfy certain specifica-
tions with probability p < 1, the correct choice of p is
a challenging problem, due to the simplifications intro-
duced during modeling. For example, in the analysis
of randomized distributed algorithms it is quite com-
mon to require correctness with probability 1 (see, e.g.,
[15, 14, 19]). Furthermore qualitative analysis is ro-
bust to numerical perturbations and modeling errors in
the transition probabilities, and consequently the algo-
rithms for qualitative analysis are combinatorial. Fi-
nally, for MDPs with parity objectives, the best known
algorithms and all algorithms used in practice first per-
form the qualitative analysis, and then perform quanti-
tative analysis on the result of qualitative analysis. In

short, qualitative analysis for MDPs with parity objec-
tives is one of the most fundamental and core prob-
lem in verification of probabilistic systems, and as we
show here its algorithms crucially depend on the maxi-
mal end-component problem.

In addition, several algorithms for quantitative anal-
ysis of MDPs with quantitative objectives such as
lim sup and lim inf objectives [2], and combination of
mean-payoff and parity objectives [3], rely on the max-
imal end-component decomposition problem.

1.1 Our contributions. In this work, we use tech-
niques from dynamic graph algorithms to present novel
algorithms for mec decomposition, and qualitative anal-
ysis of reachability and parity objectives. We present
both improved (static) algorithms as well as the first
incremental and decremental algorithms for maintain-
ing the mec decomposition for MDPs and qualitative
analysis of MDPs with reachability and parity objec-
tives as the MDP is changed. The details of our results
are as follows, where n = |V | and m = |E| (see also
Table 1).
1. We present a O(m·min{√m,n2/3})-time algorithm

for the mec decomposition of an MDP, improving
the O(m · n) bound from 1995 [6, 7]. This is the
first algorithm that breaks the O(m · n) barrier for
the mec decomposition problem.

2. We give a O(m · n2/3)-time algorithm for the qual-
itative analysis for reachability objectives, improv-
ing the previously known O(m · √m) bound [4] for
m > n4/3.

3. We present a O(m ·min{ √m,n2/3 } · log(d))-time
algorithm for the qualitative analysis for parity ob-
jectives with d priorities, improving the previously
known O(m · √m · d) bound [5].
In addition we give the first incremental and decre-

mental algorithms for these problems when an edge
(u, v) with u ∈ V1 is inserted or deleted.
1. We show how to maintain the mec decomposition

after an edge insertion or deletion in time linear
in the size of the graph. For the decremental
case the running time bound is amortized, whereas
for the incremental case we give a worst case
bound. Note that the problem of maintaining
a mec decomposition generalizes the problem of
maintaining a scc decomposition, and our results
match the best known bounds for incremental and
decremental scc decomposition.

2. We present amortized O(m)-time algorithms for
incremental and decremental qualitative analysis
for reachability objectives. For the decremental
case we present a reduction to the decremental
reachability in directed graphs. The reduction
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Previous Algorithm Our Algorithm Incremental Decremental

Max. End-component O(m · n) O(m ·min{ √m,n2/3 }) O(m) O(m)

Qual. Reachability O(m · √m) O(m ·min{ √m,n2/3 }) O(m) O(m)

Qual. Parity O(m · √m · d) O(m ·min{ √m,n2/3 } · logd) O(m · logd) O(m · logd)

Table 1: Running time analysis: Our results are in bold font.

has two implications: (a) From the results of [16]
we obtain a randomized decremental algorithm
whose expected amortized running time is O(n).
(b) Any improvement in decremental reachability
for directed graphs imply the same improvement for
the more general problem of decremental almost-
sure reachability in MDPs.

3. We give amortizedO(m·log(d))-time algorithms for
incremental and decremental qualitative analysis
for parity objectives with d priorities.
Our main technical contributions are as follows. (1)

A bottom scc C is a scc that has no edge leaving C.
Our first algorithm for mec decomposition repeatedly
finds bottom scc’s using the scc decomposition algo-
rithm of [20] and we show that by lock-step search from
a specially chosen set of start vertices we can achieve a
O(m · √m) bound. (2) Our second algorithm for mec
decomposition reduces the number of these lock-step
searches. To achieve this the algorithm makes reach-
ability queries in a graph that is repeatedly modified.
However, using the fastest known dynamic algorithms
for reachability in directed graphs would lead to a run-
ning time of Ω(m · n). Instead we store “a compressed
version” of the graph in a dynamic tree data struc-
ture [18], which we update dynamically, and use it to
answer the necessary reachability queries. (3) We show
how to modify the algorithm for mec decomposition to
solve the almost-sure reachability problem. (4) The in-
cremental algorithm for the almost-sure reachability ob-
jectives is obtained proving novel graph theoretic prop-
erties of the almost-sure winning set and the incremen-
tal mec decomposition. The decremental almost-sure
reachability is obtained through a reduction to decre-
mental reachability in directed graphs. Thus, any im-
provement in the running time for the latter problem
will also improve the decremental almost-sure reacha-
bility problem. (5) The algorithm for almost-sure par-
ity objectives is obtained using the mec decomposition,
almost-sure reachability, and a hierarchical clustering
technique of [21]. Without the hierarchical clustering
technique, the naive algorithm requires time O(d) times
the mec decomposition algorithm followed by one call to
the almost-sure reachability algorithm. We show that
with the hierarchical clustering technique the almost-
sure winning set for parity objective can be computed

in time O(log d) ·TM (m,n)+TR(m,n), where TM (m,n)
is the time complexity of computing the mec decomposi-
tion, and TR(m,n) is the time complexity of computing
the almost-sure winning set for reachability objectives.

In the rest of the paper we use the following
notations. If (v, w) ∈ E, then we call w a successor
of v; if v ∈ VP , then we call an edge (v, w) a random
edge, and if v ∈ V1, we call it a player-1 edge. We denote
by E(v) = { w | (v, w) ∈ E } the set of successors of v.
Furthermore a trivial end-component consists of a single
vertex.

2 Algorithms for Maximal End-components
Decomposition

In this section we present two improved static al-
gorithms for computing the maximal end-component
(mec) decomposition of a graph (V,E) with partition
(V1, VP ) of V , and the first incremental and decremen-
tal algorithms to maintain the mec decomposition. By
abuse of notation we use mec decomposition of an MDP
to mean the mec decomposition of the MDP graph with
partition (V1, VP ). For technical convenience we make
two assumptions about the MDP graph: (1) Every ver-
tex v has at least one out-going edge, i.e. E(v) �= ∅,
because a vertex without out-going edges does not be-
long to any end-component. (2) We will consider MDPs
such that random vertices do not have self-loops. Note
that a vertex with a self-loop that does not belong to any
other mec forms its own trivial mec. Thus, if a MDP
graph with self-loops at random vertices is given, its
mec decomposition can be computed as follows: First
remove all self-loops at random vertices and compute
the mec decomposition of the resulting graph. For ev-
ery random vertex with a self-loop that does not belong
to any other mec, form a trivial mec consisting only of
the vertex. We could proceed in the same way with
self-loops of vertices v ∈ V1, but we need to allow self-
loops of player-1 vertices for technical reasons in the
incremental maintenance of the mec decomposition.

2.1 Algorithms for Computing Maximal End-
components. We first define attractors, closed sets
and prove two lemmata about them. Then we present
the classic algorithm and our improved algorithms.
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Random and player-1 attractor. Given an MDP
P, let U ⊆ V be a subset of vertices. The random
attractor AttrR(U) is defined inductively as follows:
U0 = U , and for i ≥ 0, let Ui+1 = Ui ∪ { v ∈
VP | E(v) ∩ Ui �= ∅ } ∪ { v ∈ V1 | E(v) ⊆ Ui }.
In other words, Ui+1 consists of (a) vertices in Ui,
(b) random vertices that have at least one edge to Ui,
and (c) player-1 vertices such that all their successors
are in Ui. Then AttrR(U) =

⋃

i≥0 Ui. The definition of
player-1 attractor Attr1(U) is obtained by exchanging
the role of random vertices and player-1 vertices in the
above definition. A (random or player-1) attractor A
can be computed in time O(

∑

v∈A indeg(v)) [11], where
indeg(v) is the number of incoming edges of v.

Closed set. A set X ⊆ V of vertices is a closed set if
for all random edges (u, v) with u ∈ X we have v ∈ X .
Thus a set U is a mec if U is strongly connected and
closed.

Property of attractors. The first lemma below
establishes that the random attractor of a mec and
the random attractor of certain vertices of an scc do
not belong to any mec and that it, thus, can be
removed without affecting the mec decomposition of the
remaining graph. Hence, the lemma can be used to
identify vertices that do not belong to any mec. The
second lemma below shows under which condition an
scc is an mec. Thus, it can be used to identify vertices
that form a mec.

Lemma 2.1. Let P be an MDP, and let (V,E) be the
MDP graph.
1. Let C be a scc in (V,E). Let U = { v ∈ C ∩ VP |

E(v) ∩ (V \ C) �= ∅ } be the random vertices in C
with edges out of C. Let Z = AttrR(U) ∩ C. Then
for all non-trivial mec’s X in P we have Z ∩X = ∅
and for any edge (u, v) with u ∈ X and v ∈ Z, u
must belong to V1.

2. Let C be a mec in P. Let Z = AttrR(C) \C. Then
for all non-trivial mec’s X with X �= C in P we
have Z ∩X = ∅ and for any edge (u, v) with u ∈ X
and v ∈ Z, u must belong to V1.

Proof. We present both parts of the proof.

Part 1. Assume by contradiction that there is a non-
trivial mec X such that X ∩ Z �= ∅. Since (a) X ∩ Z ⊆
X ∩ C �= ∅, (b) X must be strongly connected, and
(c) C is a scc; it follows that X ⊆ C. As X must
be closed, and random vertices in U have edges out of
C (hence also out of X), we must have X ∩ U = ∅.
Hence (a) X is closed (for all u ∈ X ∩ VP we have
E(u) ⊆ X) and (b) X does not contain any vertex in
U (X ∩ U = ∅). We use these two properties to show
by induction that X ∩ AttrR(U) = X ∩ Z = ∅. We

use the following inductive claim: For all i ≥ 0 we have
Ui ∩ X = ∅. The base case i = 0 follows as U0 = U
and by (b) we have X ∩ U0 = ∅. For i > 0 we assume
that X ∩Ui = ∅, and show that X ∩Ui+1 = ∅. We have
Ui+1 = Ui ∪ { v ∈ VP | E(v) ∩ Ui �= ∅ } ∪ { v ∈ V1 |
E(v) ⊆ Ui }. Consider a vertex u ∈ X : (a) if u ∈ V1,
then since |X | ≥ 2 and X is strongly connected, there
exists a v ∈ X with (u, v) ∈ E, and since X ∩ Ui = ∅
it follows that E(u) is not a subset of Ui and hence
u �∈ Ui+1; (b) if u ∈ VP , then since X is closed (hence
E(u) ⊆ X) and X ∩Ui = ∅, we have E(u)∩Ui = ∅, and
hence u �∈ Ui+1. It follows that for all i ≥ 0 we have
X ∩ Ui+1 = ∅, and thus X ∩ AttrR(U) = X ∩ Z = ∅.
Hence we have a contradiction. For a vertex u ∈ X , if
there is an edge (u, v) with v ∈ Z, then u �∈ Z. Thus u
cannot belong to VP as vertices of VP are not allowed
to have outgoing edges leaving their mec.

