
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/275890882

Learning	Regular	Languages	via	Alternating
Automata

CONFERENCE	PAPER	·	JULY	2015

READS

7

3	AUTHORS,	INCLUDING:

Dana	Fisman

University	of	Pennsylvania

42	PUBLICATIONS			540	CITATIONS			

SEE	PROFILE

Available	from:	Dana	Fisman

Retrieved	on:	29	March	2016

https://www.researchgate.net/publication/275890882_Learning_Regular_Languages_via_Alternating_Automata?enrichId=rgreq-f93d9afd-1fd7-432b-9128-9d519be26651&enrichSource=Y292ZXJQYWdlOzI3NTg5MDg4MjtBUzozMDM4NDcyNTQyMzMwODhAMTQ0OTQ1NDIzODg4MA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/275890882_Learning_Regular_Languages_via_Alternating_Automata?enrichId=rgreq-f93d9afd-1fd7-432b-9128-9d519be26651&enrichSource=Y292ZXJQYWdlOzI3NTg5MDg4MjtBUzozMDM4NDcyNTQyMzMwODhAMTQ0OTQ1NDIzODg4MA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-f93d9afd-1fd7-432b-9128-9d519be26651&enrichSource=Y292ZXJQYWdlOzI3NTg5MDg4MjtBUzozMDM4NDcyNTQyMzMwODhAMTQ0OTQ1NDIzODg4MA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Dana_Fisman2?enrichId=rgreq-f93d9afd-1fd7-432b-9128-9d519be26651&enrichSource=Y292ZXJQYWdlOzI3NTg5MDg4MjtBUzozMDM4NDcyNTQyMzMwODhAMTQ0OTQ1NDIzODg4MA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Dana_Fisman2?enrichId=rgreq-f93d9afd-1fd7-432b-9128-9d519be26651&enrichSource=Y292ZXJQYWdlOzI3NTg5MDg4MjtBUzozMDM4NDcyNTQyMzMwODhAMTQ0OTQ1NDIzODg4MA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Pennsylvania?enrichId=rgreq-f93d9afd-1fd7-432b-9128-9d519be26651&enrichSource=Y292ZXJQYWdlOzI3NTg5MDg4MjtBUzozMDM4NDcyNTQyMzMwODhAMTQ0OTQ1NDIzODg4MA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Dana_Fisman2?enrichId=rgreq-f93d9afd-1fd7-432b-9128-9d519be26651&enrichSource=Y292ZXJQYWdlOzI3NTg5MDg4MjtBUzozMDM4NDcyNTQyMzMwODhAMTQ0OTQ1NDIzODg4MA%3D%3D&el=1_x_7

Learning Regular Languages via Alternating Automata∗

Dana Angluin
Yale University

Sarah Eisenstat
Massachusetts Institute of Technology

Dana Fisman
University of Pennsylvania

Abstract
Nearly all algorithms for learning an unknown reg-
ular language, in particular the popular L∗ algo-
rithm, yield deterministic finite automata. It was
recently shown that the ideas of L∗ can be extended
to yield non-deterministic automata, and that the re-
spective learning algorithm, NL∗, outperforms L∗

on randomly generated regular expressions.
We conjectured that this is due to the existential
nature of regular expressions, and NL∗ might not
outperform L∗ on languages with a universal na-
ture. In this paper we introduce UL∗ — a learning
algorithm for universal automata (the dual of non-
deterministic automata); and AL∗ — a learning al-
gorithm for alternating automata (which general-
ize both universal and non-deterministic automata).
Our empirical results illustrate the advantages and
trade-offs among L∗, NL∗, UL∗ and AL∗.

1 Introduction
Regular languages are an important class of languages, in that
they are simple enough to model many systems/phenomena
in real life and enjoy a large variety of theoretical proper-
ties, enabling efficient algorithms for many questions involv-
ing regular languages. Regular languages can be recognized
by many different formalisms, for instance, regular expres-
sions, finite automata, and monadic second order logic of one
successor. There are several classes of finite automata, dif-
fering in the “branching type”: deterministic finite automata
(DFA), non-deterministic finite automata (NFA), universal fi-
nite automata (UFA) and alternating finite automata (AFA);
and all are equally expressive, and as expressive as the class
of regular languages.

A deterministic automaton D processes a given word w =
σ1σ2 . . . σ` by transitioning from state to state, according to
the transition relation. The DFA accepts w from a given state
q, if the state q′ that the automaton arrives at after reading
σ1 accepts the suffix v = σ2 . . . σ`. A non-deterministic au-
tomaton N , when in state q and reading letter σ may transi-
tion to one of several states (as determined by its transition
∗Research of the third author was supported by US NSF grant

CCF-1138996.

