LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Translating CTL* into the modal p-calculus

by
Mads Dam

sninopeo-rf jepows ay oul 710 Buiejsuel |

LFCS Report Series ECS-LFCS-90-123

LFCS November 1990
Department of Computer Science

University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ Copyright © 1990, LFCS

Translating CTL" into the modal p-calculus

Mads Dam
Department of Computer Science
University of Edinburgh

1 Introduction

The modal p-calculus L, [10] is a very general and expressive temporal logic en-
compassing a wide range of logics such as PDL [6], PDLA [15], Process Logic
(PL) [8], linear-time temporal logic [7], the branching-time CTL [2], and CTL" [4]
which captures both of the latter two. It arises by the addition to Hennessy-Milner
logic [9] of least and greatest fixpoints of syntactically monotone operators. This
extension preserves the characterisation of bisimulation equivalence and thus pro-
vides a natural temporal logic for process calculi such as CCS [12, 11, 13]. A local
model checker for checking L ,-properties against finite-state (CCS) processes due
to Stirling and Walker [14] has been implemented in the Edinburgh Concurrency
Workbench [3].

A pragmatic point strongly counting against the practical use of L, however,
is its lack of transparency: already at the second level of nesting of fixpoints
formulas can become quite unintelligible. It is thus a matter of great interest
to provide direct translations into L, of the logics mentioned above—not only
is this the most illuminating way of proving relative expressiveness results, but
translations can also provide “macros” which may be much easier in use than the
L, primitives themselves. For some of these logics (PDL, PDLA, CTL) such a
translation os easily found. Here we provide a direct translation into L, of CTL".
Previously, only an indirect translation through PDLA was known (unpublished
work by Wolper [17]).

2 The modal p-calculus

We consider a sligh;n extension of L, introduced by Bradfield and Stirling [1].
Formulas ¢,1,~y € F, of this language are generated by

¢1:=Y|"¢|¢1V¢2|[K]¢|HY-¢

where Y (and Z) ranges over propositional variables (of which we have a count-
able supply), K over subsets of a label set £, and where pY.¢ is subject to the

1

syntactic monotonicity condition that all free occurrences of Y in ¢ lie in the
scope of an even number of negations. Other connectives are derived in the usual
way—in particular: <K>¢ & -[K]-¢, vY.¢ £ -uY.~d[-Y /Y] (using a standard
substitution notation), O¢ = [£])é, and O 2 <£>¢. Also we can introduce the

abbreviations L £ Y A=Y and T £ ~L for a distinguished Y. We use o as a
metavariable ranging over {u, v}.

The semantics of formulas relative to a fixed transition system T' = (S, {=},ec)
and a valuation V:Y — A C S is determined by the mapping {|-||:

vy =)
I=4llV = li¢llY
leAllV = |lgllVnllyl|V
IK1GV = {se€S|Vs €S,aecK.s=>s implies s €¢IV}
Y ey = (HACS|IVIY — A] C A}

Here V[Y + A] is the obvious update of V. Two formulas ¢ and v are equivalent,
if for all T and V, ||4||V = ||#||V. A formula ¢ is well-guarded, if whenever oY.¢) is
a subformula of ¢ then each occurrence of Y in 1 is within the scope of a modal
operator. We generate only well-guarded formulas. Moreover it may be checked
that for each formula 1 there is an equivalent well-guarded 3’. We consequently
restrict attention to well-guarded formulas.

We give a tableau system generalising Stirling and Walker’s [14] to arbitrary
models, characterising the relation s € ||¢||V. Briefly, we show that in order to
check s € ||#]||V it suffices to check that atomic propositions hold as appropriately
at successors of s and that no u-constant need be unfolded infinitely often along
a path from s. Streett and Emerson [16] prove a closely related predecessor of
this result. A key ingredient is the use of constants V,W,... and definition lists:
finite sequences A = (Vy,y),...,(V,, #,) of definition pairs for which each V; is
unique and each ¢; only mention constants among {Vj,...,V;_;}. Then domA =
{V4,...,V,} and A(V;) = ¢;. For V & domA, A - (V = ¢) extends A to the right
by the pair (V,¢), and A* is the obvious extension of A to arbitrary formulas
which replace all constants in domA by their definitions. The tableau system is
presented in terms of a derivation relation — on sequents of the form s -5 ¢. This
is a minimal relation satisfying the following properties:

skam¢—ska ¢

skady ANy —sbp ¢, fori=1and ¢ =2

sha Vg —skpd,fori=1o0ri=2

ska [K]¢ — s’ k4 ¢ whenever s = s’ and a € K

stky <K>¢ — s 4 ¢ for some s’ and a € K s.t. s = s

2

skpoY.¢ — sbpy_,yy V for some V s.t. V & domA
skAaV = skad(VIY)iIf A(V)=0Y.0

A tableau is partially successful if all its terminal nodes are true, i.e. whenever
sFa ¢/ then s € ||]A*(4)||V. Note that a node s -5 ¢ is terminal just in case ¢
has one of the forms Y or =Y. A tableau is (totally) successful if moreover there
is no constant V and formula pY.¢ s.t. for some infinite path

7r=31|'"A1 ¢1“)...—>32"_Al.¢i“)...

for infinitely many ¢, ¢; = V and A;(V) = uY.¢. The proof of soundness and
completeness is closely related to the corresponding proof in [14].