Part 2. Assume by contradiction that there is a non-
trivial mec X such that Z ∩ X �= ∅. Since X is a mec,
X must be closed. Since X is closed and X does not
contain any vertex in C, it follows from the inductive
proof of the previous case that X∩AttrR(C) = X∩Z =
∅, and hence we have a contradiction. As above for an
edge (u, v) with u ∈ X and v ∈ Z, we must have u ∈ V1.

The desired result follows.

Lemma 2.2. Let P be an MDP, and let (V,E) be the
MDP graph. Let C be a scc in (V,E) such that for all
v ∈ C ∩ VP we have E(v) ⊆ C. Then C is a mec.

Proof. It follows that C is closed, and since C is a scc
it follows that C is a mec.

It is an easy corollary that every bottom scc is a mec.

Previous algorithm for maximal end-component
decomposition. The previous algorithm to com-
pute an mec decomposition of an MDP is as follows:
(a) Given an MDP P consider the MDP graph (V,E),
and compute the scc decomposition of (V,E) in O(m)
time. (b) For every scc C with random edges leaving
C, let U be the set of random vertices in C with edges
out of C. Remove AttrR(U) ∩ C from the graph (by
Lemma 2.1 these vertices belong to no mec). (c) All
scc’s C that have no random edges going out of C are
mec’s (by Lemma 2.2). Note that there is always at
least one such scc since every graph has a bottom scc.
We remove AttrR(C) and recursively compute mec in
the smaller sub-MDP. Each iteration takes O(m) time
and removes at least one vertex. Thus the running time
of the algorithm is O(m·n). We will refer this algorithm
as the simple static algorithm for mec decomposition.

Improved algorithm MaxECDe1. Our first im-
proved algorithm for mec decomposition is obtained by
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combining the simple static algorithm for mec decom-
position along with a lock-step (or dovetail) linear-time
depth-first search (DFS) to find a bottom scc. Specif-
ically, each of the searches that is executed uses the
dfs-based scc algorithm of Tarjan [20], which has the
property that if it started at a vertex in a bottom scc
it finds this bottom scc and stops in time linear in the
number of edges in the scc. In this paper we will use the
term lock-step search with the following meaning: for k
searches, in one step the lock-step search each search
can process exactly one edge. Thus it is ensured that in
l lock-steps each search explores exactly l edges.3 The
algorithm iteratively removes vertices from the graph
for which either the mec was found or for which it was
identified that they belong to no mec, until all vertices
are removed. At iteration i, we denote the remaining
subgraph as (Vi, Ei), where Vi is the set of remaining
vertices and Ei is the set of remaining edges. The al-
gorithm considers two cases: (a) Case 1 is similar to
the simple static algorithm, and (b) Case 2 is the lock-
step exploration of a bottom scc. The algorithm main-
tains the set Li+1 of vertices that were removed from
the graph since the last iteration of Case 1, and the set
Ji+1 of vertices that lost an edge to vertices removed
from the graph since last iteration of Case 1. Initially,
(V0, E0) := (V,E), L0 := J0 := ∅, and i := 0. We
describe our algorithm.
1. Case 1. If ((|Ji| ≥ √m) or i = 0), then

(a) Compute the scc decomposition of the current
MDP graph (Vi, Ei).

(b) For all scc’s C that have a random edge
leaving out of C, let U be the subset of random
vertices in C that have an edge leaving C. The
set AttrR(U) ∩ C is removed from the graph.

(c) For all scc’s C that do not have a random edge
leaving C, the scc C is identified as a mec and
AttrR(C) is removed from the graph.

(d) The set Li+1 is the set of vertices removed
from the graph in this iteration and Ji+1 be
the set of vertices in the remaining graph with
an edge to Li+1.

(e) i := i + 1; if Vi = ∅, then stop the algorithm,
else go to the next iteration.

2. Case 2. Else (|Ji| ≤ √m), then
(a) We do a lock-step search using the scc algo-

rithm of Tarjan [20] from every vertex v in Ji
to obtain a bottom scc that contains v. Let C

3In algorithm MaxECDe2 processing an edge will require
operations on a dynamic tree and hence may require O(logn)
time, whereas other edges may be processed in constant time.
The lock-step search will still allow each search to process exactly
one edge at every step, even if this might take a different amount
of time.

be the first bottom scc discovered in the lock-
step search. The lock-step search ends when
the first bottom scc C is discovered.

(b) The bottom scc C is a mec and we remove
AttrR(C) from the graph. Let the set Li+1

be the set of vertices removed from the graph
since the last iteration of Case 1 (i.e., Li+1 :=
Li ∪ AttrR(C), where C is the bottom scc
removed in step 2(b) of this iteration) and let
Ji+1 be the set of vertices in the remaining
graph with an edge to Li+1, i.e., Ji+1 :=
(Ji \AttrR(C))∪Qi, where Qi is the subset of
vertices of Vi with an edge to AttrR(C). Thus
the set Ji+1 is the set of vertices in the graph
that lost an edge to the vertices removed since
the last iteration that executed Case 1.

(c) i := i + 1; if Vi = ∅, then stop the algorithm,
else go to the next iteration.

Correctness and running time analysis. We now
present the correctness argument and running time
analysis.

Lemma 2.3. The algorithm MaxECDe1 correctly
computes the maximal end-component decomposition of
an MDP P.

Proof. The algorithm repeatedly removes bottom sccs
and their random attractors. Since every bottom scc
is a mec (by Lemma 2.2) and in each step a random
attractor is removed (hence in the current graph all the
outgoing edges for random vertices are preserved), the
correctness of the algorithm follows from Lemma 2.1
and Lemma 2.2.

Lemma 2.4. For every iteration i and for every bottom
scc C of the graph (Vi, Ei) there is a vertex in Ji that
belongs to C.

Proof. We consider an iteration i of the algorithm. We
show that in the graph (Vi, Ei) the intersection of Ji and
each bottom scc of (Vi, Ei) is non-empty. The proof of
the claim is as follows: consider a bottom scc C in the
graph (Vi, Ei). Then there is no edge that leaves C
in the graph (Vi, Ei). Let j < i be the last iteration
before iteration i such that Case 1 was executed in
iteration j (and in all iterations between j and i Case 2
is executed). If C∩Ji is empty, then it follows that none
of the vertices in C has lost an edge since and including
iteration j. Since C is a bottom scc in (Vi, Ei), C must
also have been a bottom scc in (Vj , Ej) and, thus, it
must have been discovered as a mec in step 1(b) of
iteration j. Hence we have a contradiction. It follows
that we always have a witness vertex in Ji that is in a
bottom scc.
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An easy consequence of this lemma is that Ji always
contains a vertex in a mec in the graph (Vi, Ei).

Lemma 2.5. The running time of algorithm Max-
ECDe1 on an MDP P with m edges is O(m · √m).

Proof. We now analyze the running time of Max-
ECDe1. The total work of the algorithm when Case 1
is executed over all iterations is at most O(m · √m):
this follows because between two iterations of Case 1 at
least O(

√
m) edges must have been removed from the

graph (since |Ji| ≥
√
m everytime Case 1 is executed

other than the case when i = 0), and each iteration can
be achieved in O(m) time (since scc decomposition can
be computed in O(m) time) [20]. We now show that
the total work of the algorithm when Case 2 is executed
over all iterations is at most O(m ·√m). The argument
is as follows: consider an iteration i such that Case 2 is
executed. Let C be the bottom scc discovered in itera-
tion i while executing Case 2. Let E(C) =

⋃

v∈C E(v).
The algorithm of [20] for scc decomposition ensures that
if the starting vertex is in the bottom scc, then the bot-
tom scc is identified in time proportional to the number
of edges of the bottom scc. The lock-step search en-
sures that the edges explored in this iteration is at most
O(|Ji| · |E(C)|) ≤ O(

√
m × |E(C)|). Since C is iden-

tified as a mec and removed from the graph we charge
the work of O(

√
m · |E(C)|) to edges in E(C), charging

work O(
√
m) to each edge. Since there are at most m

edges, the total charge of the work over all iterations
when Case 2 is executed is at most O(m · √m).

Theorem 2.1. Given an MDP P, the algorithm Max-
ECDe1 computes the mec decomposition of P in time
O(m · √m).

Second improved algorithm MaxECDe2. Our
second algorithm modifies MaxECDe1 by reducing the
number of DFS searches that are executed in lock-step.
It exploits more properties of the ome-pass scc algorithm
SCC based on DFS from [20]than MaxECDe1. In
SCC a vertex y is being visited by a DFS if the vertex
is popped off the DFS stack and dfs(y) has been called,
but not yet completed. The vertex y has been visited
when dfs(y) has completed. We call the most recent
vertex for which dfs(x) was started the current vertex
of the DFS. A scc has been detected after the visit of all
vertices in the scc has completed. If SCC is started on a
vertex in a bottom scc C, then it detects C in time linear
in its size. It maintains the following invariant: (I)
Every vertex that has been or is still visited by the DFS
but whose scc has not yet been detected has a (directed)
path to the current vertex of the DFS4.

4Note that the vertices whose visit has not yet ended are still

We call a vertex x from which a lock-step search
is started a start vertex and the corresponding DFS
dfs(x). The algorithm MaxECDe1 determines in each
iteration a set Ji of active vertices and uses them as
start-vertices for the next iteration of Case 2. The
algorithm MaxECDe2 modifies Case 2 as follows: In
Step 1 SCC is started from all active vertices. As we
show if dfs(x) visits a vertex u that was already visited
by dfs(y) with y �= x, then dfs(x) can be stopped under
certain conditions without affecting the correctness of
the algorithm. Thus during Step 1 some of the active
vertices become passive and their DFS searches are
stopped. Let k be a suitable parameter. Step 1 executes
k lock-steps for all searches, i.e. each dfs(x) started
in Step 1 runs for k steps or it is stopped before it
completed k steps (because it visited a vertex that was
already visited by another DFS). Thus we can bound the
time spent in Step 1 by O(km). In Step 2 the remaining
DFS searches that were still running at the end of Step 1
are allowed to run for completion. We prove that there
are at most nO(/

√
k) such DFS searches. Thus the

total time spent in Step 2 can be bound by O(mn/
√
k).