relation). The NFA accepts w, from state q if one of the states
q1, . . . , qk it may arrive at after reading σ1 accepts the suf-
fix v. A dual notion is that of universal automata. Like an
NFA the UFA’s trasition relation maps the current state q and
the next letter to read σ to a set of states, but the interpreta-
tion now is that the UFA accepts w from state q if all of the
states q1, . . . , qk it arrives at after reading σ1 accept the suf-
fix v. Alternating automata (AFA) generalize both NFAs and
UFAs, and can delegate the role of checking the next suffix to
several states, combining their result using conjunctions and
disjunctions. For instance, a transition from q upon reading σ
to (q1 ∧ q4) ∨ q3 stipulates that the word σv is accepted from
q if either v is accepted from q3 or v is accepted from both q1

and q4.
While all these formalisms are equivalent in terms of ex-

pressive power, they differ in other qualities. For instance, an
NFA may be exponentially smaller than the minimal DFA, and
an AFA may be doubly-exponentially smaller than the mini-
mal DFA. Nearly all algorithms for learning regular languages
use the class of DFAs as the concept class. This is because
the class of DFAs has several properties making it favorable
for learning algorithms. In particular, for every regular lan-
guage L there exists a unique minimal DFAM recognizing it,
and the states of this DFA have the following property, termed
residuality: Every state q can be associated with a word wq
such that the language accepted from that state, [Mq], is ex-
actly the set of suffixes ofwq in L (i.e. the set of words v such
that wqv is in L). The Myhill-Nerode theorem states that for
every regular language there exists a number n such that, any
DFA with fewer than n states cannot correctly recognize L,
and any DFA D with more than n states that correctly recog-
nizes L has two states q1 and q2 for which [Dq1] = [Dq2] and
thus one of the states is redundant.

The residuality property is essential for many learning al-
gorithms. In particular, residuality is essential for the popular
L∗ algorithm [Angluin, 1987], that learns a regular language
from equivalence and membership queries. L∗ makes use of
the notion of an observation table. An observation table is a
tuple (S,E,M) where S is a prefix-closed set of strings, E
is a set of experiments trying to differentiate the S strings,
and M : S × E → {0, 1} is a matrix with 1 in the entry
for (si, ej) iff siej ∈ L. If two rows s1 and s2 differ in the
entry with respect to a certain experiment e, then s1 and s2

cannot be representatives for the same state, since there exists

a suffix e which will be accepted by a state corresponding to
one but not the other. If two rows agree on all experiments
observed so far, there is currently no reason to think they do
not correspond to the same automaton state.

The L∗ algorithm builds a DFA from a given observation
table, by associating a state with every distinct row in the
table, and determining the transition on letter σ from a state
corresponding to row s to go to the state that corresponds to
the row sσ. The language accepted from state corresponding
to s, is therefore indeed the residual of s with respect to L —
it consists of all the suffixes e of s for which se is in L.

Non-deterministic automata do not, in general, have the
residuality property. Suppose an NFA N recognizing L reads
a word w that is in L. There is at least one accepting run of
N on w, but there may be several non-accepting runs of N
on w. Suppose w = uσv (where u and v are words, and σ
is a letter) and when reading u, N had no non-deterministic
choices to make, and it got to state q. A choice from state q
on σ to state q′ is “bad” for w, if the suffix v is not accepted
from q′. While this is perfectly fine, and N still accepts w
and correctly recognizes L, the state q′ does not correspond
to a residual language.

[Denis et al., 2001a] have introduced the brilliant notion of
non-deterministic residual finite state automata (NRFA) — a
special type of NFA, where each state does correspond to a
residual language, and intuitively, in the above sense, every
choice can be “salvaged”.1 As in the deterministic case, each
state q of an NRFA N recognizing a language L can be as-
sociated with a characteristic word wq , such that the words
accepted from this state onward, are exactly all the allowed
suffixes of wq in L. However, if there are n residual lan-
guages for L by the Myhil-Nerode theorem, an NRFA for L
may have fewer than n states. If a residual language Li of
L does not correspond to any state of the NRFA then it corre-
sponds to a union of some states of the NRFA.

The residuality property has been shown to be useful
for various learning algorithms [Denis et al., 2001b; Es-
posito et al., 2002; Bollig et al., 2009; Kasprzik, 2010;
2011]. In particular, [Bollig et al., 2009] showed that the
ideas of L∗ can be generalized to obtain a minimal NRFA
rather than the minimal DFA. They name their algorithm NL∗.
Since the minimal NRFA is at most as large as the minimal
DFA and may be exponentially smaller, this approach is very
appealing. They further show, that the worst case complex-
ity of NL∗ in terms of membership queries and equivalence
queries, is slightly worse than that of L∗, which makes sense
given the obtained succinctness. Nonetheless, they show that
on randomly generated regular expressions, NL∗ outperforms
L∗ in both these measures.

Fascinated by these results, in this work we extend the def-
inition of residual automata to universal automata and alter-
nating automata, and the ideas of NL∗ to learning algorithms
UL∗ and AL∗ yielding UFAs and AFAs, respectively. A resid-
ual NFA for L need not have a state for a residual language of
L, say Li, if Li can be obtained by a union of other residual
languages. Likewise a residual UFA (URFA) need not have a

1Previous literature used the term RFSA or residual finite state
automata for what we call here NRFA.