Theorem 2.1 st ¢ has a successful tableau iff s € ||A*($)||V.

PROOF: See appendix. O

3 CTL”

Corresponding to the extension of L, by K-indexed modalities we consider a
slight extension of CTL* by K-indexed nexttime operators. Moreover, as in PL
(cf. [4, 8]) we do not distinguish between state- and path-formulas—this gives
a slightly more succinct account of syntax and semantics. Formulas ¢ € F, are
generated by

pu=Y l —¢ I $1 A b, l (K)‘:b | 91U, | Ag.

The dual of the universal path quantifier A is the existential one defined by E¢ 2
-A-¢, and Q ranges over {A,E}. Other connectives are derived as usual. In
particular F¢ & TUg, G & ~F-¢, ¢-Usp 2 -(¢U%) and O¢ 2 (£)¢. Moreover
we admit the notations A® and E® where @ is a finite subset of F,. A formula of
one of these forms is called a state-formula. In the first case ® is to be understood
disjunctively and in the second conjunctively, i.e. A® 2A V® and E® =8) N®.
As in [5] formulas are interpreted over R-generable models, i.e. models for
which paths are generated by the transition relations. Let T' = (S,{>},cc) and
V be given. A path, or derivation sequence, through T is a maximal sequence
o=38 3 ... 5 % ... Then o(s) & s; and l(0,7) £ a;. We assume for
technical reasons that for any state s an a and s’ can be found s.t. s = s’, hence
derivation sequences are infinite. With this proviso models for CTL" and L, are
the same. Relative to T' the semantics of formulas is now given by the relation

0,1t [y ¢ defined by
o,t =y Y iff o(2) € V(Y)

0,1 =y ¢ iff 0,1 [y ¢

0,1 =y ¢ A dy iff 0,1 =y ¢, and 0,1 =y ¢,

o,iEy (K)piff l(o,5) € K and 0,4+ 1=y ¢

o,i fy $,Ug, iff 3j > 4.0,j Ey dp and VE: i < k < jo,k |=y ¢y
o,i =y Ag iff Vo', 4. if o(i) = o'(j) then o', =y ¢

This logic is capable of expressing succinctly not only safety and liveness re-
lated connectives such as the CTL-expressible AF and AG, but beyond those
also fairness-related connectives such as AGF, and in general arbitrary nestings
and Boolean combinations of linear and branching-time connectives for which the
task of finding equivalent L ,-formulations may present considerable difficulties.

4 Syntax trees

The translation proceed in two stages. Given a CTL* formula we first build a
syntazr tree for it, to expose its recursive properties. Such trees are then used
by the main translation function of section 5 below to generate the resulting L,
formula. Syntax trees are built using the following annotated rules (where I in
particular is the identity operator):

(i) A-rules:
) A(D,-¢)) A(D,Y)) A(<I>,—1Y)
L= V' Re vV A v
;. _A@,4VY) N A®4AY)
© TA@,4,9) ' TA(8,9) A(%.9)
v: A(<I>,A\Il) v: A(<I>,E\Il)
T AD AV © A®d EV
N A(®, $,Ugy)
' TA(®, 60 61) A(D, 63, 0(6,06,))
N A(®,~($,Udy))
i . A((I)a—"¢2) A(q)7—'¢17 Oﬁ(¢1U¢2))
. A(®,~(K)9) A®, (KL, H(Ky) L)
I 2@ ms-mn 7Y I TRE K UKD

: A(®, (K1)¢1, (K2)¢s)
I: A(®, (K — K3)é1, (K3 — K1), (K1 N Ky) ¢y V 65) (K1 N K, #0)

q AlK)S, - (Kn)n, =(K) L)

ey Ao (ii#iDKinK;= 0)

where

Q=\Y,.. . Y [K;NKY A AK,NK)Y,AN[K—- (K, U---UK,)|L
(ii) E-rules:

B(@,-~4) . _E(8,Y) . _E@®,Y)
T(3,9) ' RS Y S Y
S E@®,6V) . E@,6A¥)
" E(®,4) E(2,v) " E(®,¢,%)
E(®,A¥) _E(8,EY)
E® AV " E® EV¥
Ve E(®,4,Ud,)
. E(q)a¢2) E(@’¢1’O(¢1U¢2))
. B(®,($,U4,))
' E(‘I), —s, _‘4’1) E(‘I)a"%a O"(¢1U¢2))
E(®,(K)¢)) E(®, (K{)T,(K;)T)
5@, -B)%, 0 *FTD T TR, mn k)
: B(@,~(K,) g, 2(a)ds)
© E(®, (K — K3)éy, (Kp — Ki)ég, (K1 N Ky)éy V)

. E(_'(Kl)ﬂqsla W _'(I{n)_'qsm (I{)T) S g : . J—
Q: () (6, (Vi,ji#j DO K,NK; =0)

I:

A:

I:

(KN K, #0)

where

Q=)Y,,... Y, <K,NK>Y,V---V<K,NK>Y,V<K—(K,U---UK,)>T

We refer to the two rules labelled Q as the transition rules. If |£] = 1 the
nexttime-related rules can be replaced by the following two:

0- A(O¢1) v ao¢n) <> E(O(ti)l,) O¢n)
Ay, 0.) © E(é,-.0a)

The following proposition expresses the correctness of the syntax tree rules.

