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Abstract
Families of dfas (fdfas) provide an alternative formalism for recognizing ω-regular languages.
The motivation for introducing them was a desired correlation between the automaton states
and right congruence relations, in a manner similar to the Myhill-Nerode theorem for regular
languages. This correlation is beneficial for learning algorithms, and indeed it was recently
shown that ω-regular languages can be learned from membership and equivalence queries, using
fdfas as the acceptors.

In this paper, we look into the question of how suitable fdfas are for defining ω-regular
languages. Specifically, we look into the complexity of performing Boolean operations, such as
complementation and intersection, on fdfas, the complexity of solving decision problems, such
as emptiness and language containment, and the succinctness of fdfas compared to standard
deterministic and nondeterministic ω-automata.

We show that fdfas enjoy the benefits of deterministic automata with respect to Boolean
operations and decision problems. Namely, they can all be performed in nondeterministic logar-
ithmic space. We provide polynomial translations of deterministic Büchi and co-Büchi automata
to fdfas and of fdfas to nondeterministic Büchi automata (nbas). We show that translation
of an nba to an fdfa may involve an exponential blowup. Last, we show that fdfas are more
succinct than deterministic parity automata (dpas) in the sense that translating a dpa to an
fdfa can always be done with only a polynomial increase, yet the other direction involves an
inevitable exponential blowup in the worst case.

1 Introduction

The theory of finite-state automata processing infinite words was developed in the early
sixties, starting with Büchi [3] and Muller [13], and motivated by problems in logic and
switching theory. Today, automata for infinite words are extensively used in verification and
synthesis of reactive systems, such as operating systems and communication protocols.

An automaton processing finite words makes its decision according to the last visited
state. On infinite words, Büchi defined that a run is accepting if it visits a designated set of
states infinitely often. Since then several other accepting conditions were defined, giving rise
to various ω-automata, among which are Muller, Rabin, Streett and parity automata.

The theory of ω-regular languages is more involved than that of finite words. This
was first evidenced by Büchi’s observation that nondeterministic Büchi automata are more
expressive than their deterministic counterpart. While for some types of ω-automata the
nondeterministic and deterministic variants have the same expressive power, none of them
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possesses all the nice qualities of acceptors for finite words. In particular, none has a
corresponding Myhill-Nerode theorem [16], i.e. a direct correlation between the states of the
automaton and the equivalence classes corresponding to the canonical right congruence of
the recognized language.

The absence of a Myhill-Nerode like property in ω-automata has been a major drawback
in obtaining learning algorithms for ω-regular languages, a question that has received much
attention lately due to applications in verification and synthesis, such as black-box check-
ing [17], assume-guarantee reasoning [14], error localization [5], regular model checking [15]
and more. The reason is that learning algorithms typically build on this correspondence
between the automaton and the right congruence.

Recently, two algorithms for learning an unknown ω-regular language were proposed,
both using non-conventional acceptors. One uses a reduction due to [4] named L$-automata
of ω-regular languages to regular languages [6], and the other uses a representation termed
families of dfas [1]. Both representations are founded on the following well known property
of ω-regular languages: two ω-regular languages are equivalent iff they agree on the set of
ultimately periodic words. An ultimately periodic word uvω, where u ∈ Σ∗ and v ∈ Σ+, can
be represented as a pair of finite words (u, v). Both L$-automata and families of dfas process
such pairs and interpret them as the corresponding ultimately periodic words. Families of
dfas have been shown to be up to exponentially more succinct than L$-automata [1].

A family of dfas (fdfa) is composed of a leading automaton Q with no accepting
states and for each state q of Q, a progress dfa Pq. Intuitively, the leading automaton is
responsible for processing the non-periodic part u, and depending on the state q reached
when Q terminated processing u, the respective progress dfa Pq processes the periodic part
v, and determines whether the pair (u, v), which corresponds to uvω, is accepted. (The
exact definition is more subtle and is provided in Section 3.) If the leading automaton has n
states and the size of the maximal progress dfa is k, we say that the fdfa is of size (n, k).
An earlier definition of fdfas, given in [9], provided a machine model for the families of
right congruences of [10].1 They were redefined in [1], where their acceptance criterion was
adjusted, and their size was reduced by up to a quadratic factor. We follow the definition
of [1].