Setting k = n2/3 gives a bound of O(m · n2/3) for both
steps.

We first introduce our notation: If dfs(x) visits in
Step 1 a new vertex it checks first whether it has to
stop. If not, then it labels the vertex it visits by x.
These labels are necessary to know whether dfs(x) has
to stop or not. If dfs(x) stops when visiting vertex u,
then x becomes passive and u becomes the stop vertex
s(x) of x. Note that for a non-passive vertex y, s(y) is
not defined.

If a bottom scc is detected in Step 1, it is not
removed in Step 1, but its vertices are marked as
special and removed at the beginning of Step 2. This
might make some more vertices active. As long as
there are at most 2n/

√
k remaining active vertices, Step

2 repeatedly performs lock-step searches and removes
the bottom sccs detected by them and their random
attractors.

We use the following data structure: (1) Every
vertex u keeps bits indicating whether the vertex is
active or passive or neither, and special or not. (2)
Every vertex u keeps a list of all passive vertices x such
that u = s(x). (3) During Step 1 we keep a list of
vertices labeled in Step 1 to unlabel them in Step 2.
(4) During Step 1 we maintain “condensed reachability
information” by keeping a rooted forest of all vertices
in V in a dynamic tree data structure W [18]. At the
beginning of Step 1 every vertex in W is a 1-vertex tree
in W . At the beginning of Step 2, W is deleted. During

on the DFS stack and thus this condition is trivially fulfilled.
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Step 1 W fulfils the following three invariants:
(DT1) If a vertex is active or special, then it is the

root of a tree of W . Every non-root vertex in W is a
passive and non-special vertex.

(DT2) If x is a child of an active vertex y, then s(x)
is a non-special vertex labeled by y. If x is a child of a
passive, non-special vertex y, then s(x) is a non-special
vertex, there exists a path from s(x) to s(y) in the graph
and y can reach s(x). If x is a child of a special vertex
y in W , then y = s(x).

(DT3) If a vertex x is passive, then the root of the
tree containing x is a vertex y such that either (a) y is
special and there exists a path from s(x) to y or (b) y is
an active vertex such that there exists a path from s(x)
to a non-special vertex labeled by y.

Given a vertex x a witness query in W returns the
root of the tree containing x. Since W is stored in a
dynamic tree data structure, every witness query takes
time O(log n). Making a vertex the child of another
vertex or removing the parent of a vertex takes the same
time.

We next describe the algorithm.

Case 1. If ((|Li| ≥ n/k) or i = 0), then
1. Execute the same steps as in Case 1 of algorithm

MaxECDe1

Case 2. Else (|Li| ≤ n/k), then
1. Step 1: If in iteration i Case 1 was executed, then

the vertices in Ji are labeled as active vertices. The
algorithm SCC is executed in lock-step starting
from every active vertex for up to k steps per active
vertex. In addition to the regular scc operations the
following steps are performed at each step of dfs(x):
• If dfs(x) visits a vertex u that fulfils one of the

following conditions, then x becomes passive,
dfs(x) stops, and u becomes the stop vertex
s(x) of dfs(x). If none of the conditions hold,
then u is labeled by x and dfs(x) continues.
The conditions are: Vertex u is (i) a special
vertex, (ii) is a non-special vertex labeled by an
active vertex y �= x, or (iii) is a non-special
vertex labeled by a passive vertex v and the
witness query of v returns a vertex y �= x. In
Case (i) x becomes a child of u in W , in Case
(ii) x becomes a child of y in W , and in Case
(iii) x becomes a child of v in W . Note that
this check happens as first step in the visit of
u and that checking whether x should become
passive and if yes, stopping and if no, labeling
u by x is an atomic step in the lock-step search
process that cannot be separated5.

5This avoids that the following “race condition” where multiple
active vertices labl a vertex without knowing of each other: The

• If an scc is detected, then its vertices are
marked as special. For each newly special
vertex u these steps are executed: (a) If it
exists, the link from u to its parent inW is cut.
(b) For all vertices v with u = s(v), the link
from y to its parent inW is cut and u becomes
the new parent of v. (c) If u is an active vertex,
it becomes passive, dfs(u) is stopped and s(u)
is set to u.

2. Step 2: Set A to the set of current vertices of
the DFS of active vertices at the end of Step 1
and set B = ∅. Unlabel all labeled vertices in
the graph. Mark all special vertices as non-special
and cut all links in W . If a bottom scc C was
detected during Step 1, then remove AttrR(C)
from the graph, set Li+1 := Li ∪ AttrR(C), and
B := Ji+1 := (Ji \AttrR(C)) ∪Qi, where Qi is the
subset of vertices of Vi with an edge to AttrR(C).
Then repeatedly execute the following step as long
as |A|+ |B| ≤ 2 · n/√k:
(a) Perform lock-step searches started at all ver-

tices in A ∪ B until a bottom scc is detected.
These DFS do not label vertices and no ver-
tices become passive. When a bottom scc is
detected we stop all lock-step searches, re-
move AttrR(C) from the graph, set Li+1 :=
Li+1 ∪ AttrR(C), and B := Ji+1 := (Ji+1 \
AttrR(C)) ∪ Qi, where Qi is the subset of
vertices in the current graph with an edge to
AttrR(C).

3. Step 3: i := i+1; if Vi = ∅, then stop the algorithm,
else go to the next iteration.

We establish first the correctness of MaxECDe2 and
then analyze its running time.

Lemma 2.6. The algorithm MaxECDe2 correctly
computes the maximal end-component decomposition of
an MDP P.

Proof. The algorithm repeatedly removes bottom sccs
and their random attractors. Since every bottom scc
is a mec (by Lemma 2.2) and in each step a random
attractor is removed (hence in the current graph all the
outgoing edges for random vertices are preserved), the
correctness of the algorithm follows from Lemma 2.1
and Lemma 2.2.

For the running time analysis we need to show that the
set A ∪ B contains a vertex of every bottom scc of the

dfs(x) checks u and determines that x should remain active.
Immediately after the test the label of u is changed by some other
DFS and now the outcome of the earlier test is wrong, i.e. x should
become passive and should not label u.
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graph at the beginning of Step 2 Case 2. We show this
through the following lemmata.

Lemma 2.7. A vertex v labeled by a vertex y can only
be relabeled by a vertex z �= y if y is passive.

Proof. Assume dfs(z) visits a vertex v labeled by an
active vertex y. If z �= y, then z becomes passive and
dfs(z) stops. Thus v is not labeled by z. Hence v can
only be labeled by z if y is passive.

Lemma 2.8. If a vertex becomes special, then all ver-
tices reachable from it either are already special or be-
come special as well.

Proof. In SCC when a vertex x becomes special, i.e.,
when its scc C is detected, then all vertices reachable
from x must have been visited. Furthermore all edges
leaving C go to previously detected scc’s. Thus, all
vertices reachable from x either belong to the same scc
as x or have become special before.

Lemma 2.9. Invariants (DT1), (DT2), and (DT3)
hold throughout the algorithm.

Proof. We prove that (DT1) holds by induction on the
number of time steps of the algorithm. At the beginning
of Step 1 of MaxECDe2 all vertices are roots of their
trees in W and the claim holds trivially. Assume the
claim holds after time step t. If in time step t + 1
a vertex becomes special, then it cuts the link to its
parent. Whenever a vertex becomes passive, but is not
special then it becomes the child of a vertex in W , i.e.,
passive non-special vertices cannot be the root of a tree
of W . Additionally a vertex only becomes a non-root
vertex inW in time step t+1 if it either becomes passive
in time step t+ 1 or has already a stop vertex and the
stop vertex becomes a special vertex. Thus (DT1) holds
also after time step t+ 1.

To prove (DT2) assume the passive vertex x is a
child of y in W . If y is an active vertex, then dfs(x)
visited a non-special vertex u labeled by y and stopped.
Thus u = s(x) and the claim holds. If y is passive and
non-special, then consider the time step that makes x
passive. Either (a) y was already passive and dfs(x)
visited a non-special vertex u labeled by y, or (b) y
was an active vertex that became passive after x, which
as we showed above implies that s(x) is a non-special
vertex labeled by y. Thus in both cases u = s(x) was
labeled by y when x became passive. This implies (1)
by (I) that s(x) has a path to s(y), (2) that y can reach
s(x), and (3) that s(x) is a non-special vertex. Consider
finally the case that y is a special vertex. A special
vertex y receives additional children in W (a) when y
becomes special or (b) when a dfs(x) visits y. In Case

(a) all vertices x such that s(x) = y become children of
y. In Case (b) if dfs(x) visits y and stops, then again
y = s(x) and the claim holds. Finally we also have to
consider what happens to the possibly already existing
children z of a non-special, active or passive vertex y
when it becomes special. By Lemma 2.8 when a vertex
y becomes special then all the vertices reachable from
y also are or become special. If y was active when it
becomes special, then s(z) is labeled by y and hence
reachable from y. If y was passive before, then as we
showed above y can reach s(z). Thus, in both cases
y can reach s(z). It follows that s(z) either is already
special or also becomes special. If s(z) is already special,
then z cannot be the child of an active or passive vertex
because in both cases s(z) is required to be non-special.
Thus this contradicts our assumption that z is the child
of y. If s(z) becomes special in the same time step as y,
then z will become a child of s(z) and only stays a child
of y is y = s(z). Hence in all cases the claim holds.

We prove (DT3) by induction on the length l of the
path from the passive vertex x to the root y of the tree.
If l = 1 and the root is a special vertex, then the claim
follows from (DT2). If the root is an active vertex y,
then by (DT2) s(x) is a non-special vertex labeled by y
and, thus, the empty path proves the claim. Thus, it is
not possible that a passive vertex is a root. If l > 1, let
z be the parent of x in W . Since z is not the root of the
tree, z is a passive vertex. By induction (DT3) holds for
z, i.e., there exists a suitable path for z and by (DT2)
there exists a path P ′ from s(x) to s(z). Combining P ′

with P proves (DT3) for x.

Corollary 2.1. At every point in Step 1 every passive
vertex x has a path to either a special vertex or a vertex
labeled by an active vertex y �= x.

Proof. By invariant (I) and the definition of a stop
vertex there exists a path from x to s(x) and by (DT3)
there exists a path from s(x) to either a special vertex or
a vertex labeled by an active vertex y �= x. Combining
the two paths proves the lemma.

