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Abstract

Temporally extended goals (TEGs) refer to properties that
must hold over intermediate and/or final states of a plan.
The problem of planning with TEGs is of renewed interest
because it is at the core of planning with temporal prefer-
ences. Currently, the fastest domain-independent classical
planners employ some kind of heuristic search. However, ex-
isting planners for TEGs are not heuristic and are only able to
prune the search space by progressing the TEG. In this paper
we propose a method for planning with TEGs using heuris-
tic search. We represent TEGs using a rich and compelling
subset of a first-order linear temporal logic. We translate a
planning problem with TEGs to a classical planning prob-
lem. With this translation in hand, we exploit heuristic search
to determine a plan. Our translation relies on the construc-
tion of a parameterized nondeterministic finite automaton for
the TEG. We have proven the correctness of our algorithm
and analyzed the complexity of the resulting representation.
The translator is fully implemented and available. Our ap-
proach consistently outperforms TLPLAN on standard bench-
mark domains, often by orders of magnitude.

1 Introduction
In this paper we address the problem of planning with tem-
porally extended goals (TEGs). TEGs are goals that refer
to properties that must be achieved at various states along
the execution of a plan, not just in the final state. They are
compelling because they encode many realistic but complex
goals that involve properties other than those concerning the
final state. Examples include achieving several goals in suc-
cession (e.g., deliver all the priority packages and then de-
liver the regular mail), safety goals such as maintenance of
a property (e.g., always maintain at least 1/4 tank of fuel in
the truck), and achieving a goal within some number of steps
(e.g., the truck must refuel at most 3 states after its final de-
livery). The problem of planning with TEGs is of renewed
interest because it is at the core of planning with temporal
preferences. Indeed, most preferences in PDDL3 [11]—the
plan domain description language used in the 2006 Inter-
national Planning Competition (IPC)— can be specified in
linear temporal logic (LTL) 1.
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1All of them can be expressed in LTL, in the absence of durative
actions (i.e. when all actions are instantaneous).

TLPLAN [2] and TALPLAN [15] are examples of plan-
ners that can plan with TEGs. They do so by treat-
ing TEGs as temporal domain control knowledge (TDCK).
TLPLAN’s search strategy is one of blind search on a search
space that is constantly pruned by the progression of the
TDCK. This works well for safety-oriented TDCK (e.g.,
�open(door)) because TLPLAN prunes those actions that
falsify the TDCK. Unfortunately, TLPLAN does not guide
the search towards goals so it is less effective with respect to
liveness properties such as ♦at(Robot,Home) or other goals
that have to be actively achieved.

Heuristic planners such as FF [13] are among the fastest
planners for classical planning. Given a planning problem
P, they evaluate the quality of states in the search space
by computing a heuristic function over a relaxation of P.
A common relaxation corresponds to disregarding the ac-
tions’ negative effects. To compute the heuristic function
a Graphplan-style planning graph [5] is expanded until all
the goal facts appear in a fact node. To use techniques such
as this directly with a TEG requires us to be able to deter-
mine which facts of the domain are true iff the TEG is true,
thus enabling us to stop the graph expansion and to compute
the heuristic. In this way, we could use the same classical
heuristic search techniques for planning with TEGs.

In this paper we propose a method for performing heuris-
tic search on planning problems with TEGs by exploiting the
relationship between temporal logic and automata. Given a
planning problem for a TEG, we transform it into a classical
planning problem and apply a domain-independent heuris-
tic search planner to actively guide search towards the goal.
This new augmented domain, contains additional predicates
that allow us to describe the (level of) achievement of the
TEG. In particular, in this new domain there is a classical
goal that is satisfied iff the TEG of the original problem is
achieved.

To convert a TEG into a classical planning problem we
provide a translation of f-FOLTL formulae to parameter-
ized nondeterministic finite automata (PNFA). f-FOLTL is
a version of LTL which we modify to include first-order
(FO) quantifiers and to be interpreted only by finite com-
putations. We have proven the correctness of our translation
algorithm. Once the TEG is represented as an PNFA, we
provide a construction of the classical planning problem us-
ing derived predicates (axioms). We analyze the space com-



plexity of our construction, briefly discuss its superiority to
ADL-operator based approaches, and propose techniques to
reduce its size.

Our translators are fully implemented and are posted on
the Web 2, together with our test suites. They output PDDL
problem descriptions, making our approach amenable to use
with a variety of classical planners. We have experimented
with FF’s extension for derived predicates, FFX [21], over
3 benchmark domains, comparing our results to TLPLAN.
Our method is consistently faster than the blind-search plan-
ner TLPLAN, often by orders of magnitude, and often solv-
ing problems TLPLAN is unable to solve.

There are several pieces of related research that are no-
table. We group this research into two overlapping cat-
egories: 1) work that compiles TEGs into classical plan-
ning problems such as that of Rintanen [20], Cresswell and
Coddington [6], and recent work by the authors [4]; and
2) work that exploits automata representations of TEGs in
order to plan with TEGs, such as Kabanza and Thiébaux’s
work on TLPLAN [14], work by Pistore and colleagues (e.g.
[18, 16]), and by Edelkamp [8]. We discuss this work in the
final section of this paper.