In order for an fdfa to properly characterize an ω-regular language, it must satisfy the
saturation property: considering two pairs (u, v) and (u′, v′), if uvω = u′v′ω then either both
(u, v) and (u′, v′) are accepted or both are rejected (cf. [4, 20]). Saturated fdfas are shown
to exactly characterize the set of ω-regular languages. Saturation is a semantic property,
and the check of whether a given fdfa is saturated is shown to be in PSPACE. Luckily, the
fdfas that result from the learning algorithm of [1] are guaranteed to be saturated.

Saturated fdfas bring an interesting potential – they have a Myhill-Nerode like property,
and while they are “mostly” deterministic, a nondeterministic aspect is hidden in the
separation of the prefix and period parts of an ultimately periodic infinite word. This gives
rise to the natural questions of how “dominant” are the determinism and nondeterminism
in fdfas, and how “good” are they for representing ω-regular languages. These abstract
questions translate to concrete questions that concern the succinctness of fdfas and the
complexity of solving their decision problems, as these measures play a key role in the

1 Another related formalism is of Wilke algebras [26, 27], which are two-sorted algebras equipped with
several operations. An ω-language over Σω is ω-regular if and only if there exists a two-sorted morphism
from Σ∞ into a finite Wilke structure [26]. A central difference between the FDFA theory and the
algebraic theory of recognition by monoids, semigroups, ω-semigroups, and Wilke structures is that the
former relates to right-congruences, while the latter is based on two-sided congruences.
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usefulness of applications built on top of them.
Our purpose in this paper is to analyze the fdfa formalism and answer these questions.

Specifically, we ask: What is the complexity of performing the Boolean operations of
complementation, union, and intersection on saturated fdfas? What is the complexity
of solving the decision problems of membership, emptiness, universality, equality, and
language containment for saturated fdfas? How succinct are saturated fdfas, compared to
deterministic and nondeterministic ω-automata?

We show that saturated fdfas enjoy the benefits of deterministic automata with respect
to Boolean operations and decision functions. Namely, the Boolean operations can be
performed in logarithmic space, and the decision problems can be solved in nondeterministic
logarithmic space. The constructions and algorithms that we use extend their counterparts
on standard dfas. In particular, complementation of saturated fdfas can be obtained on the
same structure, and union and intersection is done on a product of the two given structures.
The correctness proof of the latter is a bit subtle.

As for the succinctness, which turns out to be more involved, we show that satur-
ated fdfas properly lie in between deterministic and nondeterministic ω-automata. We
provide polynomial translations from deterministic ω-automata to fdfas and from fdfas to
nondeterministic ω-automata, and show that an exponential state blowup in the opposite
directions is inevitable in the worst case.

Specifically, a saturated fdfa of size (n, k) can always be transformed into an equivalent
nondeterministic Büchi automaton (nba) with O(n2k3) states. As for the other direction,
transforming an nba with n states to an equivalent fdfa is shown to be in 2Θ(n logn). This
is not surprising since, as shown by Michel [12], complementing an nba involves a 2Ω(n logn)

state blowup, while fdfa complementation requires no state blowup.
Considering deterministic ω-automata, a Büchi or co-Büchi automaton (dba or dca)

with n states can be transformed into an equivalent fdfa of size (n, 2n), and a deterministic
parity automaton (dpa) with n states and k colors can be transformed into an equivalent
fdfa of size (n, kn). As for the other direction, since dba and dca do not recognize all
the ω-regular languages, while saturated fdfas do, a transformation from an fdfa to a
dba or dca need not exist. Comparing fdfas to dpas, which do recognize all ω-regular
languages, we get that fdfas can be exponentially more succinct: We show a family of
languages {Ln}n≥1, such that for every n, there exists an fdfa of size (n+ 1, n2) for Ln, but
any dpa recognizing Ln must have at least 2n−1 states. (A deterministic Rabin or Streett
automaton for Ln is also shown to be exponential in n, requiring at least 2 n

2 states.)

2 Preliminaries

An alphabet Σ is a finite set of symbols. The set of finite words over Σ is denoted by Σ∗,
and the set of infinite words, termed ω-words, over Σ is denoted by Σω. As usual, we use x∗,
x+, and xω to denote finite, non-empty finite, and infinite concatenations of x, respectively,
where x can be a symbol, a finite word, or a langugae. We use ε for the empty word and Σ+

for Σ∗ \ {ε}. An infinite word w is ultimately periodic if there are two finite words u ∈ Σ∗
and v ∈ Σ+, such that w = uvω. A language is a set of finite words, that is, a subset of Σ∗,
while an ω-language is a set of ω-words, that is, a subset of Σω. For natural numbers i and
j and a word w, we use [i..j] for the set {i, i + 1, . . . , j}, w[i] for the i-th letter of w, and
w[i..j] for the subword of w starting at the i-th letter and ending at the j-th letter, inclusive.