Proposition 4.1 If Q: ¢ is an instance of any of the above rules

¢ P
then s =y QU dy,. .., b,) if s Ey ¢, where [K] is interpreted as A-(K)— and <K>
as E(K).

PRrOOF: By inspection of the rules. O

A syntaz tree, t, for a state-formula ¢y = Q®, is a tree with root n, labelled
$o, generated by the above rules, and such that a node n labelled by ¢ (written
n : ¢) has a successor in the tree just in case n is not terminal. This means that

either
(i) no rule is applicable to n, or
(ii) some node n' strictly above n on the path from n, to n is also labelled by ¢.

In the latter case n is a preterminal and n' is its companion. Let — denote the
successor relation on nodes given by the syntax tree rules and —> the elementwise
descendancy relation defined in the obvious way such that for instance in a tran-
sition (n: A(®,¢ V) — (' : A(®,4,%)), ¢V —1>¢ and ¢ V ¢p—>1p. Some care
must be taken such that e.g. in a transition (n : A(=($,Ug;),0~(4;Ud,))) —
(E, : A(=¢1,0(4,U¢,))), ~(¢1Udy)—4>—6; but not =(¢,Us,y)>0-(¢1Ug,). We

use II () for —- (—>-) derivations, or paths, and write 7 € II if every consecutive
descendancy transition in 7 is derived from a corresponding transition in II.

Proposition 4.2 Syntaz trees are finite.

PROOF: Let clp(®) be the least set containing all ¢ € @ s.t.
(i) If =g € cly(?) or (K)¢ € clp () then ¢ € cl,(P)
(i1) If (B, ¢) € cla(®) for Q € {A,V,U, U} then ¢,9 € cly (@)
(iii) If (e,) € cla(®) for © € {U,=U} then OQ(,%) € cl,(®)
(iv) If =(K)¢ € clp(®) and ¢ # L then (K)—¢,~(K)L € cly(P)
(v) If =(Kp)L,=(K,5)L € cla(®P) then —(K,; U K,)L € cly(®)

(vi) I (Ky)¢1, (K3)d; € cla(®) and K1NK, # 0 then (Ky — K)¢y, (K; — Ki)és,
(Ky N Ky) (41 V ¢) € cly (D)

The operator clg is defined similarly to match the E-syntax tree rules. It is not
hard to show that for ® finite both cl, (®) and clg(®) are finite sets. Suppose now
that IT: Q;®; — --- is an infinite syntax tree path. Then Q;®; # Q;®; whenever
¢ # j, and then there must be an infinite sequence Q; ®;,,... s.t. for all j > 1,
Qi4: ®ijy, € clo, (®;;). Notice now that whenever ¢ € clg(®) then the depth of
nesting of path quantifiers of ¢ is strictly smaller than that of Q®, and we have
obtained a contradiction. O

Of particular interest are circular paths—paths II : Q;®, — -+ — Q,,®,,
for which Q,®, = Q,,®,,. In this case Q; = Q, whenever 1 < ¢ < m. Moreover
nontrivial IT must involve the application of a transition rule—this is what ensures

6

well-guardedness when translating. Let 7 : ¢;—>--- —+>¢,, € Il and ¢, = ¢,,. For
such paths each 7 (z) will have the form either #(2) = L(¢,, ¢;) or 7(¢) = OL(¢y, ¢;)
for L € {U,-U}. Then, if L = U we call = a p-path, and otherwise a v-path. Note
that only “simple loops” are needed, as if w1y : 1 —1> -+ - D> Py, Ty : P>+ Py €
I1 then ¢; = @,.

5 The translation

We start by explaining the intuitive idea. Consider the following syntax-tree ¢
rooted in n, and with n, and n, the sole preterminals having n, as companion:

ng: A
//\H2
_"!.11A(I) E_2:A®

The intention is to translate n; and n, as variables bound during the translation of
no. The key is to consider the infinite tree t“ obtained by repeatedly substituting
t for preterminals labelled A®. Any infinite path through ¢” is identical to a
composition of copies of II; and II,. Such a path is admissible w.r.t. A®, if it
satisfies a member of ®.