Random DFA targets Random NFA targets

Figure 1: Results of L∗ and NL∗ on randomly generated DFAs (on the left) and NFAs
(on the right). The upper row presents number of equivalence queries; the lower row,
number of membership queries. The x-axis shows the number of states in the minimal
DFA of the target language. The results are binned in groups of 5, showing the average
value. The error bars correspond to the standard deviations. The blue line is for L∗

and the green for NL∗. The light grey bars on the background represent the number of
experiments in the respective bin, whose scale is on the right.

state for a residual language of L, Li, if Li can be obtained
by an intersection of other residual languages. A residual AFA
(ARFA) need not have a state for a residual language of L, Li,
if Li can be obtained by a monotone combination of some
residual languages L1, . . . , Lk it does have a state for.

[Bollig et al., 2009] have shown that NL∗ outperforms L∗

on randomly generated regular expressions. Random regular
expressions, having an operator for union but not for inter-
section, are more reminiscent of NFAs, so it is likely that NL∗

would outperform L∗ on randomly generated NFAs. It is not
clear how would L∗ and NL∗ compare on randomly gener-
ated DFAs, UFAs and AFAs. In a preliminary experiment we
conducted we compared NL∗ and L∗ on randomly generated
DFAs with up to 100 states, and randomly generated NFAs
with 10 states (whose minimal equivalent DFAs yielded up to
and more than 150 states). As can be seen in Fig. 1, NL∗

indeed outperforms L∗ on randomly generated NFAs, but on
randomly generated DFAs, L∗ outperforms NL∗.2

Since AFAs generalize both NFAs and UFAs, as well as
DFAs, and the ideas of AL∗ generalize those of NL∗ and
L∗, we provide our algorithm as a scheme XL∗, for X ∈
{D, N, U, A}. That is, the algorithms L∗, NL∗, UL∗, AL∗ for
generating DFAs, NFAs, UFAs, and AFAs, respectively, are ob-
tained from XL∗ by calling different sub-procedures, param-
eterized by the type X ∈ {D, N, U, A}.

We tested all four algorithms L∗, NL∗, UL∗ and AL∗ on
randomly generated DFAs, NFAs, UFAs and AFAs. The results
show, that for X ∈ {D, N, U, A}, roughly speaking, XL∗ out-
performs the others on randomly generated X-FAs. There is a
clear advantage of AL∗ over the others in term of the number

2For randomly generated DFAs, the number of states of the
learned automata are essentially the same for L∗ and NL∗. For ran-
domly generated NFAs, NL∗ produces much smaller automata.

1 2

5

43

A :

a

a, b

a
b

a, b

b

a, b

b
a

1 2

5

43

0B :

a

b

a

b

a

b

a, b

b

a

b

a

Figure 2: Two ARFAs forL = Σ∗aaΣ∗ ∩Σ∗bbΣ∗ where Σ = {a, b}. Conjunction
between edges is depicted by a filled rectangle from which the edges split (the edges and
rectangle share the same color for easier parsing).

of states of the learned automaton, and an advantage of L∗ in
terms of the number of equivalence queries.

2 Residual Alternating Automata
Alternating Automata
Let S be a finite set. We use B+(S) to denote the set
of Boolean expressions obtained from S by applying ∧
(Boolean AND) and ∨ (Boolean OR) to its elements. An al-
ternating automaton is a tuple A = (Σ, Q, I, δ, F) where Σ
is the alphabet, Q is a finite set of states, I ∈ B+(Q) is the
initial condition, δ : Q×Σ→ B+(Q) is the transition relation
and F ⊆ Q is the set of accepting states.

Let B∨(S) and B∧(S) be the restriction of B+(S) to use
only∨ or only∧, respectively. When the Boolean expressions
in I and δ are restricted to B∨(Q), B∧(Q), orQwe say thatA
is non-deterministic, universal, or deterministic, respectively.

The formal definition of a run tree of an alternating au-
tomaton may be found in [Kupferman and Vardi, 1998]. We
denote by [A] the set of strings w accepted by A. For an au-
tomaton A = (Σ, Q, I, δ, F), and state q ∈ Q, we use Aq
to denote the automaton obtained from A by making the ini-
tial condition q, i.e. Aq = (Σ, Q, q, δ, F). Similarly, for a
Boolean expression b ∈ B+(Q) we use Ab = (Σ, Q, b, δ, F)
to denote the automaton obtained from A by making the ini-
tial condition b.

Residual Automata
If L is a language and u is a string, the residual of L with
respect to L is u−1L = {v | uv ∈ L}. A language R is
a residual language of L if there exists a string u such that
R = u−1L.
Definition 1. Let A be an alternating automaton. We say
thatA is an alternating residual automaton (ARFA) iff [Aq] is
a residual language of [A], for every state q of A.

If A is non-deterministic or universal we say that it is
a non-deterministic residual automaton (NRFA) or universal
residual automaton (URFA), respectively. We can also use
DRFA for deterministic residual automata. By the Myhill-
Nerode theorem, for every state q of the minimal DFA D of a
language L we have that [Dq] is a residual language of [D].
Thus, the minimal DFA is a DRFA, and so is any trimmed DFA.
Example 1. Let Σ = {a, b} and L = Σ∗ aa Σ∗ ∩ Σ∗ bb Σ∗.
Fig. 2 shows two ARFAs A and B recognizing L. The ini-
tial condition of A is 1 ∧ 3. Since [A1] = Σ∗aaΣ∗ and
[A3] = Σ∗bbΣ∗, we get [A] = L. To see that this is a resid-
ual automaton we have to show for each state i a representa-
tive word wi, such that w−1

i L = [Ai]. We give the following

representatives: w1 = bb, w2 = bba, w3 = aa, w4 = aab,
w5 = aabb.