While the notion of compiling TEGs or TDCK into au-
tomata is not new, our work presents a number of significant
contributions. It is the first to exploit the use of heuristic
search for planning with first-order TEGs. Heuristic search
results in drastic speedup in TEG planning relative to exist-
ing techniques. It is also unique in proposing a finite tem-
poral logic with FO quantifiers for automata, together with
an algorithm for their generation. This is a significant dif-
ference from previous approaches enabling us to represent
goals that cannot be represented using (infinite) LTL. More-
over, if a goal is intrinsically cyclic, our translation is able to
recognize (sometimes) that the goal is not achievable, which
is not true of previous approaches.

2 From f-FOLTL to Parameterized NFA
In this section we present an algorithm that translates TEGs
expressed as f-FOLTL sentences into parameterized, state-
labeled, nondeterministic, finite automata (PSLNFA). Next
we show how to simplify these automata into parameterized
NFA (PNFA). We have proven the correctness of our algo-
rithm.

2.1 f-FOLTL: Finite LTL with FO Quantifiers
We introduce f-FOLTL logic, a variant of LTL [19] which
we define over finite rather than infinite sequences of states,
and which can include first-order quantification. We use
f-FOLTL formulae to describe TEGs for finite plans. f-
FOLTL formulae augment LTL formulae with first-order
quantification and by the use of the constant final, which
is only true in final states of computation. As usual, we as-
sume our f-FOLTL formulae are built using standard tem-
poral and boolean connectives from a set S of symbols for
predicates, functions and constants. We denote by L(S) the
set of first-order formulae over the set of symbols S.

2http://www.cs.toronto.edu/~jabaier/planningTEG/

Definition 1 (f-FOLTL formula) An f-FOLTL formula
over a first-order set of symbols S is one of the following.

1. The 0-arity predicates final, true or false,
2. ϕ ∈ L(S), i.e. any first-order formula over S.
3. ¬ψ , ψ ∧ χ , ©ψ , or ψ Uχ , if ψ and χ are f-FOLTL for-

mulae.
4. (∀x)ϕ , (∃x)ϕ if ϕ is an f-FOLTL formula.

As usual, a f-FOLTL sentence is a formula with no free
variables. f-FOLTL formulae are interpreted over finite se-
quences of states, where each state is a first-order interpreta-
tion. A (finite) sequence of states σ = s0s1 · · ·sn over a lan-
guage S is such that si is a first-order interpretation, for each
i ∈ {0, . . . ,n} for symbols in S over some domain D. More-
over each si assigns the same denotation to all terms of the
language. As a consequence, all constants of the language
refer to the same object in all interpretations. For notational
convenience, we denote the suffix sisi+1 · · ·sn of σ by σi.

Let ϕ be an f-FOLTL formula. We say that σ |= ϕ (i.e.,
σ is a model of ϕ) iff 〈σ0,V 〉 |= ϕ , for all V , where V is an
assignment of variables to domain objects. Furthermore,

• 〈σi,V 〉 |= final iff i = n.

• 〈σi,V 〉 |= true and 〈σi,V 〉 6|= false.

• 〈σi,V 〉 |= ϕ , where ϕ ∈ L(S) iff 〈si,V 〉 |= ϕ .

• 〈σi,V 〉 |= ¬ϕ iff 〈σi,V 〉 6|= ϕ .

• 〈σi,V 〉 |= ψ ∧χ iff 〈σi,V 〉 |= ψ and 〈σi,V 〉 |= χ .

• 〈σi,V 〉 |= ©ϕ iff i < n and 〈σi+1,V 〉 |= ϕ .

• 〈σi,V 〉 |= ψ Uχ iff there exists a j ∈ {i, . . . ,n} such that
〈σ j,V 〉 |= χ and for every k ∈ {i, . . . , j−1}, 〈σk,V 〉 |= ψ .

• 〈σi,V 〉 |= (∀x)ϕ , iff for every a ∈ D, 〈σi,V (x/a)〉 |= ϕ .

• 〈σi,V 〉 |= (∃x)ϕ , iff for some a ∈ D, 〈σi,V (x/a)〉 |= ϕ .

Standard temporal operators such as always (�), even-
tually (♦), and release (R), and additional binary connec-
tives are defined in terms of these basic elements. Recall
that ψ Rχ def

= ¬(¬ψ U¬χ), and note that �ϕ def
= falseRϕ , and

♦ϕ def
= trueUϕ.

As in LTL, we can rewrite formulae containing U and R in
terms of what has to hold true in the “current” state and what
has to hold true in the “next” state. This is accomplished by
identities 1 and 5 in the following proposition.

Proposition 1 Suppose ϕ and χ are f-FOLTL formulae,
and suppose that variable x is not free in χ . The following
formulae are valid.
(1) ψ Uχ ≡ χ ∨ψ ∧©(ψ Uχ), (3) (∀x)ϕ Uχ ≡ (∀x)(ϕ Uχ),
(2) ¬©ϕ ≡ final∨©¬ϕ , (4) χ U(∃x)ϕ ≡ (∃x)(χ Uϕ),
(5) ψ Rχ ≡ χ ∧ (final∨ψ ∨©(ψ Rχ)).