Before showing the crucial two lemmata we need
to introduce some more notation. Consider the i-th
iteration of the outer loop in the algorithm and let Gi
be the graph at the beginning of the i-th iteration. If
iteration i executes Case 2 then let Ai be the value of
A at the beginning of Step 2 in iteration i. Recall that
Step 2 of Case 2 can execute multiple lock-step searches
as long as |A| + |B| ≤ 2 · n/√k. After each lock-step
search the bottom scc detected in the lock-step search
and its random attractor are removed from the graph.
Let Gi,t be the graph after the removal of the vertices
corresponding to the t-th lock-step search in iteration i.
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Furthermore, letBi,t be the set B after this removal, i.e.,
the set of vertices in Gi,t that have lost an edge due to
the deletion of vertices since the beginning of iteration
i. Note that Ai is not modified by the removal. We
define Gi,0 = Gi and Bi,0 = ∅.
Lemma 2.10. For any i and for every bottom scc C in
Gi either C is detected in the i-th iteration of Step 1 or
the set Ai contains a vertex in C.

Proof. Lemma 2.4 showed that Ji+1 contains a vertex
of every bottom scc of Gi. Thus for every bottom scc C
of Gi one vertex of C becomes an active vertex at the
beginning of Step 1 of Case 2. Let C be a bottom scc in
Gi and let x be an active vertex in C. If x is still active
at the end of Step 1, then all vertices visited by dfs(x)
must belong to C, also its current vertex, which is added
to Ai. If x is not active, then by Corollary 2.1 at the
end of Step 1 x has a path to a vertex u and either u is a
special vertex or u is labeled by an active vertex y �= x.
All paths from x remain in C, i.e., u ∈ C. Additionally
if one vertex in an scc is marked as special, then all are
marked as special. Thus, if u is special, it follows that x
is marked as special as well and C was detected in Step
1 and the claim holds. If u is not special then let y be
the label of u. Since y is active but u is not marked as
special, dfs(y) visited a vertex a of C at the end of Step
1, but has not yet detected C. Thus a belongs to Ai
and the claim holds.

Lemma 2.11. For any i and t and for every bottom scc
C in Gi,t the set Ai ∪Bi,t contains a vertex of C.

Proof. Consider any fixed i. We show the claim by
induction on t: For t = 0, the claim follows from
Lemma 2.10.

Next consider t > 0. During the t-th execution of
Step 2 at least one bottom scc and its random attractor
are removed from Gi,t−1 resulting in the graph Gi,t.
Every bottom scc C in Gi,t either was already a bottom
scc in Gi,t−1 or not. If C was already a bottom scc in
Gi,t−1, then C was not removed in the t-th iteration of
Step 2. Thus by induction Ai ∪Bi,t−1 contains a vertex
in C. Since Bi,t−1 ⊆ Bi,t, the claim holds for C. If
C was not a bottom scc in Gi,t−1 but is one in Gt, it
must contain a vertex x with an edge (x, y) to a vertex
y which was removed during iteration t. But then by
definition x belongs to Bi,t. Thus the claim holds also
in this case.

Lemma 2.12. In all executions of Step 2 in Case 2
|A| ≤ n/√2 · k.
Proof. If x and y are both active vertices at the end
of Step 1, then it is not possible that both labeled the

same vertex u as the visit of u of the latter of the two
vertices would have caused the latter vertex to become
passive. During a DFS of k steps an active vertex visits
and labels at least

√
2 · k vertices. Thus there are at

most n/
√
2 · k active vertices at the end of Step 1.

Theorem 2.2. Given an MDP P, the algorithm Max-
ECDe2 computes the mec decomposition of P in time
O(m · n2/3).

Proof. The correctness follows from Lemma 2.6. We
now present the running time analysis. Case 1 is
executed every time that n/k vertices were deleted since
the last execution of Case 1. Thus, this happens at most
k times, i.e., the total time spent in Case 1 is O(m · k).

We analyze next the time spent in Step 1 of Case
2. Assume Case 2 is executed in iteration i. In Step 1
we start a DFS from each active vertex, i.e. each vertex
in Ji. Note that a vertex is only added into Ji when it
looses an outgoing edge. Thus,

∑

i |Ji| ≤ m. The time
spent per active vertex is O(k + logn) since the parent
in W changes at most once for each vertex. Thus the
total time spent in Step 1 of Case 2 over all iterations
of the outer loop is O(m(k + logn)).

We analyze next the time spend in Step 2 of Case
2. The cost of unlabeling vertices and cutting links
in W is bounded by the work done in Step 1. The
remaining work in Step 2 are the lock-step searches and
the removal of vertices. By Lemma 2.11A∪B contains a
vertex of every bottom scc in the current graph and thus
also a vertex of the smallest bottom scc C. Furthermore,
if started on a vertex in C the algorithm SCC can detect
C in time linear in the number of edges adjacent to C.
The vertices of C and its attractor can be removed in
time linear in the number of edges adjacent to them.
Let us denote this number by m(C). Thus the work
done for detecting and removing a bottom scc and its
attractor is O(m(C)·n/√k). Since each edge is removed
only once the total work spent in Step 2 of Case 2 is
O(m(k + logn + n/

√
k)). Choosing k = n2/3 gives the

claimed running time bound.

2.2 Dynamic Maximal End-component Decom-
position in Amortized Linear Time. We present
algorithms for maintaining the mec decomposition of
an MDP under the following operations: (a) incremen-
tal algorithm: addition of an edge (u, v) with u ∈ V1;
(b) decremental algorithm: deletion of an edge (u, v)
with u ∈ V1.

Given a graph G = (V,E) with vertex partition
(V1, VP ), the collapsed graph GC = (VC , EC) with vertex
partition (V C1 , V CP ) is defined as follows: Every mec C
is collapsed to a single vertex that belongs to player 1,
and all outgoing (resp. incoming) edges from (resp.
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to) C are added to the graph, removing parallel edges.
Formally, let Cm = { C | C is an mec } be the set of all
mec’s. Let M =

⋃

C∈Cm C. Then VC = Cm ∪ (V \M)

with V C1 = Cm ∪ (VC ∩ V1) and V CP = VC \ V C1 .

EC = { (u, v) | u, v ∈ (V \M), (u, v) ∈ E }
∪ { (C, v) | C ∈ Cm, v ∈ (V \M), ∃u ∈ C.(u, v) ∈ E }
∪ { (u,C ′) | C ′ ∈ Cm, u ∈ (V \M), ∃v ∈ C′.(u, v) ∈ E }
∪ { (C,C ′) | C,C ′ ∈ Cm, ∃u ∈ C, ∃v ∈ C.(u, v′) ∈ E }
An end-component C is non-trivial if |C| ≥ 2, otherwise
it is a trivial end-component. The collapsed graph with
vertex partition (V C1 , V CP ) has the following property:

Lemma 2.13. The collapsed graph GC with vertex par-
tition (V C1 , V CP ) has no non-trivial end-components.

Proof. If there is a non-trivial end-component in the
collapsed graph GC with the partition (V C1 , V CP ), then
the union of the set of vertices of the end-component
is an end-component in the original graph G = (V,E)
with partition (V1, VP ), and this contradicts that the
collapsed graph was obtained after the mec decomposi-
tion.

The following lemma shows that if an edge (u, v) is
added to a graph with no non-trivial end-components,
then there is at most one non-trivial mec in the resulting
graph. Thus, when an edge (u, v) with u ∈ V1 is added
to a graph G, then the insertion either (i) does not affect
the collapsed graph at all (if u and v belonged to the
same mec), or (ii) an edge is inserted into GC but GC
still has no non-trivial mec’s or (iii) the edge is inserted
into GC and GC has now one non-trivial mec. This fact
holds because the insertion of a player-1 edges does not
split up any existing mec. However, the insertion of a
random edge (u, v) with u ∈ VP will split up the mec
containing u into a potentially large number of mec’s
if v does not belong to it. Thus, the following lemma
holds for both player-1 and random edges only because
it makes the strong assumption that the graph has no
non-trivial end-component.

Lemma 2.14. Consider a graph G = (V,E) with ver-
tex partition (V1, VP ) that has no non-trivial end-
component. If we add an edge e = (u, v) then (V,E ∪
{ e }) with partition (V1, VP ) either (a) still has no non-
trivial end-component or (b) has at most one non-trivial
maximal end-component. Additionally, for every scc C
in the graph with the inserted edge if u �∈ C, then the
mec decomposition of C before and after the insertion
are identical.

Proof. Consider the mec decomposition after the edge
insertion and assume C is a non-trivial mec that does

not contain u. Then the insertion of (u, v) neither
changed the edges between two vertices in C nor the
edges leaving C. Thus C was also an end component
before the insertion of (u, v). However, this contradicts
the assumption that the MDP P does not any non-
trivial mec’s before the insertion. Thus, the insertion
can have created at most one new mec, namely the mec
containing u. Furthermore, the mec decomposition of
at most one scc, namely the scc containing u in the
updated graph, was changed by the edge insertion. The
result follows.

Incremental algorithm. Our incremental algorithm
maintains as data structures (called IMEC data struc-
tures) (a) the collapsed graphGC = (VC , EC), (b) stores
for every vertex in VC the set of edges that are mapped
to it, and (3) stores at every vertex v ∈ V the vertex
v′ ∈ VC to which v is mapped. When an edge (u, v)
with u ∈ V1 is inserted it executes the following steps:
1. Compute the scc decomposition of the MDP graph

(VC , EC) of GC .
2. Consider the scc C that contains the vertex u.
3. If |C| = |{ u }| = 1, then stop since C is the new

trivial mec.
4. Determine the set U of random vertices in C that

have outgoing edges leaving C.
5. Compute Z =

⋃

i≥0 Zi with Z0 = U and for i ≥ 0,
Zi+1 = Zi ∪ { v ∈ VP | E(v) ∩ Zi �= ∅ } ∪ { v ∈ V1 |
E(v) ∩ C ⊆ Zi ∪ { v } } 6

6. Compute the scc decomposition of C \ Z in the
collapsed graph. If C\Z �= ∅ then there is a bottom
scc C ′ with |C′| ≥ 2 (see Lemma 2.15 below) and
C′ is the new unique non-trivial mec. Update the
data structures accordingly.

Lemma 2.15. In Step 6, if C \ Z �= ∅, then there is a
unique bottom scc C ′ in C \ Z with |C′| ≥ 2.

Proof. We assume that U = C \ Z �= ∅. The following
assertions must hold: (a) for all u ∈ U∩V1 we must have
E(u) ∩ U �= ∅ (otherwise u would have been included
in Z); (b) for all u ∈ U ∩ VP we must have E(u) ⊆ U
(otherwise u would have been included in Z). It follows
that every vertex in U has an out-edge in U , and hence
the sub-graph induced by U must have a bottom scc.
Consider a bottom scc C ′ in the sub-graph of U . If
|C′| = |{ v }| = 1, then v must have a self-loop. Since
by assumption random vertices do not have self-loops
we must have v ∈ V1. Then we have v ∈ V1 and
E(v) ∩ C ⊆ Z ∪ { v }, and hence v must have been

6The definition of Zi+1 is similar to random attractor, the only
difference is for a player-1 vertex v if all edges in C other than
the self-loop is in Zi, then v is included in Zi+1.
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included in Z, and this contradicts that v ∈ C \ Z. It
follows that |C′| ≥ 2. Since |C′| is a bottom scc it follows
from Lemma 2.2 that C′ is a non-trivial mec. Since by
Lemma 2.14 it follows that there is at most one non-
trivial mec, it follows that C′ is the unique non-trivial
mec.