Two extremal cases are easily identified. If there is a ¢ € ® such that for both
¢ = 1 and 7 = 2 there is a v-path 7; € II; from ¢ to ¢ then n; and n, can be
translated as the same v-variable, as in this situation any infinite path through ¢
will be admissible. Next if neither II; or II, contains a v-path, both preterminals
can be translated as the same u-variable, as in this case no infinite path as above
will be admissible. These cases cover CTL.

The general situation is inbetween. For illustration suppose II; contains just
one v-path from ¢, to ¢; and that II, contains just one v-path from ¢, to ¢, with
¢, # ¢,. Then any infinite admissible path through ¢ must be equal to II7 for
2 = 1 or ¢« = 2. The appropriate translation of ny must in this case introduce
first a p-variable to handle the inadmissible paths and next a disjunction of two
formulas, each introducing a v-variable Y;, 7 € {1,2}, to handle the infinite path
I17.

" The situation for the existential path-quantifier is dual. For the general def-
inition the translation function tr takes each syntax-tree node n : ¢ into an L,-
formula tr(n : ¢)S, where S is an environment taking state-formulas Q® into
members of ®. First for tr applied to a terminal n we let tr(n : AB)S =
tr(n: E0)S = T, and tr(n: (0)Y)S = (-)Y

To account for preterminals and nonterminals we assume for each ® unique
variables Y, and Ygg, and for each pair @, ¢ with ¢ € ® unique variables Y4

and Yy gg. Now for o : ¢ a preterminal with n’ its companion and ¢ of the form
A® we let tr(n)S = Y; if no v-path r from S(4) to S(¢) in the path from n' to n
exists, and tr(n)S = Yg(s),4 otherwise. Dually, if ¢ has the form E®, tr(n)S =Y,
if no p-path as above exists, and tr(n)S = Yg(q),4 otherwise. Finally, let n : ¢ be

a nonterminal, Q label a transition from n to n,,...,n,, and let ¢ have the form
A®. Then
tr(ﬂ’-)s = ”Y¢' \/ VY:;S',¢'Q(tr(ﬂ-1)S[¢ g ¢I]7 ve ,tr(ﬂm)s[¢ = ¢I])
e

where S[¢ — ¢] is the obvious update of S. Dually, if ¢ has the form E®,

tr(n)S = vY;. ¢'/\<1> 1Yy . Qtr(ng)S[é = ¢, .., tr(2m)S[é — ¢1)

Then the root node ng is translated by tr(ng) 2 tr(ng)(), and for ¢ € F, and
Y € F, welet ¢~ ¢ iff for some syntax-tree with ng : 4, ¥ = tr(ny).

Example 5.1 Fig. 1 and 2 shows examples of syntax-trees. They use the simpli-
fied rules for the case |£| =1 as well as rules for F and G modified in the obvious
way to avoid cluttering up the trees with occurrences of T and L. In fig. 1, there
is no v-path from the root to the preterminal labelled (1) whereas there is one to
the preterminal labelled (2). Up to equivalence the root n, is translated in the
following way:

tr(ng) = pY'.(vZ'.O((Y VY)AY) V(vZ'.O(Y VY') A Z)).

This may be simplified further to Y’ .vZ'.0(Y VY') A Z'. In fig. 2 there is no
v-path from the root to the preterminal labelled (1), there is one unrolling GZ to
(2), one unrolling GY to (3) and one of both to (4). Again up to equivalence the
translation of the root ng is

tr(ng) = pY' . (wZ' DY'VYVIAY'VY)A(Y'VZ)AY)
VwZ' . O(Y' VYV ZYAN(Z' VYYNY'VZ)ANZ)
VwZ' oY'VYVOANY' VYIAN(Z'VZINZ).

As for the previous example the disjunct vZ".0(Y' VY VZ)A(Y'VY)A(Y'VZ)NY'
may be discarded. a

Note that both the notion of syntax-tree and the translation are self-dual. That
is, from any syntax-tree with n : ¢ a syntax-tree with n : ¢ can be derived simply
by dualising the labelling and annotation of each node. Furthermore —tr(n) with
respect to the original syntax tree and tr(n) with respect to the dualised tree are
identical.

A(OGY, OFOGY)

B —A(GY,FOGY)
A A(GY, 0GY, OFOGY)
A(Y, OGY, OFOGY) A(OGY,OFOGY) @
Y A(OGY,0F0GY)®
Figure 1: Example of syntax-tree
g A®
A(FOGY,FOGZ,GY,GZ)
A A(®,GY,GZ)
A A(®,Y,G2) \ A(®,GZ)
v A(2,Y, Z) A(®,Y) v A(®,7) AW
A v z A9 vy A0 ® Zz

Figure 2: Example of syntax tree with ® = {OFOGY, OFOGZ,0GY,0GZ}.

6 The correctness proof

We want to show that if ny : ¢ and sy =y ¢ then sg k() tr(ng) has a successful
tableau. From this the correctness of tr follows. For by theorem 2.1 if follows
that if sq Ey ¢ then sy € |[tr(ng)||V, and for the converse if 5o € ||tr(ng)||V
then s =y ¢o as otherwise by the above observation, sq -y —tr(z) would have a
successful tableau—a contradiction by theorem 2.1.