Limiting f-FOLTL to finite computations results in sev-
eral obvious discrepancies in the interpretation of LTL and f-
FOLTL formulae. In particular, discrepancies can arise with
LTL formulae that force their models to be infinite. For ex-
ample, in f-FOLTL the formula �(ϕ ⊃ ©ψ)∧�(ψ ⊃ ©ϕ)
is equivalent to �¬(ϕ ∨ψ). This is because if ϕ or ψ were
true in some state of a model, the model would be forced to



be an infinite sequence of states. The reader familiar with
LTL, will note that identity 2 replaces LTL’s equivalence
¬©ϕ ≡ ©¬ϕ . This formula does not hold in f-FOLTL be-
cause ©ϕ is true in a state iff there exists a next state that sat-
isfies ϕ . Since our logic refers to finite sequences of states,
the last state of each model has no successor, and therefore
in such states ¬©ϕ holds for every ϕ .

Although there are differences between LTL and f-
FOLTL, their expressive power is similar when it comes to
describing temporally extended goals for finite planning. In-
deed, f-FOLTL has the advantage that it is tailored to refer
to finite plans. As a consequence, we can express goals that
cannot be expressed with LTL. Some examples follow.

• ♦(final∧ (∃c)(corridor(c)∧ at(Robot,c))): In the final
state, at(Robot,c) for some corridor c. This is one way of
encoding final-state goals in f-FOLTL.

• (∀r1,r2). priorityOver(r1,r2) ⊃ ¬delivered(r2)U
delivered(r1) ∧ ♦delivered(r2): If r1 has priority over r2
then r2 must be delivered, but not before r1.

• ♦(p(a)∧©©final): p(a) must hold true two states before
the plan ends. This is an example of a goal that cannot be
expressed in LTL, since it does not have the final constant.

In this paper, we present an algorithm that generates an
automaton that accepts models of f-FOLTL formula ex-
pressed in extended prenex normal form.

Definition 2 (Extended Prenex Normal Form (EPNF))
A formula is in extended prenex normal form (EPNF) if it
is of the form (Q1x1)(Q2x2) · · ·(Qnxn)ϕ , where Qi ∈ {∀,∃}
and all quantifiers that occur in ϕ quantify on first-order,
atemporal, subformulae.

Some formulae that are not in EPNF, have an EPNF
equivalent. For example, (∀x)�(P(x) ⊃ (∃y)♦Q(x,y)) is
equivalent to (∀x)(P(x)⊃♦(∃y)Q(x,y)), which is in EPNF.
However, there are formulae that do not have an EPNF
equivalent, e.g. �∃x(P(x)∧♦Q(x)).

2.2 The Translation to Parameterized NFA
We now present an algorithm that translates EPNF f-
FOLTL sentences into parameterized, state-labeled, non-
deterministic, finite automata (PSLNFA). For every LTL for-
mula ϕ , there exists a Büchi automaton3 Aϕ that accepts an
infinite state sequence σ if and only if σ |= ϕ [22]. To our
knowledge there is no pragmatic algorithm for translating a
finite version of f-FOLTL in EPNF such as the one we use
here. In this section, we propose such an algorithm and es-
tablish its correctness. Our algorithm is a modification of
the one proposed in by Gerth et al. [12], and in the first stage
generates a PSLNFA.

Definition 3 (PSLNFA)
A parameterized state-labeled NFA (PSLNFA) is a tuple A =
〈Q,Σ(S,D),δ ,L,Γ,x,Q0,F〉, where Q is a finite set of states,
and Q0 ⊆ Q is a set of initial states. The alphabet Σ(S,D)

3A Büchi automaton is an extension of a finite state automaton
to infinite inputs.

is a set of first-order interpretations over the same domain
D, such that they assign the same denotation to all constant
and function symbols in S, δ ⊆Q×Q is a transition relation,
F ⊆ Q is the set of final states, x is a string of variables, Γ ∈
{∀,∃}∗ is a string of quantifiers (|Γ| = |x|), and the labeling
function L : Q → 2L(S) is such that if ϕ ∈ L(q) then all the
free variables of ϕ are in x.

Intuitively, a PSLNFA is like an NFA where states are la-
beled by sets of first-order formulae. The PSLNFA accepts
a string of interpretations s0 . . .sn iff there is a path q0 . . .qn
from an initial state to a final state such that labels of the
states traversed are true in the corresponding interpretation
(i.e., all formulas in L(qi) are true in si). The free variables
in the labels are interpreted based on the quantifiers in Γ.
Below we show that PSLNFAs accept models of f-FOLTL
formulae.

Formally, a run of a PSLNFA A over a string of interpreta-
tions σ = s0 s1 . . .sn is a finite sequence ρ(a) = q0 q1 . . .qn,
such that q0 ∈ Q0, (qi,qi+1) ∈ δ for all i ∈ {0, . . . ,n− 1},
and a is a vector of objects in the domain D. Further, for
every i ∈ {0, . . . ,n}, 〈si,x/a〉 |= L(q). A run is accepting
when qn ∈ F . Let Γ = V1V2 . . .Vn and x = x1x2 . . .xn, then A
accepts σ iff ‘for all/for some’ a1 ∈D and ‘for all/for some’
a2 ∈D ... and ‘for all/for some’ an ∈D there is an accepting
run ρ(a1a2 . . .an). The ‘for all/for some’ preceding ai is re-
placed by ‘for all’ when Vi = ∀, and by ‘for some’ otherwise.