It is more challenging to see that B correctly recognizes
L. To get intuition, one can check what states are “active”
after reading a certain word, these correspond to splits of
a conjunctive part of a transition. All active states need to
reach an accepting state for the automaton to accept. After
reading a, the active set is {2, 3, 4}, after reading aa, it is
{5, 3, 4} after reading aab it is {5, 4} and after reading aabb
it is {5}. We note that [Ai] = [Bi] for i ∈ [1..5], and [B0] =
ε−1L. Thus B is also a residual automaton.

Succinctness It is well known that NFAs and UFAs may be
exponentially more succinct than DFAs, and AFAs may be ex-
ponentially more succinct than NFAs and UFAs, and doubly-
exponentially more succinct than DFAs [Chandra and Stock-
meyer, 1976].3 We show that the same holds for their residual
counterparts.

Theorem 1. NRFA and URFA may be exponentially more suc-
cinct than DRFAs. ARFA may be exponentially more succinct
than NRFAs and URFAs, and doubly-exponentially more suc-
cinct than DRFAs.

The proof is omitted; the method is a general transforma-
tion of an automaton for L to a residual automaton for a lan-
guage L′ that is essentially as hard to recognize as L.

3 Learning Alternating Automata
The L∗ algorithm makes use of the notion of an observation
table. An observation table is a Boolean matrix whose rows
and columns are associated with different strings. We define
some general notions on Boolean vectors and matrices.

Boolean vectors and matrices Let n be a positive integer
and {0, 1}n be all Boolean vectors of length n, also denoted
Bn. Extend ∨ and ∧ to Boolean vectors componentwise. We
also define a partial ordering on Boolean vectors: u ≤ v if
u[j] ≤ v[j] for all indices 1 ≤ j ≤ n. Let 0 denote the vector
of all 0 entries, and 1 denote the vector of all 1 entries.

Let M be an m× n matrix. The i-th row of M is denoted
Mi and the i-th column of M is denoted M i. Note that the
rows of M are vectors of size n whereas its columns are vec-
tors of size m. For a subset of indices I ⊆ [1..m] we use MI

for the |I| × n matrix obtained from M by deleting the rows
j /∈ I . We can analogously define M I for I ⊆ [1..n]. The
row-index of M is the number of distinct rows of M and its
column-index is the number of distinct columns in M .

3The exact bounds depend on the exact definition of AFA.
[Kozen, 1976] defined AFAs in which the transition relations may
also use negation, and showed that there exists an AFA with n states
for which the smallest DFA requires 22

n

states. We follow the def-
inition of [Chandra and Stockmeyer, 1976], who showed that exists
an AFA with n states for which the smallest DFA requires 22

n/
√
n.

[Meyer and Fischer, 1971] use ∃ and ∀ states, and show that a DFA

for an AFA with 5n+ 2 states requires at least 22
n

.

An observation table An observation table T is a tuple
(S,E,M) where S is a list of strings, representing candidate
states, E is a list of strings, representing experiments trying
to differentiate the elements of S, and M is a binary matrix
of |S| rows and |E| columns. We say that T is an observation
table for L if Mi,j = 1 iff siej ∈ L. By abuse of notation we
use Ms,e for Mi,j where s is the i-th string of S, and e the
j-th string of E. Similarly, we use Ms instead of Mi and for
a subset of strings U ⊆ S we use MU for MIU where IU is
the set of indices of U .

Let Σ∗< be the list of all strings ordered lexicographically.
If T = (Σ∗<,Σ

∗
<,ML) is an observation table for L then T

is said to be the complete observation table for L. For a lan-
guage L we use TL to denote the complete observation table
for L. By the Myhill-Nerode theorem, if L is regular then the
row-index of TL is finite, and the states of the minimal DFA
for L correspond to distinct rows of TL.

Monotone, union and intersection bases The L∗ algo-
rithm starts with an empty observation table, which it grad-
ually extends and fills using membership queries. In inter-
mediate steps, when the observation tables is closed (defined
shortly), it builds a corresponding automaton on which it asks
an equivalence query. The definition of closed tables makes
use of the following general definitions regarding Boolean
vectors.

Let V ⊆ Bn be a set of vectors. For a Boolean expression
b ∈ B+(V) we use [b] for the element of Bn obtained by ap-
plying b to V . Note that for v ∈ V , v ∈ B+(V) and [v] = v.
For a set of Boolean expressions B we use [B] for ∪b∈B[b].
A set of vectors U ∈ Bn is said to be

a monotone basis of V , if V ⊆ [B+(U)],
a union basis of V , if V ⊆ [B∨(U)], and
an intersection basis of V , if V ⊆ [B∧(U)]

If U is monotone basis for V and a subset of V we say it is a
subset monotone basis for V , otherwise we may use general
monotone basis to emphasize that U need not be a subset of
V . The definitions of subset union basis and subset intersec-
tion basis are analogous.