We give a procedure for building a tableau, 7, guided by a syntax-tree and a
model. The construction starts with the root syntax-tree node n, and the root
tableau-node labelled by sq by tr(ng). Assume we have reached a tableau-node
labelled s 5 % and a syntax-tree node n with n : ¢ and Il = ng — -+ — ny the
path from root to n; = n. Let P(s F, ,n) hold just in case

1) s l=V ¢, and
i) A*(¥) = (tr(n)S)py - - - po for some S,

where each substitution p; is determined from n; : ¢; = Q;{#;1,...,¢:,}, say, by
pi = [Uydu,] ,¢i/Y¢i,1,¢>e] T [UYqﬁe,z,- ,¢i/Y¢;,z¢,¢i][aY¢i/Y;bi]

where (as in [10]) we use oY to denote the uniquely determined subformula of
tr(ng) of the form oY.¢'.

If n is a “proper” terminal then the construction of 7 is either complete or
trivial. Next if n is a preterminal and n; its companion we continue from s Fx

9

% and n;. Note that P(s b5 ¥,1;), as (b2(n)S)pe-+- po = (tr(0:)S)pioa -+~ o
Assume consequently that n is an Q-annotated nonterminal with descendants n1
¢1, ,_m ¢ We show that ska 2/) can be extended accordlng to the tableau-
rules s.t. for every successor s’ F,/ 9’ of s -, % there is an nl s.t. P(s' b ¢, nl)
It follows that 7 is partially successful.

Case i): ¢ has the form A®. Then
tr(n) = wY¥p \ v¥p e Qtr(m)[g = ¢, tr(m,)¢ = ¢7)

'ed
Either ¢ has the form ¢ = pYy. Vyeo v¥y 4-Q(%1, ... ,%y), or ¥ = V for some
V with A(V) of this form, or ¢ has the form ¢ = vYy ;. (¢y,...,%,,) for some
¢’ € ®, or ¢ is a constant V with A(V) of this latter form. In the first case we
introduce a (fresh) p-constant V, and equip it with a scheduler, fy, picking out
a member fi(®) of ® in a round-robin fashion. Then s k4 % is extended in the
following way:

ska
shaw=y V
s Faw=yp) Voes VYo s, - - ¥m)[V/ Y]
8 Faw=p) Vi, (0)60(@1, - -,) [V/ V4]
8 P A(V=p) (W=u¥} () 6901 o m) IV Ye) W
8 F A (Vap) (W=rYy, (8,691t V1 YaD) 215 -) VI YRl IW/ Y, (0),4]

In the second case fy is already defined and all we have to do is to update f; and
expand V. Similarly the third and fourth cases are just subconstructions of these
two. Let s A/ 9 be the sequent obtained at the end of this construction.

We now need to consider 2. In all cases expect when {2 = V is the construction
well-determined. Now 2 = V only when one branch is a strict subformula of ® of
one of the forms Y, =Y, AV or EW. In these cases we always choose that “strictly
decreasing” branch when doing so is possible—i.e. when s |y Y, s |y Y,
s =y AV or s =y E¥ whatever the case may be.

We proceed by cases on §2. If) = I we just go on to the successor of n, n

—1?

and note that P(s Fas zb',_@'l). Assume instead that Q = A\Y;,...,Y,,.[K; N K]Y; A
AN[K,NK]Y, A[K—(K,U---UK,)]L with all K, pairwise disjoint. Then
whenever s = s’ and a € K; N K then s’ |=y, 1. Also

A"(t) = (tr(n)S[8 — Fr(@))opx -+ pa

where

p = [V)‘/:}Sk+1,1,¢k+1/}/¢k+1’1,¢k+1] T [VY¢k+1,lk+1 1¢k+1/Y¢k+1,lk+1r¢k+1][py;sk+1/Y¢k+1]

showing that P(s' F,/ v, ﬂ;) as desired. The other cases for @ = A and @ =V
are simple exercises given the adopted strategy.

10

Case ii): Suppose then ¢ has the form E®. The tableau construction is a straight-
forward variation on case 1), once we give a suitable strategy for resolving choices.
For this purpose let an occurrence of a subformula ¢;Ué, of some ¢' € ® be a
toplevel eventuality of E®, if ¢, Ug, is not within the scope of any operator among
U, A, Ein ¢'. An indez of E® is a map ¢ assigning a natural number «(¢; Ug,)
to each toplevel eventuality ¢, U¢, of E®, and then ¢1U‘(¢1U¢2)¢2 is the obvious
approximation (i.e. ¢;U%d, = dy, ;U ¢y = ¢,V (41 AO($;U"¢,))). The succes-
sor of ¢, succ(t), is defined by succ(t)(¢;U¢,) = ¢(¢;U¢y) — 1 when ¢(¢;Udy) > 0
and succ(t)(¢4,Udhy) = 0 otherwise, and the indexing of a state-formula E® is
E®[] = E{¢'(v) | 4 € ®}, where

(Q®)(1) = Q®, (~(8U¥))(¢) = ~(¢U%), (7)Y (e) = ()Y

(e AY)(e) = (¢()) A (#(e)), (B V)(e) = (¢(+)) V (#(4)),

(09)(2) = O(g(succ(1))), (4U)(2) = pU My

It is clear that if s |=y, E® then there is some index ¢ appropriate for E® at s—i.e.
such that s =y E®[4].