Example PSLNFA A = 〈{q0,q1},Σ,δ ,L,Γ,xy,{q0},{q1}〉,
where δ = {(q0,q1),(q1,q1)}, and L(q0) = P(x) and
L(q1) = Q(x,y). A accepts the models of (∀x,y).P(x) ∧
©�Q(x,y) if Γ = ∀∀ and accepts the models of
(∀x).(∃y) .P(x)∧©�Q(x,y) in case Γ = ∀∃. Figure 1 shows
a graphical representation of a PSLNFA that can accept the
models of either (∀x)♦P(x) or (∃x)♦P(x).

The algorithm The translation algorithm is a modification
of the one proposed by Gerth et al. in [12]. In contrast to
[12] it generates a PSLNFA, instead of a Büchi automaton.

To represent a node of the automaton, the algorithm
uses Gerth et al.’s data structure Node, which is a tuple
〈Name, Incoming,New,Old,Next〉. The field Name : con-
tains the name of the node; Incoming is the list of node
names with an outgoing edge leading to Node; New con-
tains first-order formulae that must hold at the current state
but that have not been processed by the algorithm; Old con-
tains the formulae that must hold in the nodes that have been
processed by the algorithm; Next contains temporal formu-
lae that have to be true in the immediate successors of Node.

In the following, suppose we want to build a PSLNFA for
sentence ϕ in EPNF. We denote the string of quantifiers and
variables at the beginning of ϕ by QPre f ix(ϕ). To generate
the PSLNFA, we strip QPre f ix(ϕ) from ϕ and then leave
the formula just in terms of the temporal operators U and R,
and the binary boolean operators ∧ and ∨. We then push
all ¬’s inside such that they occur only in front of first-order
formulae. The resulting formula, say, ϕ ′ is the input for the
procedure we describe below. Note that the construction will
start with a single node that contains ϕ ′ in its New field.

When processing node N, the algorithm checks whether



there are pending formulae in New. If there are none, then
the node can be added to the NodeSet. Two cases can hold:

1. If there is already a node in NodeSet with the same fields
Old and Next, then its Incoming list is updated by adding
those nodes in N’s incoming list. (Line 5).

2. If there is no such node, then N is added to NodeSet.
Then, a new node is created for processing if final 6∈ Old.
This node contains N in its incoming list, and the field
New set to N’s Next field. The fields Next and Old of the
new node are empty. (Lines 7–17).

Otherwise, if New is not empty, formula η is removed
from New and added to Old. Then,

1. In case η is a literal, or of the form (∀x) φ(x), or
(∃x)φ(x), then if ¬η is in Old, the node is discarded (a
contradiction has occurred). Otherwise, η is added to Old
and the node continues to be processed.

2. Otherwise:

(a) If η = ϕ ∧ψ , both ϕ , and ψ are added to New.
(b) If η = ©ψ , then ψ is added to Next.
(c) If η is one of ϕ∨ψ , ϕ Uψ , or ϕ Rψ , then N is split into

two nodes. The set New1(η) and New2(η) are added,
respectively, to the New field of the first and second
nodes. These functions are defined as follows:

η New1(η) New2(η)
ϕ ∨ψ {ϕ} {ψ}
ϕ Uψ {ϕ ,©(ϕ Uψ)} {ψ}
ϕ Rψ {ψ,final∨©(ϕ Rψ)} {ϕ ,ψ}

The intuition of the split lies in standard f-FOLTL
equivalences. For example, ϕ Uψ is equivalent to
ψ ∨ (ϕ ∧©(ϕ Uψ)), thus one node verifies the condi-
tion ψ , whereas the other verifies ϕ ∧©(ϕ Uψ).

We define PSLNFA Aϕ = 〈Q,Σ(S,D),δ ,L,Γ,x,Q0,F〉 as
follows. Let Q = {n |n∈NodeSet}, and Q0 = {q∈Q | Init ∈
Incoming(q)}. Let x be the variables, and Γ the quantifiers
in QPre f ix(ϕ) (preserving the order), and let δ (q,q′) iff q
and q′ are connected in the graph. The set of final states,
F = {q ∈ Q |Next(q) = ∅ and ¬final 6∈ Old(q)}. Finally, let
L(q) be the maximal subset of Old(q) that contains only lit-
erals (excluding final and ¬final) or formulae of the form
(Qx)ϕ(x). Figure 1 shows an example of the generation of
a PSLNFA for (∀x)♦A(x).

This theorem states the correctness of the algorithm.

Theorem 1 Let Aϕ be the automaton constructed by our al-
gorithm from an f-FOLTL formula ϕ in EPNF. Then Aϕ ac-
cepts exactly the models of ϕ .