By Lemma 2.1 the vertices in Z do not belong to
any non-trivial mec. Thus, if C\Z = ∅, then none of the
vertices in C belong to an mec and thus no new mec was
created in GC . If C \Z �= ∅, then by Lemma 2.15 there
exists a unique bottom scc in C \ Z, which according
to Lemma 2.2 is a mec. Since Lemma 2.14 showed that
the addition of an edge (u, v) with u ∈ V1 generates at
most one new non-trivial mec in GC there are no further
new mec’s. Each step of the algorithm takes time O(m).
This result is summarized in Theorem 2.3. Part(1).

Note: The correctness and the running time analy-
sis of the incremental algorithm only use the fact that
the change in the graph modified the mec decomposi-
tion inside at most one scc and that the change created
at most one new mec. Thus, the same algorithm can
be used for updating the mec decomposition after an
edge deletion, as long as it is guaranteed that the op-
eration modifies the mec decomposition of at most one
scc and creates at most one new mec. We will use this
observation in Subsection 4.2.

Decremental Maximal End-component Decom-
position. We consider maintaining the mec decompo-
sition of an MDP under edge deletion for player-1 ver-
tices. We argue that the simple static algorithm works
in amortized linear time.

Decremental algorithm. We show that the simple static
algorithm can be modified to handle the deletion of an
edge (u, v) with u ∈ V1 in amortized linear time. The
observation is as follows: under player-1 edge deletion,
the mec’s of an MDP can only be decomposed into
smaller mec’s, and the size of the mec’s do not increase.
Given the mec decomposition of an MDP, we consider
an edge deletion e for player 1. Then we have the
following steps.

1. Step 1. If the edge e does not belong to any existing
mec, then the edge e is deleted and we are done.

2. Step 2. If the edge e belongs to a mec C, then we
run the simple static mec decomposition algorithm
on the MDP induced by C.

The key argument to obtain amortized linear time
analysis is as follows. In step 2 of the algorithm
when the simple static algorithm is run. Recall that
this algorithm runs in multiple iteration, spending
linear-time in each iteration and stopping whenever an

iteration does not remove any further vertices. Note
that once the vertex v is removed, i.e., it falls out of
the mec, it will never be part of any other mec. Thus,
we charge the time for the last iteration of the simple
static algorithm to the edge deletion operation and all
previous iterations to the vertices that are removed
in the previous iterations. Each vertex is charged
at most once and hence the total time for deleting
m edges is O(nm + m2) = O(m2). Hence we have
Theorem 2.3 part(2).

Theorem 2.3. The following assertions hold:
1. Let P be an MDP such that P has no non-trivial

end-component. If we add an edge (u, v) with u ∈
V1, then the maximal end-component decomposition
can be computed in time O(m).

2. Given an initial MDP with m edges, the maximal
end-component decomposition can be maintained
under the deletion of O(m) edges (u, v) with u ∈ V1
in total time O(m2).

3 Definitions for the rest of the paper

We present all the formal definitions and notations
related to strategies, objectives and almost-sure winning
in Markov decision processes.

Plays and strategies. An infinite path, or a play,
of the game graph G is an infinite sequence ω =
〈v0, v1, v2, . . .〉 of vertices such that (vk, vk+1) ∈ E for
all k ∈ N. We write Ω for the set of all plays, and for
a vertex v ∈ V , we write Ωv ⊆ Ω for the set of plays
that start from the vertex v. A strategy for player 1 is a
function σ: V ∗ ·V1 → V that chooses the next successor
for all finite sequences �w ∈ V ∗ · V1 of vertices ending in
a player-1 vertex (the sequence represents a prefix of a
play). A strategy must respect the edge relation: for all
�w ∈ V ∗ and v ∈ V1 we have (v, σ(�w · v)) ∈ E. Player 1
follows the strategy σ if in each player-1 move, given
that the current history of the game is �w ∈ V ∗ · V1,
she chooses the next vertex according to σ(�w). We
denote by Σ the set of all strategies for player 1. A
memoryless player-1 strategy does not depend on the
history of the play but only on the current vertex;
i.e., for all �w, �w′ ∈ V ∗ and for all v ∈ V1 we have
σ(�w · v) = σ(�w′ · v). A memoryless strategy can be
represented as a function σ: V1 → V . We denote by
ΣM the set of all memoryless strategies for player 1.
The class of memoryless strategies represents the class
of simple strategies without memory, and corresponds to
the class of simple controllers in probabilistic systems.

Once a starting vertex v ∈ V and a strategy σ ∈ Σ is
fixed, the outcome of the MDP is a random walk ωσv for
which the probabilities of events are uniquely defined,
where an event A ⊆ Ω is a measurable set of plays. For
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a vertex v ∈ V and an event A ⊆ Ω, we write Prσv (A)
for the probability that a play belongs to A if the game
starts from the vertex v and player 1 follows the strategy
σ.

Objectives. We specify objectives for player 1 by
providing a set of winning plays Φ ⊆ Ω. We say
that a play ω satisfies the objective Φ if ω ∈ Φ. We
consider ω-regular objectives [22], specified as parity
conditions. We also define reachability objectives, which
is an important special class of ω-regular objectives.

• Reachability objectives. Given a set T ⊆ V of “tar-
get” vertices, the reachability objective requires
that some vertex of T be visited. The set of win-
ning plays is Reach(T ) = { 〈v0, v1, v2, . . .〉 ∈ Ω |
vk ∈ T for some k ≥ 0 }.

• Parity objectives. For c, d ∈ N, we write [c..d] =
{ c, c + 1, . . . , d }. Let p: V → [0..d] be a func-
tion that assigns a priority p(v) to every ver-
tex v ∈ V , where d ∈ N. For a play ω =
〈v0, v1, . . .〉 ∈ Ω, we define Inf(ω) = { v ∈ V |
vk = v for infinitely many k } to be the set of ver-
tices that occur infinitely often in ω. The par-
ity objective is defined as Parity(p) = { ω ∈ Ω |
min

(

p(Inf(ω))
)

is even }. In other words, the par-
ity objective requires that the minimum priority
visited infinitely often is even. In sequel we will
use Φ to denote parity objectives.

Qualitative analysis: almost-sure winning. Given a
player-1 objective Φ, a strategy σ ∈ Σ is almost-sure
winning for player 1 from the vertex v if Prσv (Φ) = 1.
The almost-sure winning set 〈〈1〉〉almost (Φ) for player 1
is the set of vertices from which player 1 has an almost-
sure winning strategy. The qualitative analysis of MDPs
correspond to the computation of the almost-sure win-
ning set for a given objective Φ. It follows from the
results of [6, 7] that for all MDPs and all reachability
and parity objectives, if there is an almost-sure winning
strategy, then there is a memoryless almost-sure win-
ning strategy.

Theorem 3.1. ([6, 7]) For all MDPs P, and all reach-
ability and parity objectives Φ, there exists a memoryless
strategy σ∗ such that for all v ∈ 〈〈1〉〉almost (Φ) we have
Prσ∗

v (Φ) = 1.

Markov chains, closed recurrent sets. A Markov
chain is a special case of MDP with V1 = ∅, and hence
for simplicity a Markov chain is a tuple ((V,E), δ) with
a probabilistic transition function δ : V → D(V ), and
(u, v) ∈ E iff δ(u, v) > 0. A closed recurrent set C of a
Markov chain is a bottom maximal strongly connected

component (scc) in the graph (V,E) (a bottom scc C
is an scc with no outgoing edge from C to V \ C). Let
C =

⋃

C is closed recurrentC. It follows from the results
on Markov chains [12] that for all v ∈ V , the set C is
reached with probability 1 in finite time, and for all C
such that C is closed recurrent, for all u ∈ C and for all
v ∈ C, if the starting vertex is u, then the vertex v is
visited infinitely often with probability 1.

Derived Markov chain from a MDP and
memoryless strategy. Given an MDP P =
((V,E), (V1, VP ), δ) and a memoryless strategy σ∗ :
V1 → V a derived Markov chain P′ = ((V,E′), δ′) is
defined as follows: E′ = E ∩ (VP × V ) ∪ { (u, v) | u ∈
V1, v = σ∗(s) }; and δ′(u, v) = δ(u, v) for u ∈ VP , and
δ′(u, v) = 1 for u ∈ V1 if σ∗(u) = v. In other words,
for player-1 vertices we only keep the edges according
to σ∗ and assign them transition probability 1. We will
denote by Pσ∗ the derived Markov chain obtained from
an MDP P by fixing a memoryless strategy σ∗ in the
MDP.

Avoiding a set U . Given a set U of vertices, we say
that player 1 can force to avoid U from a vertex v if
there is a strategy σ such that Prσv (Reach(U)) = 0, i.e.,
U is reached with probability 0. We say that player 1
cannot force to avoid U from v if for all strategies σ
we have Prσv (Reach(U)) > 0, i.e., irrespective of the
strategy of player 1 the set U is reached with positive
probability.

Key property of attractors. Given an MDP P, and
a set U of vertices, let A = AttrR(U). Then from A
player 1 cannot force to avoid U , in other words, for all
vertices in A and for all player-1 strategies, the set U
is reached with positive probability. For A = Attr1(U)
player 1 can ensure (with a memoryless strategy) that
the set U is always reached.

4 Algorithms for Qualitative Analysis of
Reachability Objectives

In this section we present an improved static algorithm
and the first incremental and decremental algorithms for
maintaining the almost-sure winning set for reachability
objectives (i.e., 〈〈1〉〉almost (Reach(T )). As usual, without
loss of generality, we assume that every state in T
is an absorbing vertex (vertex with only a self-loop).
Since once a vertex in T is reached, the objective
Reach(T ) is satisfied, the assumption is made without
loss of generality, and only for technical simplicity in
the proofs.

4.1 Algorithm for almost-sure winning for
reachability. Given an MDP P and a set T of tar-
get vertices, we present a new algorithm to compute
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〈〈1〉〉almost (Reach(T )). The algorithm of [4] works in
O(m · √m) time. We show that we can adapt Max-
ECDe2 to obtain an O(m · n2/3) time algorithm.