We take indices into account in the tableau-building procedure. If n : E® is
the root or the right child of a node n’ labelled by A(¥,E®) or E(¥,E®) then n
is indexed by some arbitrary ¢ appropriate for E® at the given s. For most of the
E-rules indexing is obvious—e.g. if s =y E(®, ¢V)[¢] then either s =y E(®, ¢)[]
or s =y E(®,%)[¢]. As another example, if s =y E(®,E¥)[¢] then s =y E®[].

The only nontrivial cases are the U- and (K)-rules:

i) If s =y E(®, ¢, U,)[¢] then we find an «’ which agrees with ¢ on all toplevel
eventualities of E(®,$,Ugd,) s.t. either s = E(P,4,)[¢] or else s [y

E(®, ¢1)[¢'] and s |=y E(®, 0(4,U,))[].

ii) If s =y E(®, (¢, Ud,)[¢] then we again find an " which agrees with ¢ on all
toplevel eventualities of E(®, (¢, Ud,)) s.t. s =y E(®,—¢,)['] and either

s =y E(®,-¢)[¢] or s =y E(8,0-(¢:Uy))[]-

i) I s Ey E(=(Ky)éq,- ..o (Kp)@m, (K)T)[e] with all K; pairwise disjoint
then for some s’ and a € K, s % &', and if a € K| then s’ |=y, E(¢;)[succ(c))].

We have thus shown
Lemma 6.1 7 is partially successful. a
Suppose then that 7 is not totally successful—i.e. we have an infinite derivation

S }‘Al "/)1-)32}‘A2¢2_—)"'—'}Si|—A,' d)i—_)"'

11

for which 1; = V for infinitely many ¢ with V a u-constant. Assume in particular
b, = V. Correspondingly there will be an infinite path

O=n,:¢y—=ny:¢p— ... > n;: ¢, —
and an infinite derivation sequence

! / !
T=8 — 8y~ ...~ 8§ —
s.t. there are monotone maps g,k : w — w s.t. for all i > 1, P(s; Fa; ¥;,10,(;)) and
and for all 7,,4, > 1, if h(g(%;)) = h(g(¢,)) then s;, = s;, = s;(g(il)).

There are two possibilities. Either for some n: A® = ¢,

AL(V) =tr(n)S = uYy. \/Q vy 5 Q(tr(n))Sé = 471,...,tx(n,)S[p — ¢1)
¢'e

or for some n: E® = ¢, ¢' € ®,

AL(V) = 1 (tx(m)S[6 > 81, tr(a,)S[6 = ED[Yp > br(a)S]

Case i): n: A® = ¢. Then for all § > 1, ¢; has the form ¢; = A®;. If there is a
¢' € ® s.t. Yy does not occur freely in 1/) 4.4 then by the schedulmg mechanism
adopted we have a contradiction. We show by induction on the structure of gb €0;

that a, h(]) bév ¢

45 = 4, U~,. It suffices to show that for all k > h(y), 0,k =y v,. Now v, € @, for
some j; > j s.t. h(]) = h(j,), so by the induction hypothesis o, h(j) Ky 7e- Also
O¢ € @, . Let j, be least s.t. h(j) = h(j) + 1. Note that j, exists. We show
that ¢ € <I> . The only reason why this could fail is that some strictly decreasing
bra,nch has been taken. But this is impossible by the construction. But then
v, € ®;, for some jz > j, s.t. jz = h(j)+1, and thus o, h(j) +1 £y 72. Repeating
this argument ad infinitum gives the desired result.

¢; = =(1,Ux,). It suffices to find a k& > h(j) s.t. o,k |y v, and 0,k |y 1

whenever h(j) < k' < k. Let h(g(z)) = h(j). The scheduling mechanism ensures
some i > i s.t. whenever ¢’ € ® some iy can be found with ¢ < iy < i’ and

A} () = Yo Qir(@)S[8 = 8], r(a,)S[6 — #])[ex(2)S/ ;)

But then for some ¢’ > i, =y, € &y
from ny; to myay, a contradiction. Let i be minimal with this property. Let
k = h(g(s")). By the induction hypothesis o,k k=), 7,. Let h(j) < k' < k. Then
by the minimality of i we can find j' s.t. A(j') = ¥’ and —y; € @, and then we
are done by the induction hypothesis.

" as otherwise there would be a v-path

12

The remaining cases are straightforward.