Closed and minimal observation tables Let T =
(S,E,M) be an observation table. The definition of T be-
ing closed is different for L∗, NL∗, UL∗, and AL∗. We thus
use X-closed for X ∈ {D, N, U, A}. The definition of a table
being closed is with respect to a set P ⊆ S. The first part is
the same for all four: it requires that the empty string ε is in
P and that for every p ∈ P , all its one-letter extensions pσ
for σ ∈ Σ are in S.

As for the second part, intuitively, for L∗, the set P is the
set of distinct rows of the table. For NL∗, the set P is the set
of prime rows of the table (that is why we use P to denote
it), i.e., the other rows of the table should be expressible in
terms of disjunctions of the prime rows. For UL∗, the set P is
the set of prime rows w.r.t conjunction, i.e. the other rows of
the table should be expressible in terms of conjunctions of the
prime rows. For AL∗, the set P corresponds to a monotone
basis for the other distinct rows.

Formally, an observation table T = (S,E,M) is D-closed
with respect to a subset P of S, if ε ∈ P , PΣ ⊆ S and
for every row si ∈ S \ P , there exists sj ∈ P such that
Mi = Mj . An observation table T = (S,E,M) is A-closed
w.r.t. a subset P of S, if ε ∈ P , PΣ ⊆ S and MP is a
subset monotone basis for MS . It is N-closed and U-closed
w.r.t. a subset P of S, if ε ∈ P , PΣ ⊆ S and MP is a
subset union basis for MS or a subset intersection basis for
MS , respectively.

Next we introduce the notion of X-minimality. Intuitively,
being closed with respect to P guarantees us that all distinct
rows are expressible by the allowed combinations of P rows.
A trivial way to achieve this is to include all rows. Since we
use P to derive the set of states of the learned automaton, we
want it to be as small as possible. If there is a row in P that
can be expressed by means of the other rows, we can remove
it from P . Formally, let T be A-closed w.r.t P . We say that
T is A-minimal w.r.t P if for every p ∈ P and P ′ ⊆ P \ p,
Mp /∈ [B+(P ′)]. The notions of N-minimal and U-minimal
observation tables are defined analogously.

From tables to automata Let T = (S,E,M) be an obser-
vation table which is A-closed and minimal with respect to P .
For s ∈ S let bs ∈ B+(P) be a Boolean expression over P
satisfying Ms = [bs]. Then the tuple (Σ, P, λ, δ, F) where
F = {p ∈ P | Mp,ε = 1}, and δ(p, σ) = bpσ , is an AFA,
which we denote APT .

3.1 Finding an Adequate Basis
As mentioned previously, the learning algorithm gradually
builds an observation table using membership queries. Two
missing ingredients for the learning algorithm are (1) how to
find a set U such that T is X-closed and minimal w.r.t to it,
and (2) given U and a string s, how to find, if possible, an
expression bs, in BX(U) such that Ms = [bs], where BA(Q),
BN(Q), BU(Q) and BD(Q) correspond to B+(Q), B∨(Q),
B∧(Q) and Q, respectively.

Finding a Union/Intersection Basis
Because of the duality of union and intersection we can con-
sider just one of these, and the results follow for the other.
Claim 1. Let v ∈ Bn and U ⊆ Bn. There is a polynomial
time algorithm to determine whether v ∈ B∨(U).

Proof. We compute the union of all vectors u ∈ U s.t. u ≤ v.
Then v is equal to this union if and only if v ∈ B∨(U).

Given a set of vectors U and a vector u ∈ U , we say that u
is union-redundant for U if u ∈ B∨(U − {u}). We observe
that if u ∈ U is not union-redundant for U then it must appear
in any subset union basis for U because it cannot be formed
by union using the other elements of U .
Theorem 2. [Bollig et al., 2009] Given a set of vectors V ,
there is a polynomial time algorithm to find a minimum car-
dinality subset union basis for V .4

4Note that this question, of finding a subset union basis, is dif-
ferent from the question of finding a general union basis. The latter
was proved NP-complete by [Stockmeyer, 1975] who termed it the
set basis problem.

Note that this shows that there is a unique subset union
basis of V of minimum cardinality, and by duality this is true
also for intersection.

Finding a Monotone Basis
Answering whether a vector v can be expressed as an ade-
quate formula over U is more complicated for the monotone
case, but can still be done in polynomial time.

Claim 2. Let v ∈ Bn and U ⊆ Bn. There there is a polyno-
mial time algorithm to determine whether v ∈ B+(U).

Proof. If there exists a monotone formula over U represent-
ing v, then there exists one in DNF form, i.e., in the form
I1∪I2 . . .∪Ik where Ii are intersections of subsets of U . The
following procedure checks if there is a DNF formula over U
representing v.