An immediate consequence of this theorem is that our al-
gorithm generates non-accepting automata for temporal for-
mulae that are only satisfied by infinite models. Sometimes
this would be reflected by the fact that the automaton does
not have accepting states at all (this happens for ϕ ∧�(ϕ ⊃
©ψ)∧�(ψ ⊃ ©ϕ), or by the fact that labels are incon-
sistent formulae (this is the case of ♦P(a)∧ (∀x)�(P(x) ⊃
©P(x))). In the former case we are able to recognize that
the goal is intrinsically unachievable by just looking at the

New = {}

Next = {}
Old = {}

4:

New = {}

Next = {}
Old = {}

4:

Next = {} Next = {}

0:

2:1:

...

1: 2:

3:

a few steps later...

Node 0 is split in two

Initial graph:

final graph

New = {}

Next = {}

Next = {}
Old = {}

Old = {} Old = {}

New = {}

1:

(two new successors are created)

2:

some iterations later:

Old = {true}

trueResulting automaton

New = {P(x)}New = {true,©trueU P(x)}

Next = {trueU P(x)}
Old = {P(x)}

New = {trueU P(x)}

New = {}
Old = {true}

New = {}

Next = {}Next = {trueU P(x)}
Old = {P(x)}

P(x)

Old = {}
Next = {}

New = {trueU P(x)}

Figure 1: Algorithm execution for formula (∀x)♦P(x).

automata, whereas in the latter we cannot do it in general,
since checking whether the labeling formulae are consistent
is undecidable.
Simplifying PSLNFAs into PNFAs The algorithm pre-
sented above often produces automata that are much bigger
than the optimal. To simplify the automata, we have used
a modification of the algorithm presented in [9]. This algo-
rithm uses a simulation technique to simplify the automaton.
In experiments in [10], it was shown to be slightly better than
LTL2AUT [7] at simplifying Büchi automata.

To apply the algorithm, we generate a parameterized
NFA equivalent to the PSLNFA. Intuitively, a parame-
terized nondeterministic finite state automaton (PNFA) is
like a PSLNFA but such that transitions are labeled with
first-order formulae. Formally, a PNFA is a tuple A =
〈Q,Σ(S,D),δ ,Γ,x,Q0,F〉, where Q, Q0, F , Γ, x, and
Σ(S,D) are defined as in PSLNFAs. A run of A over se-
quence of states σ = s0 s1 · · ·sn ∈ Σ(S,D)∗ and a vector of
objects a is ρ(a) = q0q1 · · ·qn, where q0 ∈ Q0, and for some
label L such that (qi,L,qi+1) ∈ δ , 〈si+1,x/a〉 |= L, for all
i ∈ {0, . . . ,n−1}. Run ρ is accepting if qn ∈ F . Finally, the
acceptance condition is the same as in PSLNFAs.

It is straightforward to convert a PSLNFA to an equivalent
PNFA by adding one initial state and copying labels of states
to any incoming transition. Figure 2 shows examples of PN-
FAs generated by our implementation for some f-FOLTL
formulae. The automaton for formula (b) is parameterized
on variable x, which is indicated beside the state name.
Size complexity of the NFA In theory, the resulting au-
tomaton can be exponential in the size of formula in the
worst case. Simplifications reduce the number of states of
the PNFA significantly. It is critical to note that in practice,



function Expand(Node,NodeSet)1
begin2

if New(Node) = ∅ then3
if ∃N ∈ NodeSet and Old(N) = Old(Node) and4
Next(N) = Next(Node) then

Incoming(N)← Incoming(N)∪ Incoming(Node)5
return NodeSet6

else7
if final 6∈ Old(Node) then8

return Expand([Name← NewName(),9
Incoming← Name(Node),10
New← Next(Node),Old←∅11
Next←∅],{Node}∪NodeSet)12

else13
if Next(Node) = ∅ then14

return {Node}∪NodeSet15
else16

return NodeSet /* discarded */17

else18
choose η ∈ New(Node)19
New(Node)← New(Node)\{η}20
if η 6= True and η 6= False then21

Old(Node)← Old(Node)∪{η}
switch η do22

case η is a literal, (Qx)ϕ(x), True or False23
if η = False or ¬η ∈ Old(Node) then24

return NodeSet /* discarded */25
else26

return Expand(Node,NodeSet)27

case η = ©ϕ28
Next(Node)← Next(Node)∪{ϕ}29
return Expand(Node,NodeSet)30

case η = ϕ ∧ψ31
New(Node)←32
New(Node)∪ ({ϕ,ψ}\Old(Node))
return Expand(Node,NodeSet)33

case η = ϕ ∨ψ or ϕ Rψ or ϕ Uψ34
Node1← SplitNode(Node,New1(η))35
Node2← SplitNode(Node,New2(η))36
return37
Expand(Node2,Expand(Node1,NodeSet))

end38
function SplitNode (Node,φ ) begin39

NewNode← [Name← NewName(),40
Incoming← Incoming(Node),New← New(Node)∪φ ,41
Old← Old(Node),Next← Next(Node)]42

return NewNode43

end44
function GenGraph(ϕ) begin45

Expand([Name← Father← NewName(),46
Incoming←{Init},New←{ϕ},Old←∅],∅)47

end48

Algorithm 1: The Algorithm

the number of states of NFAs for natural goals were gener-
ally equivalent to the size of our formulae (see Section 4).

Proposition 2 Let ϕ be in negated normal form, then the
number of states of Aϕ is 2O(|ϕ|).