Improved algorithm for almost-sure reachability.
Our algorithm first computes the set Q0 of vertices
from which there is no path to T . Then from the
set AttrR(Q0) player 1 cannot ensure to reach T with
probability 1, and hence the set AttrR(Q0) is removed
from the graph. The set of vertices that lost an edge to
AttrR(Q0) becomes the active vertices in MaxECDe2.
Then our algorithm iteratively detects bottom scc’s such
that the bottom scc C does not contain a target vertex
(i.e., C ∩ T = ∅). For a bottom scc C without a target
vertex, for all vertices in C and all player-1 strategies
the set T cannot be reached with probability 1. Thus,
our algorithm removes AttrR(C) from the graph. The
repeated bottom scc detection uses the MaxECDe2
algorithm with the following changes: In Case 2 Step
2, if a DFS tree reaches a vertex in T , then the DFS
is stopped, and the other DFS are continued until a
bottom scc is obtained; and in Case 2, Step 3, if all
DFS reach a vertex in T , then the algorithm is stopped.
We refer to the algorithm as AlmostReachNew.

Formal description of AlmostReachNew. We
now present the formal description of algorithm Al-
mostReachNew. We will stop DFS searches when a
vertex in T is reached.

Case 1. If ((|Li| ≥ n1/3) or i = 0), then
1. Compute the set Ri of vertices of the current graph

(Vi, Ei) that can reach a vertex in T .
2. Let Qi = Vi \ Ri be the set of vertices such that

there is no path to a vertex in T in the current
graph (there is no edge from Qi to Ri).

3. The set AttrR(Qi) is removed from the graph.
4. The set Li+1 is the set of vertices removed from

the graph in this iteration and Ji+1 be the set of
vertices in the remaining graph with an edge to
Li+1.

5. i := i + 1; if AttrR(Qi) = Vi or Qi = ∅, then stop
the algorithm, else go to the next iteration.

Case 2. Else (|Li| ≤ n1/3), then
1. Step 1: Execute Step 1 of Case 2 of MaxECDe2.
2. Step 2: We set A to the set of current vertices of

the DFS of active vertices at the end of Step 1 and
we set B = ∅. We unlabel all labeled vertices in the
graph. We mark all special vertices as non-special
and cut all links inW . If a bottom scc was detected
during Step 1, then we execute the following steps
(a)-(b) below.
(a) The bottom scc Qi such that Qi ∩ T = ∅ and

its random attractor AttrR(Qi) is removed
from the graph. The set Li+1 is the set of
vertices removed from the graph since the

last iteration of Case 1 (i.e., Li+1 := Li ∪
AttrR(Qi)), and Ji+1 be the set of vertices
in the remaining graph with an edge to Li+1,
i.e., Ji+1 := (Ji \ AttrR(Qi)) ∪ Oi, where Oi
is the subset of vertices of Vi with an edge to
AttrR(Qi).

(b) Perform lock-step searches started at all ver-
tices in A ∪ B until either (a) a bottom scc
is detected or (b) all DFS reach a vertex in
T . These DFS do not label vertices and no
vertices become passive. If a DFS reaches a
vertex in T , then the DFS is stopped. When
a bottom scc is detected we stop all lock-step
searches. If |A|+ |B| ≤ 2 · n2/3, we go to step
(a) above, else we go to Case 1.

3. Step 3: i := i+1; if AttrR(Qi) = Vi or Qi = ∅, then
stop the algorithm, else go to the next iteration.

Correctness and running time analysis. The
detailed correctness proof is presented in the following
theorem. The running time analysis of the algorithm is
exactly the same as for algorithm MaxECDe2.

Theorem 4.1. The algorithm AlmostReachNew
computes the set 〈〈1〉〉almost (Reach(T )) for an MDP P

in time O(m · n2/3).

Proof. We prove the correctness of algorithm Al-
mostReachNew. Let Zi = AttrR(Qi) be the set of
vertices removed in iteration i. If Qi is identified Case 1,
then there is no path from Qi to T , and if Qi is identi-
fied in Case 2, then it is a bottom scc without a state in
T (hence again there is no path from Qi to T ). Thus the
algorithm ensures that in every iteration i, for the set of
vertices Qi identified by the algorithm there is no path
to the set T . Hence fromQi the set T cannot be reached
with positive probability (which implies that T cannot
be reached with probability 1). Since from AttrR(Qi)
the set Qi is reached with positive probability against
all strategies for player 1, it follows that from AttrR(Qi)
the set T cannot be ensured to be reached with proba-
bility 1. It follows that for the set Zi of vertices removed
we have Zi ⊆ V \〈〈1〉〉almost(Reach(T )). To complete the
correctness argument we show that when the algorithm
stops, the remaining set is 〈〈1〉〉almost (Reach(T )). When
the algorithm stops, let V∗ be the set of remaining ver-
tices. We first show that the following assertions hold:
(a) for all v ∈ V∗ ∩ VP we have E(v) ⊆ V∗, and (b) for
all vertices v ∈ V∗ there is a path to the set T . We
prove (a) as follows: whenever the algorithm removes
a set Zi, it is a random attractor, and thus if a ver-
tex v ∈ V∗ ∩ VP has an edge (v, z) with z ∈ V \ V∗,
then v would have been included in V \ V∗, and thus
(a) follows. We prove (b) as follows: if the algorithm
stops in Case 1, then Qi = ∅, and it follows that every
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vertex in V∗ can reach T . We next consider the case
when the algorithm stops in Case 2: In this case every
active vertex in Ji has a path to T , and it follows that
there is no bottom scc in the graph induced by V∗ that
does not intersect with T . Since every vertex in V∗ has
an out-going edge, it follows every vertex in V∗ has a
path to T . Hence (b) follows. We now use assertions
(a) and (b) to prove the result. Consider the shortest
path (or the BFS tree) from all vertices in V∗ to T , and
for a vertex v ∈ V∗ ∩ V1, let u be a successor for the
shortest path. We consider the memoryless strategy σ∗
that chooses the shortest path successor u to T for all
vertices v ∈ V∗ ∩ V1. Let � = |V∗| and let α be the
minimum of the positive transition probability of the
MDP. For all vertices v ∈ V∗, the probability that T is
reached within � steps is at least α�, and it follows that
the probability that T is not reached within j · � steps is
at most (1− α�)j , and this goes to 0 as j goes to ∞. It
follows that for all v ∈ V∗ the memoryless strategy σ∗
ensures that T is reached with probability 1. Hence the
correctness follows.

4.2 Dynamic almost-sure reachability. We
present algorithms that maintain the almost-sure
reachability set under the following operations: (a) in-
cremental algorithm: addition of an edge (u, v) with
u ∈ V1; and (b) decremental algorithm: deletion of an
edge (u, v) with u ∈ V1.
Incremental algorithm. The incremental algo-
rithm maintains a partition (A,B) of V with A =
〈〈1〉〉almost (Reach(T )) of the current MDP P and B =
V \ A. Note that when an edge (u, v) with u ∈ V1 is
added, the set A can only grow. Thus once vertices are
added toA they are never removed fromA. Also observe
that there are no edges from vertices u ∈ B ∩ V1 to A,
as otherwise u would have been in 〈〈1〉〉almost (Reach(T )).
Hence only edges from random vertices can cross from
B to A. Consider the sub-MDP graph GB induced by
the set B of vertices. The algorithm keeps (1) the col-
lapsed graph GBC (defined in Subsection 2.2) of GB , (2)
a mapping C of every vertex u of B to its vertex C(u) in
GBC , and (3) the mec decomposition of GBC in the incre-
mental mec data structure IMEC of Subsection 2.2. As
we show below adding an edge (u, v) with u ∈ V1 to the
graph G of P can only (i) insert an edge in GBC or (ii)
delete edges (x, y) with x ∈ V CP from GBC and collapse
vertices in GBC to one vertex. We will show that the in-
cremental mec algorithm of Subsection 2.2 can be used
to handle (a) the insertion of a player-1 edge as well as
(b) the deletion of a random edge as long as the MDP
has no non-trivial mec and (c) the collapsing of vertices
of a mec to a single vertex, each in time O(m). Thus it
can be used to maintain the mec decomposition of GBC

in the incremental almost-sure reachability algorithm.

When an edge e = (u, v) with u ∈ V1 is added, the
following steps are executed:
1. If u ∈ A, then we do nothing.
2. If u ∈ B and v ∈ A, then move the vertices in

Attr1({ C(u) }) in GBC to A and update the data
structure for GBC (but not IMEC) accordingly. The
set P of edges to be processed is set to { (x, y) | x ∈
B,C(x) ∈ V CP , C(y) ∈ Attr1({C(u) }) } . Then go
to Step (4).

3. If u ∈ B and v ∈ B, then add (C(u), C(v)) to GBC
and update IMEC. If there is a new mec C in GBC ,
and there is a vertex z ∈ C with E(z) ∩ A �= ∅,
then move the vertices in Attr1(C) in G

B
C to A and

update the data structure for GBC (but not IMEC)
accordingly. We set P = { (x, y) | x ∈ B,C(x) ∈
V CP , C(y) ∈ Attr1({ C }) }.

4. Until P is empty, execute the following step.
(a) Remove an edge (u′, v′) from P and remove

(C(u′), C(v′)) from GBC in IMEC.
(b) Use IMEC to test if the deletion created a new

mec C in GBC .
i. If there is a new mec C in GBC and if there

is a vertex z ∈ C with E(z) ∩ A �= ∅,
then move the vertices in Attr1(C) in G

B
C

to A and update the data structure for
GBC (but not IMEC) accordingly. Set P =
P ∪ { (x, y) | x ∈ B,C(x) ∈ V CP , C(y) ∈
Attr1({ C }) }.

ii. If there is a new mec C, but it does not
not have the above edge to A then all of
its vertices are collapsed into one vertex
in GBC and IMEC is updated accordingly.

Note that there are at most as many vertex collapsing
operations as edge deletion operation in IMEC. Cor-
rectness is established using the following lemma.

Lemma 4.1. Let P be an MDP and let A ⊆ V and
B = V \ A be such that (a) for all v ∈ B ∩ V1 we
have E(v) ⊆ B; (b) for all v ∈ B we have E(v)∩B �= ∅.
Consider the sub-MDP GB induced by the vertex set B.
Then the following assertions hold.
1. Property 1. If for all mec’s C in the sub-MDP

GB, for all v ∈ C ∩VP we have E(v)∩A = ∅, then
for all v ∈ B, for all strategies σ for player 1 in the
original MDP we have Prσv (Reach(A)) < 1.

2. Property 2. For a mec C in the sub-MDP, if there
exists a vertex u ∈ C ∩ VP such that E(u)∩A �= ∅,
then there exists a strategy σ such that for all v ∈ C
we have Prσv (Reach(A)) = 1.

Proof. We prove both the cases below.