Assume U = {u1, . . . , um}. A DNF formula over U can
be represented by a set of vectors in Bm since a vector in Bm
can represent a subset S of U , by having index i set to 1 iff
the respective vector vi ∈ S. The given set of vectors U can
be represented by anm×nmatrix, whose rows are U . In this
matrix, a column M i represents exactly the set of all vectors
u in U , with u[i] = 1. Thus, if M i is one of the disjuncts of
D then [D][i] = 1, unless M i = 0.

Consider the given vector v. Let Iv0 be the set of indices i
such that v[i] = 0, and likewise Iv1 be the set of indices i such
that v[i] = 1. Assume D is a DNF formula for v over U . We
note that first, for every i ∈ Iv0 , the column vector M i /∈ D,
unlessM i = 0. As otherwise [D][i] = 1 contradicting it rep-
resents v for which v[i] = 0. Second, for every i ∈ Iv1 , either
the column vector M i ∈ D or some column vector M j s.t.
0 6= M j ≤ M i is in D, as otherwise none of the disjuncts of
D will have 1 in the i-th index, contradicting v[i] = 1. Thus,
to check if such a DNF formula exists it suffices to check that
for all pairs of columns M j ≤Mk we have v[j] ≤ v[k].

Given v can be represented by a formula in B+(U), there
may in general be many different formulas achieving that.
Considering both constraints in the proof of Claim 2, for
i ∈ Iv1 , we must include in the DNF formula the smallest
M j < M i. We return the union of the minimal M j < M i

for all i ∈ Iv1 . This gives a monotone DNF expression for v;
a monotone CNF expression can be derived dually.

Unlike the case with union or intersection, finding a mono-
tone subset of minimum cardinality is NP-hard.

Theorem 3. Given a set of vectors V and a nonnegative in-
teger k, it is NP-complete to determine whether there is a
subset monotone basis U for V s.t. |U | ≤ k.

The proof is omitted; it is a polynomial time reduction from
the problem of monotone not-all-equal 3-SAT.

3.2 The learning algorithm
From claims 1 and 2 we can extract a procedure InBX(P, s)
for X ∈ {D, N, U, A} that determines whether Ms, the row
corresponding to string s in the observation table, can be rep-
resented as an adequate combination of MP , the rows cor-
responding to strings P , and returns one such formula if the
answer is “yes”.

Algorithm 1: XL∗ for X ∈ {D, N, U, A}
oracles : MQ, EQ
members: Observation table T = (S,E,M),

Candidate states set P
methods : IsXClosed, IsXMinimal, XFind&AddCols,

InBX, XExtractAut
S = 〈ε〉, E = 〈ε〉, P = 〈ε〉 and Mε,ε = MQ(ε).
repeat

(a1, s1) = T .IsXClosed(P)
if a1 = “no” then

P.AddString(s1)
else

(a2, s2) = T .IsXMinimal(P)
if a2 = “no” then

P.RemoveString(s2)
else
A = T .XExtractAut(P)
(a3, s3) = EQ(A)
if a3 = “no” then
T .XFind&AddCols(s3)

until a3 = “yes”
return A

Since the question of finding a minimum subset monotone
basis is NP-hard, the algorithm proceeds greedily, maintain-
ing, in addition to its observation table T = (S,E,M), a
subset P of S that is the current candidate for extracting an
adequate basis. In each iteration of its main loop, it checks
whether T is closed with respect to P , by calling procedure
T .IsXClosed(P). If the answer is “no”, the procedure returns
a string s1 ∈ S ∪ PΣ that cannot be expressed by BX(P)
and the algorithm adds s1 to P and loops. Once T is closed
with respect to P the algorithm checks whether T is minimal
with respect to P , by calling procedure T .IsXMinimal(P).
If the answer is “no”, the procedure returns a string s2 ∈ P
that can be expressed by BX(P \ {s2}). The algorithm then
removes s2 from P , and loops. Once T has been found to be
X-closed and minimal with respect to P , the algorithm calls
XExtractAut to obtain an X-automaton A, on which it asks
an equivalence query. If the answer is “yes”, the algorithm
returns A. Otherwise the algorithm uses the counterexample
s3 provided by the equivalence oracle to extract experiments
to add to E.

The procedure XFind&AddCols examines all suffixes of
s3. For each suffix it checks whether it induces a new col-
umn, when projected on the strings in P and their one-letter
extensions. Formally, let MPΣ be the matrix obtained from
M by keeping only rows corresponding to strings in P ∪PΣ.
The procedure XFind&AddCols(s3) computes for each suffix
e of s3 that is not already in E, its corresponding column, by
calling MQ(se) for every string s corresponding to a row of
MPΣ. If this column is not a column of MPΣ it adds e to E
and the obtained MQ results to M .5

Proving termination of L∗ is quite straightforward, proving
5The original formulation of L∗, upon receiving a counterexam-

ple from the equivalence oracle, added it and all its prefixes to the

the termination of NL∗ is much more intricate since unlike
the case of L∗, processing of a counter example does not nec-
essarily yield a new row in the observation table. This is true
for AL∗ as well. Our proof of termination is based on the fol-
lowing theorem that guarantees that processing of a counter
example yields a new column in the observation table.