There are simple cases where the translation blows up;
e.g., for the formula ♦φ1∧♦φ2∧ . . .∧♦φn, the resulting NFA

q0 q1

{¬ϕ,¬ψ}

{¬ϕ,¬ψ}

{}

{}

at(x, R4)}

{¬at(Robot, R1),

{(∀d) closed(d),
¬at(Robot, R1)} {(∀d) closed(d),

{¬at(Robot, R1)}

q0(x)

q1(x)

¬at(Robot, R1),
at(x, R4)}

q2(x)

(a) (b)

Figure 2: Simplified PNFA (a) �(ϕ ⊃©ψ)∧�(ψ ⊃©ϕ), and
(b) �(at(Robot,R1)⊃©♦(∀d)closed(d))∧ (∀x)♦�at(x,R4).

has 2n states. Intuitively each state keeps track of a particular
combination of propositions that has been true in the past.

3 Compiling PNFAs into a Planning Domain
With our TEGs translated to PNFAs, we show how PNFAs
can be encoded in classical planning problems.

3.1 Planning Problems
A planning problem is a tuple 〈I,D,G,T 〉, where I is the
initial state, represented as a set of first-order (ground) pos-
itive facts; D is the domain description; G is a temporal for-
mula describing the goal, and T is a (possibly empty) set of
derived predicate definitions, which are predicates that are
defined in terms of other fluents of the domain.

A domain description is a tuple D = 〈C,R〉, where C is
a set of causal rules, and R a set of action precondition
rules. Causal rules correspond to positive and negative ef-
fect axioms in the situation calculus 4 . We represent posi-
tive and negative causal rules by the triple 〈a(x),c(x), f (x)〉
and 〈a(x),c(x),¬ f (x)〉 respectively, where a(x) is an action
term, f (x) is a fluent term, and c(x) is a first-order for-
mula, each of them with free variables among those in x.
〈a(x),Φ(x), `(x)〉 ∈ C expresses that fluent literal `(x) be-
comes true after performing action a(x) in the current state
if condition Φ(x) holds. As with ADL operators[17], the
condition c(x), can contain quantified FO subformulae. Free
variables in C are assumed to be universally quantified.

3.2 The Compilation into a Planning Domain
We are now ready to show how the PNFA can be encoded in
a planning problem. During the execution a plan a1a2 · · ·an,
a set of planning states σ = s0s1 . . .sn is generated. In what
follows we make no distinction between a planning state
(which are sets of ground first-order facts) and a first-order
interpretation.

In the planning domain, each state of the automaton is
represented by a fluent. More formally, for each state q of
the automaton we add to the domain a new fluent Eq(x). The
translation is such that if a sequence of actions a1a2 · · ·an
is performed in state s0, generating the succession of states
σ = s0s1 . . .sn, then Eq(c) is true in sn, for a set of constants

4We use causal rules for simplicity. Effect axioms and ADL
operators are equivalent [17].



c, if and only if there is a run ρ(a) of Aϕ on σ that ends in
state q (here we implicitly assume that c interpret objects a).

Once the PNFA is modeled inside the domain, the tem-
poral goal in the newly generated domain is reduced to a
property of the final state alone. Intuitively, this property
corresponds to the accepting condition of the automaton.

To represent the dynamics of the states of the automaton,
there are two alternatives. The first is to modify the domain’s
causal rules to give an account of their change. The second,
is to define them as derived predicates or axioms. In [4]
we provided a causal rule encoding for propositional TEGs.
There is an analogous encoding for the case of f-FOLTL
TEGs. Henceforth, we assume the following:

• We start with a planning problem 〈I,D,G,T 〉, where G is
a temporal formula in f-FOLTL.

• Temporal goal G is translated to the PNFA AG =
(Q,Σ,δ ,Γ,x,Q0,F), with Γ = V1 . . .Vn and x = x1 . . .xn.

• To simplify notation, we denote by pred(q) the set of pre-
decessors of q. E.g., in Fig. 2(b), pred(q0) = {q0,q1}.

• We denote by λp,q the formula
∨

(q,L,p)∈δ
∧

L. E.g., in Fig.
2(b), λq1,q0 = (∀d)closed(d)∧¬at(Robot,R1).

3.3 Translation to derived predicates (axioms)
To understand the intuition behind the translation, con-
sider the PNFA shown in Figure 2(b). Suppose Eq2(c)
is false in a state si. After performing action ai, fluent
Eq2(c) must become true in the resulting state, si+1, iff ei-
ther Eq0(c) was true in si and ¬at(Robot,R1)∧ at(c,R4) is
true in si+1 or Eq1(c) was true in si and ¬at(Robot,R1)∧
(∀d)closed(D1)∧ at(c,R4) is true in si+1. Thus, the truth
value of Eq2(c) depends on properties that need to be veri-
fied in si+1 and si.

In the translation we propose we write a derived predicate
definition for Eq(x). However, as we saw previously, the
truth value of Eq(x) in si+1 depends on whether some fluents
Ep(x) hold true in the previous state, where p is a state of the
automaton. Therefore, we need a way to represent in state
si+1 what fluents Ep were true in the previous state.