Property 1. By contradiction assume that there ex-
ists a vertex v ∈ B and a strategy σ such that
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Prσv (Reach(A)) = 1, and then by existence of memo-
ryless strategies for almost-sure winning, there exists a
memoryless strategy σ∗ such that Prσ

∗
v (Reach(A)) = 1

(Theorem 3.1). Consider the derived Markov chain Pσ∗
obtained by fixing the memoryless strategy σ∗, and let
Z ⊆ B be the set of vertices that reaches A with proba-
bility 1. Since from all vertices in V \ (Z ∪A), the set of
vertices A is reached with probability less than 1, it fol-
lows that (a) for all u ∈ Z ∩ V1 we have σ∗(u) ∈ Z ∪A
(and since E(u) ∩ A = ∅ it follows σ∗(u) ∈ Z); and
(b) for all u ∈ Z ∩ VP we have E(u) ⊆ (Z ∪ A). It
follows that in the derived Markov chain obtained by
fixing σ∗, every vertex u ∈ Z has an edge in Z. Con-
sider the scc decomposition of the sub-graph induced by
Z in Pσ∗ , and let C ⊆ Z be a bottom scc in the sub-
graph of the derived Markov chain Pσ∗ . Since the set A
is reached from C with probability 1, it follows for some
vertex z ∈ C we have E(z) ∩ A �= ∅. Since by assump-
tion for all t ∈ B ∩ V1 we have E(t) ⊆ B, it follows that
the vertex z ∈ Z ∩ VP . The set C is an end-component
in the sub-MDP GB induced by B. Consider the mec
C′ in the sub-MDP GB induced by B such that C is
contained in C′. Then z ∈ C ⊆ C ′ and E(z) ∩ A �= ∅.
This contradicts the assumption, and hence the result
follows.

Property 2. Consider a mec C in the sub-MDP GB such
that there is a vertex z ∈ C ∩ VP with E(z) ∩ A �= ∅.
Since C is an end-component in the sub-MDP GB

induced by B, it follows that for all v ∈ C ∩VP we have
E(v) ⊆ C∪A. Since C is strongly connected from every
vertex v ∈ C there is a path to z. We fix a memoryless
strategy σ∗ as follows: for every vertex v ∈ C ∩ V1
choose as successor the first vertex on a shortest path
from v to z. Let |C| = k, and let α be the minimum
positive transition probability of the MDP. Given the
memoryless strategy σ∗, it follows that for all vertices
v ∈ C, the vertex z is reached with probability at least
αk in k-steps, and hence A is reached with probability at
least αk+1 within k-steps. Hence the probability that A
is not reached after (k+1)·� steps from any vertex in C is
at most (1−αk+1)�, and this goes to 0 as � goes to∞. It

follows that for all v ∈ C we have Prσ
∗
v (Reach(A)) = 1.

The result follows.

Lemma 4.2. Let P be an MDP with a set T of vertices
and let A = 〈〈1〉〉almost (Reach(T )). Consider the MDP
P′ obtained by addition of an edge e = (u, v), with
u ∈ V1, to P. Let A′ be the output of the incremental
algorithm. Then A′ = 〈〈1〉〉almost (Reach(T )) in P′.

Proof. LetB′ = V \A′. When the algorithm terminates,
for all mec’s C in GB

′
C and for all v ∈ C ∩ VP we

have E(v) ∩ A′ = ∅. It follows from Lemma 4.1

that for all v ∈ B′ and all strategies σ we have
Prσv (Reach(T )) ≤ Prσv (Reach(A

′)) < 1 in P′ (since
T ⊆ A′). By Lemma 4.1 for all vertices v ∈ A′

there is a strategy σ to ensure that A is reached with
probability 1 in P′, i.e., Prσv (Reach(A)) = 1 in P′.
Since A is already known to be almost-sure winning,
it follows that A′ ⊆ 〈〈1〉〉almost (Reach(T )) in P′. Thus
A′ = 〈〈1〉〉almost (Reach(T )) in P′.

We still need to show how to update the IMEC data
structure after edge deletions and vertex collapsing. We
prove that the deletion of edges (u, v) with u ∈ VP
can be handled in the same way as the incremental
mec decomposition algorithm, for MDPs with no non-
trivial end-component. The correctness proof of the
incremental mec algorithm depends on Lemma 2.14,
and we prove an equivalent lemma for the case of the
deletion of an edge (u, v) with u ∈ VP in an MDP with
no non-trivial end-component.

Lemma 4.3. Consider an MDP P that has no non-
trivial end-component. If we delete an edge e = (u, v)
then the following assertion holds: (a) either the MDP
still has no non-trivial end-component or (b) the MDP
has at most one non-trivial maximal end-component.
Additionally, for every scc C in the graph after the edge
deletion if u �∈ C, then the mec decomposition of C
before and after the insertion are identical.

Proof. Consider the mec decomposition after the edge
deletion and assume C is a non-trivial mec that does
not contain u. Then the deletion of (u, v) neither
changed the edges between two vertices in C nor the
edges leaving C. Thus C was also an end component
before the deletion of (u, v). However, this contradicts
the assumption that the MDP P does not any non-trivial
mec’s before the edge deletion. Thus, the deletion can
have created at most one new mec, namely the mec
containing u. Thus the mec decomposition of at most
one scc, namely the scc containing u, was changed by
the edge deletion. The result follows.

We now consider the running time analysis. From
Lemma 4.3 and the incremental mec decomposition al-
gorithm (Theorem 2.3) we have the following corollary.

Corollary 4.1. Let P be an MDP such that P has no
non-trivial end-component. If we add an edge (u, v) with
u ∈ V1, or delete an edge (u, v) with u ∈ VP , then the
maximal end-component decomposition can be computed
in time O(m).

Lemma 4.4. The operation of collapsing vertices of a
mec C to a single vertex can be supported for the IMEC
data structure in O(m) time.
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Proof. Recall that the IMEC data structure consists of
(a) the collapsed graph (VC , EC), (b) for every vertex
u′ in VC a set of vertices of V that are mapped to u′,
and (c) a mapping of every vertex v ∈ V to the vertex
v′ ∈ GC representing it (if any). The three pieces of the
data structure are updated as follows: (a) To update
the collapsed graph let {u1, . . . , ul} be the set of vertices
that have to be collapsed. We create a new vertex u′ and
make all edges incident to any ui incident to u

′. (b) We
union the vertex sets of all the vertices ui and give the
new set S to u′. (c) Then we update the mapping stored
at every vertex v ∈ S, making it point to u′ instead of
a vertex ui.

The work done by the algorithm for each edge
processed is O(m), and an edge (u, v) is processed only
when the vertex v has been included in A. Thus an
edge is never processed twice, and hence we obtain the
bound of Theorem 4.2.part(1).

Decremental almost-sure reachability. We present
a decremental reachability algorithm for the almost-sure
winning set for reachability objectives. The correctness
argument of Theorem 4.1 shows that for the almost-
sure winning set V∗ = 〈〈1〉〉almost (Reach(T )), for all
v ∈ V∗ ∩ VP we have E(v) ⊆ V∗ and for all v ∈ V∗ there
is a path to T . For decremental reachability (under
deletion of edges for player 1), the almost-sure set can
only shrink, i.e., once a vertex is removed from the
almost-sure winning set, it never gets included again.
The simple algorithm for decremental reachability is
as follows: the algorithm maintains a reachability tree
to the set T under edge deletion. Once an edge is
deleted, the reachability tree is updated, and if there
is a new set Q that cannot reach T , then AttrR(Q) is
removed from the graph (which leads to possibly more
edge deletion), until there is no removal of vertices. The
work done is as follows: (a) work done for maintaining
the reachability tree to T and (b) the work done for the
attractor computation which works exactly on the edges
removed from the graph. A decremental reachability
tree can be maintained in O(m) worst case time, and
O(n) expected time with a randomized algorithm [16].
This gives us Theorem 4.2.part(2).

Theorem 4.2. The following assertions hold:
1. Given an initial MDP with m1 edges, the
〈〈1〉〉almost (Reach(T )) computation under the addi-
tion of further m2 edges (u, v) with u ∈ V1 can be
achieved in total time O((m1 +m2)

2).
2. Given an initial MDP with m edges, the
〈〈1〉〉almost (Reach(T )) computation under deletion
of O(m) edges (u, v) with u ∈ V1 can be achieved in
total time O(m2) and expected total time O(m · n).

Thus, if m1 = m2 = m, then the amortized time per
insertion is O(m).

5 Algorithms for Qualitative Analysis of Parity
Objectives

In this section we consider the qualitative analysis
of MDPs with parity objectives. Recall that a par-
ity objective consists of a priority function p : V →
{ 0, 1, . . . , 2d }, and the parity objective Parity(p) de-
fines the measurable subset of infinite walks such
that the minimum priority visited infinitely often is
even. We present improved algorithm to compute
〈〈1〉〉almost (Parity(p)) based on the algorithms of the pre-
vious sections and the hierarchical clustering technique
of Tarjan [21] (see also [13]).

Given a priority function p : V → { 0, 1, . . . , 2d },
for 0 ≤ m ≤ d, let V≤m = { v ∈ V | p(v) ≤ m }
denote the set of vertices with priority at most m.
Given an MDP P, let Pi denote the MDP obtained
by removing AttrR(V≤2i−1) the set of vertices with
priority less than 2i and its random attractor. A mec
C is a winning mec in Pi if there exists u ∈ C
such that p(u) = 2i. Let WEi be the union of the
vertices of winning maximal end-component in Pi, and
let WE = ∪0≤i≤dWEi. In the following key lemma
we present a reduction of 〈〈1〉〉almost (Parity(p)) to the
almost-sure reachability of WE. Thus, it suffices to
present an algorithm to compute the set WE.

Lemma 5.1. Given an MDP P we have
〈〈1〉〉almost (Parity(p)) = 〈〈1〉〉almost (Reach(WE)).

Proof. We present two directions of the proof.

〈〈1〉〉almost (Reach(WE)) ⊆ 〈〈1〉〉almost (Parity(p)). We
first show WE ⊆ 〈〈1〉〉almost (Parity(p)). For that we first
show that all winning mec’s C in Pi are a subset of
〈〈1〉〉almost (Parity(p)), for all 0 ≤ i ≤ d. Consider a
winning mec C in Pi, for 0 ≤ i ≤ d. Let z ∈ C be
such that p(z) = 2i. Since C is a mec, it is strongly
connected, i.e., every vertex in C has a path to z. We
fix a memoryless strategy as follows: for every vertex
v ∈ C ∩ V1 we choose a successor that shortens the
distance to z, and for z choose a successor (if z ∈ V1)
in C. Once the strategy is fixed we obtain a derived
Markov chain and from every vertex in C, a closed
recurrent set C ′ is reached with probability 1 such that
z is in the closed recurrent set C ′. Since p(z) is even,
and there is no smaller priority in Pi it follows from
C the parity objective is satisfied with probability 1
in Pi. Observe that Pi is obtained by removing a
random attractor, and hence it follows that in Pi, for
all random edges (u, v) from vertices u in Pi, we have
v also in Pi. It follows that the parity objective is
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satisfied with probability 1 also in P. It follows that
WE ⊆ 〈〈1〉〉almost (Parity(p)). Hence it also follows that
〈〈1〉〉almost (Reach(WE)) ⊆ 〈〈1〉〉almost (Parity(p)).