Theorem 4. Let T = (S,E,M) be an observation table for
L, which is closed and minimal w.r.t. P , and let A = APT . If
w ∈ [A] ⇐⇒ w /∈ L for some string w, then there is some
suffix v of w such that in T ′ = (S,E ∪ {v},M) the column
Mv is different from all other columns.

The proof is omitted; the method builds on comparing for
increasing suffixes v of w whether v ∈ [Api] ⇐⇒ piv /∈ L
for every pi ∈ P .

Clearly, if the algorithm terminates it returns an AFA recog-
nizing the unknown language L. We express the complexity
of the algorithm as a function of three parameters: the row-
index of the complete observation table, which we denote n;
the column-index of the complete observation table, which
we denote m; and the maximum length of a counterexample
returned by the equivalence oracle, which we denote `. 6 Note
that when a new row is added to the table, it does not imply
that a new column is created, and vice versa.

Before we proceed we note that all the involved pro-
cedures IsXClosed(), IsXMinimal(), XFind&AddCols() and
XExtractAut() may invoke calls to MQ, and all but the latter
use InBX() as a sub-procedure. Since each equivalence query
yields a new experiment, the number of equivalence queries
and the number of iterations of the main loop is bounded by
m. Each call to procedure AddString results in the addition
of a string s to S introducing a new row in M , and thus can
be called at most n times. The size of P is bounded by n,
thus each iteration of the main loop involves at most n calls
to RemoveString. The processing of the counterexample by
Find&AddCols goes over all suffixes of the counter exam-
ple, at most `, and all rows of P ∪ PΣ, at most n + n|Σ|.
Thus overall running time of the algorithms is bounded by
poly(m,n, `, |Σ|).

Theorem 5. The algorithm AL∗ returns an AFA for an un-
known regular language L, after at most m equivalence
queries, and O(mn`) membership queries, where n and m
are the row-index and column-index of TL, respectively, and
` is the length of the longest counterexample.7

rows of the observation table. [Maler and Pnueli, 1995] suggested
instead to add the counterexample and all its suffixes to the columns.
[Bollig et al., 2009] pursue this direction. We modified this approach
to include just those suffixes that will contribute a new distinct col-
umn to the matrix.

6The row-index of TL equals the number of states of the minimal
DFA. The column-index of TL equals the number of states in the
reverse language of L. However, one can argue that the column-
index is a complexity measure of the given language L itself.

7We note that [Bollig et al., 2009] as well provide the complexity
measure of NL∗ in terms of the minimal DFA (rather than the min-
imal NRFA). The number of equivalence and membership queries
of NL∗ is bounded by O(n2) and O(`n3), resp. It is hard to com-
pare n2 to m which may be exponentially bigger or smaller than
n [Leiss, 1981]. We note that on our experiments (see Section 4) the

4 Empirical Results
We implemented the algorithmic scheme XL∗ and the sub-
procedures IsXClosed, IsXMinimal, XFind&AddCols, InBX,
XExtractAut for all X ∈ D, N, U, A. We have tested the four
resulting algorithms L∗, NL∗, UL∗ and AL∗ on four sets of
randomly generated automata; in each case the alphabet size
was 3 and the number of states was as indicated. The first set
consists of randomly generated DFAs of size 1 to 100. The
second set consists of randomly generated NFAs of size 10.
The third set consists of randomly generated UFAs of size 10.
The forth set consists of randomly generated AFAs of size 7.
Equivalence queries were implemented by randomly query-
ing 10,000 membership queries. Lengths were uniformly
chosen from 0 to t + 2 where t is the number of states in the
target X-FA. For AFA targets the initial condition and transi-
tion relation chose randomly a formula with one alternation
of disjunctions and conjunctions.

Figure 3 shows the results of L∗, NL∗, UL∗ and AL∗

on randomly generated AFAs (on the left) and UFAs (on
the right). The upper row presents number of states in the
learned automaton, the middle row the number of equiva-
lence queries, and the lower row, the number of membership
queries. The x-axis shows the number of states in the min-
imal DFA of the target language. The results are binned in
groups of 10 showing the average value. The error bars cor-
respond to the standard deviations. The blue line is for L∗,
the green for NL∗, the purple line for UL∗ and the red line
for AL∗. The light grey bars on the background represent the
number of experiments in the respective bin, whose scale is
on the right.

On AFA targets we can see that the number of states pro-
duced by AL∗, is significantly smaller than the others, and
the number of states produced by NL∗ and UL∗ is roughly
the same. AL∗ also outperforms the others in the number of
membership queries, followed by UL∗, NL∗, and L∗, in this
order. On the measure of equivalence queries, L∗ uses the
fewest equivalence queries, followed by UL∗, NL∗ and AL∗.

On UFA targets, UL∗ comes first in all measures, but the
difference in the obtained number of states between AL∗ and
UL∗ is negligible. For lack of space we do not include the
results on the sets of randomly generated DFAs and NFAs. The
latter is, roughly speaking, symmetrical to that of randomly
generated UFAs where the blue and purple colors switch. For
DFAs, all algorithms produce essentially the same number of
states, which is the number of states in the minimal DFA. In
this set, L∗, outperforms the others in all parameters, NL∗ and
UL∗ perform equally well in all measures, and AL∗ asks more
equivalence and membership queries than the other three.