Thus, for each state q of the automaton we use an auxil-
iary fluent Prevq(x) which is true in a plan state s iff Eq was
true in the previous state. The dynamics of fluent Prevq(x)
is described by the following causal rules, which are added
to C′:

〈a,Eq(x),Prevq(x)〉, 〈a,¬Eq(x),¬Prevq(x)〉,

for each action a. The following definitions are also added
to T ′:

Eq(x)
def
=

∨

p∈pred(q)

Prevp(x)∧λp,q(x),

New initial state The new initial state must specify which
fluents of the form Prevq are true. These are precisely those
facts that correspond to the initial state of the automaton.

I ′ = {Prevq(c) |q ∈ Q0,c is a vector of domain constants}.

New goal & planning problem The new goal is defined
by G′ = (V1x1) . . .(Vnxn)

∨
p∈F Ep, and the new planning

problem is 〈I ∪I ′,C ∪C′,R,G′,T ∪T ′〉.

Size Complexity Planning with the new translated theory
is theoretically as hard as planning with the original theory.
The amount of additional effort required to update newly
created fluents is reflected in the size of T ′.

Proposition 3 The size of T ′ is O(n|Q|`) where ` is the
maximum size of a transition in AG , and n is the number of
action terms in the domain. The size of C ′ is only O(n|Q|).

Note that T ′ is significantly smaller than the ADL-
operator based encoding proposed in [4] which is O(n|Q|2`).
In practice, we can also show that the derived predicates pro-
vide a more efficient representation (see [3] for an experi-
mental comparison in the propositional case).

3.4 Reducing |Q|
The size of the resulting translation is worst-case exponen-
tial in the number of states of the automaton, |Q|. We
also saw that in practice it is often equivalent to the size of
the formula (see Section 4). We can reduce |Q| by split-
ting the TEG into different goals. Consider the formula
ϕ = ♦p1 ∧ . . .∧♦pn, which we know has an exponential
NFA. ϕ will be satisfied if each of the conjuncts ♦pi is satis-
fied, so instead of generating a unique NFA for ϕ we gener-
ate a different NFA for each ♦pi. Then we can just plan for
a goal equivalent to the conjunction of the acceptance condi-
tions of each of those automata. The new planning problem
is linear in n instead of exponential. This generalizes to any
combination of boolean formulae.

3.5 Search Space Pruning by Progression
As previously noted, planners for TEGs such as TLPLAN
are able to prune the search space by progressing temporal
formulae representing the goal. A state s is pruned by pro-
gression if the progressed temporal goal in s is equivalent
to false. Intuitively, this means that there is no possible se-
quence of actions that when executed in s would lead to the
satisfaction of the goal.

Using our approach we can also prune the search space in
a similar way. We illustrate the intuition in the propositional
case. Suppose we have constructed an NFA for the proposi-
tional TEG G. Since our NFAs have no non-final states that
do not lead to a final state, if at some state during the plan
all fluents Eq are false for every q ∈ Q, then this means that
the goal will never be satisfied. We can also do this in the
first-order case by considering the quantifiers of the TEG.

In the planning domain the pruning can be achieved in
two ways. One way is to add QPre f ix(ϕ)

∨
q∈Q Eq(x) as a

state constraint (or safety constraint). The other way is to
add this condition to all of the action’s preconditions [1, 20].

This means that we are able to add certain types of TDCK
to our planning domains by simply adding the TDCK to the
goal. Currently, though, our logic does not have the Goal

modality present in TLPLAN which enables it to tailor the
control depending on the goal.

4 Implementation and Experiments
We implemented a compiler that takes a planning domain
and a TEG in EPNF f-FOLTL as input and generates a clas-



Domain No. Problems solved Speedup (s) Length ratio (r)
Probs. FFX TLPLAN s < 2 2 ≤ s < 10 10 ≤ s < 100 100 ≤ s < 1000 s ≥ 1000 r = 1 1 ≤ r < 1.3 r ≥ 1.3

ZenoTravel 25 21(84%) 9(36%) 0 1(11%) 2(22%) 5(56%) 1(11%) 8(89%) 1(11%) 0

Logistics 23 23(100%) 17(74%) 1(6%) 4(24%) 4(24%) 6(35%) 2(12%) 14(82%) 2(12%) 1(6%)

Robot 16 16(100%) 9(56%) 0 4(44%) 3(33%) 2(22%) 0 5(56%) 4(44%) 0%

Table 1: Performance of our approach compared to TLPLAN in 3 benchmark domains. Speedup and the length ratio are shown
for instances that were solved by both planners. Speedup (resp. length ratio) is the time taken (resp. plan length obtained) by
TLPLAN over that of our approach.

sical planning problem as described in Section 4. Further-
more, the program can convert the new problem into PDDL,
thereby enabling its use with a wide variety of planners.

It is hard to perform an accurate experimental analysis
of our approach for two reasons. First, there are no stan-
dard benchmark problems for planning with TEGs. Second,
none of the planners for TEGs is heuristic, so it is not hard to
contrive problems easily solvable by our approach but com-
pletely out of the reach of non-heuristic planners.