〈〈1〉〉almost (Parity(p)) ⊆ 〈〈1〉〉almost (Reach(WE)). We
now show the converse, i.e., 〈〈1〉〉almost (Parity(p)) ⊆
〈〈1〉〉almost (Reach(WE)). For a vertex v ∈
〈〈1〉〉almost (Parity(p)) we fix a memoryless strategy
σ∗ that ensure Parity(p)) with probability 1 (such a
memoryless strategy exists by Theorem 3.1). Consider
the derived Markov chain obtained by fixing σ∗, and
consider any closed recurrent set C of the derived
Markov chain. Then we have min(p(C)) is even,
and let it be 2i, for 0 ≤ i ≤ d. It follows that C
is an end-component in Pi, and the mec in Pi that
contains C is a winning mec. It follows that for every
closed recurrent set C in the derived Markov chain
we have C ⊆ WE. Since the strategy σ∗ ensures
that the set of closed recurrent sets is reached with
probability 1, it follows that σ∗ ensures that the set
WE is reached with probability 1. Hence we have
v ∈ 〈〈1〉〉almost (Reach(WE)).

The result follows.

Informal description of the algorithm. If two ver-
tices u, v belong to the same mec in Pi, they also belong
to the same mec in Pi−1. Thus the mec’s of Pi refine the
ones of Pi−1, which can be exploited using the hierar-
chical clustering technique. Formally, we will compute
WE by the recursive procedure WinMaxEC(P, p, i, j).
The procedure takes an MDP, and two indices i and
j, and outputs

⋃

i≤2k≤j WE2k. To obtain WE we in-
voke WinMaxEC(P, p, 0, 2d). Given the MDP P, and
indices i, j, the procedure first computes the mec’s
of Pm, where m = � i+j2 �. If m is even, then the
set WEm of Pm is computed. Then we recursively
call the procedures WinMaxEC(Pu, p,m + 1, j) and
WinMaxEC(P�, p, i,m − 1), where Pu is a subMDP
containing only the edges inside the mec’s of Pm and
the MDP P� is obtained by collapsing each mec in Pm
to a single vertex, thus containing only edges outside
the mec’s of Pm. We now present the formal descrip-
tion. Since the computation does not depend on the
transition function δ of the MDP we will only consider
the graph (V,E) of the MDP and the partition (V1, VP )
of V .

Procedure WinMaxEC(P = ((V,E), (V1, VP )), p, i, j)
1. If j < i, return ∅;
2. m = � i+j

2 �;
3. W = ∅;
4. (a) Vm = { v ∈ V | p(v) ≥ m }; (b) Xm =

AttrR(V \ Vm); (c) Zm = V \Xm; and (d) Em =
E ∩ (Zm × Zm);

5. Find the mec decomposition of Pm =
((Zm, Em), (V1 ∩ Zm, VP ∩ Zm)). For each
v ∈ V , if v belongs to a mec in Pm, then we denote
by Cm(v) the mec that v belongs to. Let us denote
by Cm the set of all mec’s in Pm.

6. If m is even, then for all v ∈ Zm, if v belongs to a
mec in Pm and there is a vertex v′ ∈ Cm(v) such
that p(v′) = m, then include v in W .

7. Computing
⋃

m+1≤k≤j WEk.

(a) Vertex set. Vu := { v ∈ Zm | p(v) ≥
m+ 1 and v belongs to a mec in Gm };

(b) Edges. Eu := { (u, v) ∈ Em ∩ (Vu × Vu) |
Cm(u) = Cm(v) }.

(c) Partition. (V u1 , V
u
P ) := (V1 ∩ Vu, VP ∩ Vu).

(d) W := W∪ WinMaxEC(Pu =
((Vu, Eu), (V

u
1 , V

u
P )), p,m+ 1, j).

8. Computing
⋃

i≤k≤m−1 WEk.
(a) Let M =

⋃

C∈Cm C;
(b) Vertex set. V� = Cm ∪ (V \M);
(c) Edges. The set of edges are defined as follows:

E� = { (u, v) | u, v ∈ (V \M), (u, v) ∈ E }
∪ { (C, v) | C ∈ Cm, v ∈ (V \M), ∃u ∈ C.(u, v) ∈ E }
∪ { (u,C ′) | C ′ ∈ Cm, u ∈ (V \M), ∃v ∈ C ′.(u, v) ∈ E }
∪ { (C,C ′) | C,C ′ ∈ Cm, ∃u ∈ C, ∃v ∈ C.(u, v′) ∈ E }

(d) Partition. V �1 := Cm ∪ ((V \ M) ∩ V1) and
V �P := V� \ V �1 .

(e) p�(v) = p(v) for v ∈ V and p�(C) =
minv∈C p(v) for C ∈ Cm;

(f) ̂W� := WinMaxEC(P� =
((V�, E�), (V

�
1 , V

�
P )), p�, i,m− 1);

(g) W� := (̂W� ∩ (V \M)) ∪ (
⋃

C∈Cm∩Ŵ�
C).

(h) W :=W ∪W�.
9. Return W .

Explanation and correctness. We explain steps 7
and 8, and then show correctness. In step 7, we create
subMDPs of the mec’s in Pm. The mec’s of Pk, for
k > m are contained in the mec’s of Pm. In step 8,
we collapse all mec’s C ∈ Cm to a single vertex. The
vertex set of P� consists of (a) one vertex each for a
mec C ∈ Cm, and (b) the vertices in V \M , where M
is the union of the vertices of the mec’s in Pm. The
edges between vertices in (V \M) are according to the
original edges of the graph, and the edges for vertices
corresponding to mec’s are added existentially (if there
is a vertex in the mec that satisfy the edge relationship).
We now present the correctness of the algorithm.

Lemma 5.2. (Correctness) We have
WinMaxEC(P, p, 0, 2d) = WE, i.e., the output of
the algorithm WinMaxEC is the set of winning
end-components.
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Proof. The correctness of the algorithm is by in-
duction on j − i. The inductive claim is that
WinMaxEC(P, p, i, j) =

⋃

i≤k≤j WEk. If j = i the
claim holds as the algorithm exactly outputs WEj . As-
sume that the results hold for j−i ≤ k, and we consider
j − i = k + 1. If m is even, then

⋃

i≤k≤j
WEk = WEm ∪

⋃

i≤k≤m−1
WEk ∪

⋃

m+1≤k≤j
WEk,

otherwise (m is odd), and then

⋃

i≤k≤j
WEk =

⋃

i≤k≤m−1
WEk ∪

⋃

m+1≤k≤j
WEk.

We consider the following cases.

1. For all k > m the mec’s Ck of Pk are contained in
the mec’s Cm of Pm. Additionally, no random ver-
tex in Cm can have an edge leaving Cm and thus no
random vertex in Ck can have a random edge leav-
ing Cm. Thus WinMaxEC(Pu, p,m + 1, j)=
WinMaxEC(P, p,m + 1, j). Combined
with the inductive hypothesis we get
⋃

m+1≤k≤j WEk=WinMaxEC(Pu, p,m+ 1, j).

2. For k < m, consider a mec Ck in Pk. If Ck contains
a vertex v such that v belongs to a mec in Pm, then
Cm(v) ⊆ Ck (i.e., all vertices of the mec of v also
belongs to Ck): this follows from maximality of the
end-component Ck. By induction it follows that
⋃

i≤k≤m−1 WEk = W�, where W� is computed in
step 8.g.

Hence we have that WinMaxEC(P, p, i, j) =
⋃

i≤k≤j WEk. The results follows.

Running time analysis. Given a MDP P with
n vertices, m edges and a parity objective with d
priorites, let us denote by T (m,n, d) the running time
of WinMaxEC on P. We observe that in Eu consists
of edges with in mec’s, and such edges are not present
in E�. Thus we obtain the following recurrence relation
for the running time T (m,n, d) of WinMaxEC:

T (m,n, d) = TM (m,n) + T (mu, n, �d− 1

2
�)

+T (m�, n, �d− 1

2
�),

with m� + mu ≤ m, and TM (m,n) denotes the time
complexity of mec decomposition with m edges and n
vertices. The O(m · min{ √m,n2/3 }) running time
for the mec decomposition follows from Theorem 2.1
and Theorem 2.2. It is straightforward to show that
T (m,n, d) = O(m ·min{ √m,n2/3 } · log(d)).

For maintaining the almost-sure winning set un-
der player-1 edge addition or deletion, we apply the
procedure WinMaxEC, but with the incremental and
decremental maintenance of the mec. For each Pi, for
0 ≤ i ≤ d, we maintain the mec decomposition of Pi
under edge insertion or edge deletion as described in
Subsection 2.2. We apply the WinMaxEC algorithm
and instead of the mec decomposition of Pm in Step 5
we invoke the incremental (resp. decremental) mec de-
composition algorithm for edge insertions (resp. dele-
tions). The addition (resp. deletion) of an edge may
result in an addition (resp. deletion) of an edge in Pi
in the recursive call. Hence Step 5 in the recursive call
needs to maintain the mec decomposition incrementally
(resp. decrementally). As above we obtain the following
recurrence relation for the running time T I(m,n, d) of
WinMaxEC for a MDP with m edges, n vertices, and
parity objective with d-priorities for the incremental al-
gorithm:

T I(m,n, d) = T IM (m,n) + T I(mu, n, �d− 1

2
�)

+T I(m�, n, �d− 1

2
�),

withm�+mu ≤ m, and T IM (m,n) denotes the time com-
plexity of the incremental mec decomposition algorithm
withm edges and n vertices. The recurrence relation for
the decremental algorithm is similar. Using the bounds
of Theorem 2.3 for the incremental and decremental mec
decomposition algorithm we obtain Theorem 5.1.

Theorem 5.1. Given an MDP P with a parity objective
Parity(p) with d priorities, the set 〈〈1〉〉almost (Parity(p))
can be computed in O(m · min{ √m,n2/3 } · log(d))
time. Given an initial MDP with m1 edges, the
〈〈1〉〉almost (Parity(p)) computation under the addition of
further m2 edges (u, v) with u ∈ V1 can be achieved
in total time O((m1 +m2)

2 · log(d)). Given an initial
MDP with m edges, the 〈〈1〉〉almost (Reach(T )) computa-
tion under deletion of O(m) edges (u, v) with u ∈ V1
can be achieved in total time O(m2 · log(d)).

If m1 = m2 = m, then the amortized time per
insertion is O(m · log(d)).
Acknowledgements. We thank Tom Henzinger for
his useful comments.
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