Case ii): n = E® = ¢. Again for all j > 1, ¢, has the form ¢; = E®;. Let ¢; be
the index assigned to ¢; in the construction of 7. We show by induction on the
structure of ¢; € ®; that o,h(j) E=v qﬁg(cj)

¢; = 4,Uv,. By the assumption, 3;(3') =y E®.[:;]. By induction on l,j(gb;.) we
obtain a smallest j' > j s.t. 7, € @ ;+ whence by the induction hypothesis, o, =
7. For all j” s.t. h(j) < k(") < h(j"), 71 € ®;u, 50 0,5" =y 71 and we are done.

¢; = =(4,U%;). The only reason why we can avoid having either -y, vy, € ®;, or
s, Oqﬁ;. € ®;, for some j; with h(j;) = h(j,) is if we take some strictly decreasing
branch, but this is impossible. By the induction hypothesis, o,h(j) Ey —7,. If
-1 € ®;, then also o,h(j) =y -7, whence o,k(j) =y ¢;. Otherwise let j, be
least s.t. A(j,) = h(s) + 1. Then qS; € ®;, and we can repeat the argument. Thus
we can conclude that o, () Ey qS;

The remaining cases are again straightforward. But now we are almost done,
for 1; = V infinitely often only if there is some infinite p-path 7 through II. Thus
for all j, n(j) has the form either 7(j) = v, Uy, or #(j) = O(y,Uy;). By the
tableau-construction for some index ¢, sy =y E®,[1], so 0,1 =y @,(¢) as we have
just proved. Now either 4, Uy, € ®; or O(y,Uy,) € ®;,, where j; is least s.t.
h(j1) = 1+ ¢«(7,U~,), so by the above result again, o, h(j;) Ey (0)7,U%, which
is impossible. The proof is thus complete and we have shown

Theorem 6.2 (Correctness of tr) If ¢ ~ ¢ then {s | s =y ¢} = [|[¥||V. 0

7 Concluding remarks

The translation can be optimised in several respects. We can instead of syntax-
trees use graphs. In the special case of |£] = 1 we can make do with graphs
that are of size exponential in the length n of the input formula, and thus obtain
a doubly exponential size-bound for the complete translation. This is true also
for the case where we restrict attention to nexttime operators of the forms either
({a}) or O. By suitably representing the disjuncts and conjuncts introduced in the
translation of nonterminals, the size-bound can in these cases be reduced further
to O(n2"), but then the resulting formula is no longer in L,. More fine-tuning
can be obtained by noting

(i) not every syntax-tree node can give rise to loop,
(ii) not every formula can be member of a o-path,

(ii1) sufficient syntactic criteria for classifying nonterminals can easily be found:
Suppose ® contains a formula ¢ of one of the forms —(1Uy) or O—(xpU7),

13

and ¢ is not a subformula of any other ¢’ € ®. Thenany Il : A® — --. — A®
will contain a v-path from ¢ to ¢ (and dually for E).

It is very likely that by discriminating use of such tuning the complexity will turn
out to be manageable in practice.

The reported results may be extended to non-total CTL*-models by taking
appropriate account of finite paths. Note finally that a very similar translation
strategy can be applied to the full branching-time p-calculus (with the linear next-
time operator and branching quantifiers). Is this translation correct?

Acknowledgements: Thanks to C. Stirling for many valuable discussions. The
work was supported by SERC Grant GR/F 32219.

References

[1] J.C. Bradfield and C.P. Stirling. “Local model checking for infinite state
spaces,” Lecture Notes in Computer Science 458 (Springer,1990) pp. 115-
125.

[2] E. Clarke and E.A. Emerson. Design and synthesis of synchronisation skele-
tons using branching time temporal logic,” Lecture Notes in Computer Sci-
ence 131 (Springer,1981) pp. 52-71.

[3] R. Cleaveland, J. Parrow and B. Steffen. “A semantics based verification
tool for finite state systems,” Proc. 9th IFIP Symp. on Protocol Specification,
Testing, and Verification North-Holland, 1989.

[4] E.A. Emerson and J. Halpern. ““Sometimes” and “not never” revisited: On
branching versus linear time.” Journal of the ACM 33 (1986) pp. 151-178.

[5] E.A. Emerson and A.P. Sistla. “Deciding full branching time logic,” Informa-
tion and Control 61 (Academic Press, 1984) pp. 175-201.

[6] M.J. Fischer and R.E. Ladner. “ Propositional dynamic logic of regular pro-
grams,” Journal of Computer and System Science 18 pp. 194-211.

[7] D. Gabbay, A. Pnueli, S. Shelah and J. Stavi. “On the temporal analysis of
fairness,” in Proc. of the Tth Annual ACM Symp. on Principles of Program-
ming Languages (Las Vegas, Nevada, Jan. 1980) (ACM,1980) pp. 163-173.

[8] D. Harel, D. Kozen and R. Parikh. “Process logic: Expressiveness, decidabil-
ity, and completeness,” Journal of Computer and System Science 25 (1982)
pp. 144-170.