Despite this, we have compared the performance of our
translation in conjunction with FFX against TLPLAN and
the planner presented in [14] (henceforth, TPBA), which
uses Büchi automata to control search. The TPBA planner
is not heuristic, it is implemented in Scheme, and only sup-
ports 4 (propositional) goal templates; however, it is possi-
ble to input the (Büchi) automata for goals that do not fit
in these templates. We conducted experiments that showed
that our approach outperforms TPBA, for goals that fit into
these templates. We do not show the results here, however
[4] includes these results in the propositional case.

Table 1 presents a comparison of our approach and
TLPLAN in three domains. For each domain, we designed
a set of reasonably natural TEGs. Both ZenoTravel (a travel
agency domain) and Logistics (a package delivery domain)
are benchmark domains from past IPC. To get a feeling for
the types of goals we used, here is an example of a goal in
the ZenoTravel domain: “persons P1 and P2 want to meet
in some city and then eventually be at C1 and C2.” Our
third test domain, the Robot domain [2] describes a robot
that moves between rooms and carries objects. An example
of a goal in the robot domain is: “open all the doors, then
deliver objects to the rooms, and then close all doors.”

Since most of the goals were unsolvable by TLPLAN
(exceeding the 1GB RAM limit), we needed to add extra
TDCK to TLPLAN so that it could show more of its po-
tential. We conclude that our approach significantly outper-
forms TLPLAN. This can be seen in the speedup metric
in the table, where a significant percentage of the problems
are solved over two orders of magnitude faster. Note that
in some cases, the plans that are returned are slightly longer
than those obtained by TLPLAN. This is usually the case
with heuristic planners, where there is a tradeoff between
optimality and speed. Some plans are not solved by FFX

in the ZenoTravel domain, which is due to the presence of
universally quantified disjunctive goals.

The translation times for each of these problems was very
low; in most cases it was less than 15% of the planning time.
Furthermore, the ratio |Aϕ |/|ϕ|, where Aϕ is the number of

states of |Aϕ |, and |ϕ | is the size of the TEG ϕ never exceeds
1.0, which illustrates that our automata translation does not
blow up easily for natural TEGs.

The results shown, although good, are not surprising. We
have compared our heuristic approach to the blind-search
approach (plus pruning) of TLPLAN. Consequently, these
results were expected. TLPLAN is particularly good when
used with classical goals and a fair amount of hand-coded
TDCK. Our approach has the advantage that it is able to
guide the search effectively towards the satisfaction of a
TEG with no need for hand-coded TDCK.

5 Summary and Related Work
In this paper we proposed a method for translating planning
problems with first-order TEGs into classical planning prob-
lems. With this translation in hand, we exploited domain-
independent heuristic search to determine a plan. Our com-
piler generates PDDL so it is equally amenable to use with
any classical planner.

There are many advantages to the quantifiers in our f-
FOLTL language. In addition to providing a richer language
for goal specification, f-FOLTL also results in more effi-
cient goal processing. Propositionalizing out quantifiers, as
must be done in previous approaches to this problem, in-
creases the size of the translation as a function of the size
of the domain and arity of predicates in the TEG. In partic-
ular, a propositional encoding requires grounding both the
initial state of the automata and their transitions, making the
compilation specific to the instance of the problem.

We tested our approach on more than 60 problems over
3 standard benchmark domains, comparing our results to
TLPLAN. Using our method, the FFX planner often pro-
duced orders of magnitude speedup compared to TLPLAN,
solving some planning problems TLPLAN was unable to
solve. Since FFX propositionalizes its domains, it does not
fully exploit the strength of our first-order goal encoding.
We are currently integrating heuristic search into TLPLAN
in order to plan with TEGs and with temporal preferences
such as those expressible in PDDL3.

There are several pieces of related work. Rintanen [20]
proposed a translation of a subset of LTL into a set of ADL
operators, which is restricted to a very limited set of TEGs.
Pistore and colleagues (e.g. [16]) used automata to encode
goals for planning with model checkers. Their approach
uses different goal languages and is not heuristic. Cress-
well and Coddington [6] briefly outline a means of com-
piling LTL formulae to PDDL. They translate LTL to de-
terministic finite state machines (FSM) using progression



[2], and then translate the FSM into an ADL-only domain.
The accepting condition must be determined by simulating
an infinite repetition of the last state. Further, the use of
deterministic automata makes it very prone to exponential
blowup with even simple goals. The authors’ code was un-
available for comparison. They report that their technique
is no more efficient than TLPLAN [6], so we infer that our
method is superior. Kabanza and Thiébaux’s work [14] is
distinct because they are able to generate infinite and cyclic
plans. They compile infinite propositional LTL into a Büchi
automaton. Then they use the automaton to guide planning
by following a path in its graph from initial to final state,
backtracking as necessary. The planner is more prone to get
lost and the restriction to one automaton makes it vulnerable
to blowup. In a recent poster publication [4], we have pre-
sented a similar approach for propositional TEGs. Besides
the expressiveness and efficiency issues related to proposi-
tionalizing TEGs, the translation presented generates only
ADL operators, which are less efficient both in theory and in
practice [3]. Finally, Edelkamp [8] provides a translation of
PDDL3 into PDDL2.2 by encoding propositionalized LTL
hard constraints and preferences into Büchi automata. The
approach cannot be used directly to provide heuristic search
guidance to achieve TEGs because the acceptance condition
of a Büchi automata requires visiting final states an infinite
number of times.
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