5 Discussion
Since the empirical results show that XL∗ performs better on
randomly generated X-RFAs, it is clear that if one has some
knowledge of the target language, classifying it as being of
a deterministic, existential, universal or alternating nature,

max number of columns in the obtained observation tables for AL∗

was much smaller than n2: for random UFAs and AFAs with minimal
DFA of at most 300 states, it was 45 and 150, respectively (and the
max number of equivalence queries was 21 and 50, respectively).

Random AFA targets Random UFA targets

Figure 3: Results of L∗, NL∗, UL∗ and AL∗ on randomly generated AFAs (on the left)
and UFAs (on the right).

then the corresponding XL∗ algorithm is to be preferred. 8

In cases where no such apriori knowledge is available, one
might choose the algorithm that has better overall perfor-
mance on the parameter that is most significant/costly for the
application at hand. For instance, if succinctness is crucial
one might chose AL∗, but if equivalence queries are very ex-
pensive one might prefer L∗. Since all XL∗’s algorithm share
the same observation table, one might also consider heuris-
tics where, at different stages of the algorithm, it tries to learn
different target types among DRFA, NRFA, URFA and ARFA.

A generalization of alternating automata as defined here
(sometimes referred to as Boolean automata [Leiss, 1981]),
allows any Boolean formulas, i.e., all formulas over ∨, ∧ and
¬, in the initial condition and the transition relations. We have

8Phrasing properties in terms of universal and alternating au-
tomata may not be natural or intuitive. However, in many situations,
e.g., model checking of hardware systems, one usually writes a lot
of properties, and the verification tasks concerns the conjunction of
all, which takes a universal nature if the single properties are deter-
ministic in nature, and an alternating nature if the single properties
are of an existential nature.

not studied a corresponding definition for the residual case
or a learning algorithm for it. However, De Morgan’s Laws
show that any Boolean formula has an equivalent formula in
which negation is only applied to variables, so it seems rea-
sonable that the ideas of AL∗ can be extended to this case
by considering for the basis the given set of vectors and their
negations.

Our focus in this work was to obtain an L∗-style algorithm
for AFAs. To this aim, we introduced residual AFAs, a gener-
alization of residual NFAs. However, while we conjecture that
AL∗ produces ARFAs, and our experiments did not refute this
conjecture, we weren’t yet able to prove it. Residual NFAs
have been studied from automata theoretic preservative [De-
nis et al., 2001a] and are now quite well understood. A better
understanding of ARFAs, might help us fill in the missing part
of the puzzle, and is worthwhile regardless.

Acknowledgments We would like to thank David Eisenstat for
suggesting the approach used for Claim 2 and Nissim Ofek for his
suggestions with regard to plotting the experiments.

References
[Angluin, 1987] D. Angluin. Learning regular sets from queries and

counterexamples. Inf. Comput., 75(2):87–106, 1987.
[Bollig et al., 2009] B. Bollig, P. Habermehl, C. Kern, and M.

Leucker. Angluin-style learning of NFA. In 21st IJCAI, pp.
1004–1009, 2009.

[Chandra and Stockmeyer, 1976] AK. Chandra and LJ. Stock-
meyer. Alternation. In 17th FOCS, pp. 98–108, 1976.

[Denis et al., 2001a] F. Denis, A. Lemay, and A. Terlutte. Residual
finite state automata. In 18th STACS, pp. 144–157, 2001.

[Denis et al., 2001b] F. Denis, A. Lemay, and A. Terlutte. Learning
regular languages using RFSA. In 12th ALT, pp. 348–363, 2001.

[Esposito et al., 2002] Y. Esposito, A. Lemay, F. Denis, and P.
Dupont. Learning probabilistic residual finite state automata. In
6th ICGI, pp. 77–91, 2002.

[Kasprzik, 2010] A. Kasprzik. Learning residual finite-state au-
tomata using observation tables. In 12th DCFS, pp. 205–212,
2010.

[Kasprzik, 2011] A. Kasprzik. Inference of residual finite-state tree
automata from membership queries and finite positive data. In
15th DLT, pp. 476–477, 2011.

[Kozen, 1976] D. Kozen. On parallelism in Turing machines. In
17th FOCS, pp. 89–97, 1976.

[Kupferman and Vardi, 1998] O. Kupferman and MY. Vardi. Weak
alternating automata and tree automata emptiness. In 13th STOC,
pp. 224–233, 1998.

[Leiss, 1981] EL. Leiss. Succint representation of regular lan-
guages by boolean automata. Theor. Comput. Sci., 13:323–330,
1981.

[Maler and Pnueli, 1995] O. Maler and A. Pnueli. On the learnabil-
ity of infinitary regular sets. Inf. Comput., 118(2):316–326, 1995.

[Meyer and Fischer, 1971] AR. Meyer and MJ. Fischer. Economy
of description by automata, grammars, and formal systems. In
12th Symp. on Switching and Autom. Theory, pp. 188–191, 1971.

[Stockmeyer, 1975] LJ. Stockmeyer. The set basis problem is NP-
complete. Technical Report RC-5431, IBM, 1975.