[9] M. Hennessy and R. Milner. “Algebraic laws for nondeterminism and concur-
rency,” Journal of the ACM 32 (1985), 137-162.

14

[10] D. Kozen. “Results on the propositional p-calculus,” Theoretical Computer
Science 27 (North-Holland, 1983) 333-354.

[11] K.G. Larsen. “Proof systems for Hennessy-Milner logic with recursion,” Lec-
ture Notes in Computer Science 299 (Springer, 1988).

[12] R. Milner. “Communication and concurrency,” Prentice Hall International,
1989.

[13] C.P. Stirling. “Temporal logics for CCS,” Lecture Notes in Computer Science
351 (Springer, 1989).

[14] C.P. Stirling and D.J. Walker. “Local model checking in the modal mu-
calculus,” Lecture Notes in Computer Science 351 (Springer,1989) pp. 369-
383.

[15] R.S. Streett. “Propositional dynamic logic of looping and converse is elemen-
tarily decidable,” Information and Control 54 (Academic Press, 1982) pp.
121-141.

[16] R.S. Streett and E.A. Emerson. “An automata theoretic decision procedure
for the propositional mu-calculus,” Information and Computation 81 (Aca-
demic Press, 1989) 249-264.

[17] P. Wolper. “A translation from full branching time temporal logic to one
letter propositional dynamic logic with looping,” unpublished manuscript.

8 Appendix. Proof of theorem 2.1

Theorem 2.1 follows from the soundness and completeness lemmas 8.2 and 8.3
below. We first generalise the finiteness lemma of [14}:

Lemma 8.1 Let 7 be an infinite path through a tableaw 7. Then there is a unique
constant V s.t. ¢, =V for infinitely many ¢.

PRroOOF: This follows the termination proof of [14], from where we use the de-
gree function d(¢$). Briefly, d(¢) is the “height” of ¢ with constants having
height 0. Then d(s F, @) is d(¢) if ¢ is not a constant and d(A(¢)) other-

wise. Suppose m = 8; b, ¢ — - — 8; Fo. ¢; — ---. The subsequence
h 1 Ta; #1 i Ta; P q
7w =8 Fa Vi,...,8 Far Vi,... consisting of the constant-sequents of 7 is in-
1 1 1 A‘] g q
finite. Assume that no constant occurs infinitely often among V;,...,V;,... Let

then ¢y, be maximal s.t. V;; = V4. Then d(s;0+1 |~A£0+1 Vigr1) < d(sg Fay Vo), for
A:.o +1(Vio+1) is a strict subformula of A:)(VO). Let ¢; be maximal s.t. V;, =V, 4.
Vips1) < d(si 4 Fa

i+l | Blpa Vig41), and as

Then by a similar argument (1(3:.1 aF ALy,

15

this construction can be continued ad infinitum some V (which moreover will be
unique) must occur infinitely often along . a

We go on to prove first soundness and then completeness.
Lemma 8.2 If s b, ¢ has a successful tableau then s € ||A(d)||V.

PROOF: Suppose 7 is a successful tableau for s 5 ¢, and suppose for a contra-
diction that s b, ¢ is false—i.e. that s & [|A"(4)||V. Using only false nodes We
trace an infinite —-derivation unfolding no constant infinitely often, contradicting
lemma 8.1. Starting from s -, ¢ pick a path using only false nodes to some false
81 Fa, Vi s.t. V] is introduced as early as possible. If V] is a p-constant then Vj
will eventually fail to occur. If V] is a v-constant then (using ordinal approxima-
tions in the standard way) there is some minimal oy s.t. s; & ||AJ(v*Y1.¢,)||V
where A,(V;) = vY;.¢,. Consequently along all paths V; will eventually become
true. In either case we can find a new false s, Fa, V, minimal in the above sense
and repeat ad infinitum. O

Lemma 8.3 If s € ||A™(¢)||V then s b5 ¢ has a successful tableau.

PROOF: The proof is related to the corresponding proof in [16]. Suppose s €
[|A*(d)||V. Let Vi,...,V, be the sequence of p-constants of A in the order of
declaration. The sequence of ordinals @(s k5 ¢) = (aq,...,,,0,0,...) is the
signatureof s k5 ¢, a(s F, ¢)is lexicographically least s. t. s € I]A;(SI_A@((#)HV,
where Az, 4) is A with each entry V; = pY.¢; changed to V; = p*Y;.¢;. By
always selecting the choice with least signature s F, ¢ can be extended to a
partially successful tableau 7. To see it is totally successful suppose there is a
path from s’ kA, V to s” Fau V in 7 with V a p-constant. Then @(s’ Fp V) >
@(s” Fan V). Only the introduction of new p-constants can increase signature
from s’ Far V to 8" Fan V, but this will not affect the decrease in signature
obtained by unfolding V itself. Moreover, the non-zero prefix of G(s' Fas V) is of
constant length, so no infinitely >-decreasing chain can exist. o

16

Copyright © 1990, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