An automaton is a tuple A = 〈Σ, Q, ι, δ〉 consisting of an alphabet Σ, a finite set Q
of states, an initial state ι ∈ Q, and a transition function δ : Q × Σ → 2Q. A run of an
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automaton on a finite word v = a1a2 . . . an is a sequence of states q0, q1, . . . , qn such that
q0 = ι, and for each i ≥ 0, qi+1 ∈ δ(qi, ai). A run on an infinite word is defined similarly
and results in an infinite sequence of states. The transition function is naturally extended
to a function δ : Q × Σ∗ → 2Q, by defining δ(q, ε) = {q}, and δ(q, av) = ∪p∈δ(q,a)δ(p, v)
for q ∈ Q, a ∈ Σ, and v ∈ Σ∗. We often use A(v) as a shorthand for δ(ι, v) and |A| for the
number of states in Q. We use Aq to denote the automaton 〈Σ, Q, q, δ〉 obtained from A
by replacing the initial state with q. We say that A is deterministic if |δ(q, a)| ≤ 1 and
complete if |δ(q, a)| ≥ 1, for every q ∈ Q and a ∈ Σ. For simplicity, we consider all automata
to be complete. (As is known, every automaton can be linearly translated to an equivalent
complete automaton.)

By augmenting an automaton with an acceptance condition α, thereby obtaining a tuple
〈Σ, Q, ι, δ, α〉, we get an acceptor, a machine that accepts some words and rejects others.
An acceptor accepts a word if at least one of the runs on that word is accepting. For finite
words the acceptance condition is a set F ⊆ Q of accepting states, and a run on a word v
is accepting if it ends in an accepting state, i.e., if δ(ι, v) contains an element of F . For
infinite words, there are various acceptance conditions in the literature; here we mention
three: Büchi, co-Büchi, and parity.2 The Büchi and co-Büchi acceptance conditions are also
a set F ⊆ Q. A run of a Büchi automaton is accepting if it visits F infinitely often. A
run of a co-Büchi automaton is accepting if it visits F only finitely many times. A parity
acceptance condition is a map κ : Q→ [1..k] assigning each state a color (or rank). A run is
accepting if the minimal color visited infinitely often is odd. We use JAK to denote the set
of words accepted by a given acceptor A, and say that A accepts or recognizes JAK. Two
acceptors A and B are equivalent if JAK = JBK.

We use three letter acronyms to describe acceptors, where the first letter is either d or
n depending on whether the automaton is deterministic or nondeterministic, respectively.
The second letter is one of {f,b,c,p}: f if this is an acceptor over finite words, b, c, or p if
it is an acceptor over infinite words with Büchi, co-Büchi, or parity acceptance condition,
respectively. The third letter is always a for acceptor.

For finite words, nfa and dfa have the same expressive power. A language is said to be
regular if it is accepted by an nfa. For infinite words, the theory is more involved. While
npas, dpas, and nbas have the same expressive power, dbas, ncas, and dcas are strictly
weaker than nbas. An ω-language is said to be ω-regular if it is accepted by an nba.

3 Families of DFAs (FDFAs)

It is well known that two ω-regular languages are equivalent if they agree on the set of
ultimately periodic words (this is a consequence of McNaughton’s theorem [11]). An ultimately
periodic word uvω, where u ∈ Σ∗ and v ∈ Σ+, is usually represented by the pair (u, v). A
canonical representation of an ω-regular language can thus consider only ultimately periodic
words, namely define a language of pairs (u, v) ∈ Σ∗ × Σ+. Such a representation F should
satisfy the saturation property: considering two pairs (u, v) and (u′, v′), if uvω = u′v′ω then
either both (u, v) and (u′, v′) are accepted by F or both are rejected by F .

A family of dfas (fdfa) accepts such pairs (u, v) of finite words. Intuitively, it consists of
a leading automaton Q with no acceptance condition that runs on the prefix-word u, and for

2 There are other acceptance conditions in the literature, the most known of which are weak, Rabin,
Streett, and Muller. The three conditions that we concentrate on are the most used ones; Büchi and
co-Büchi due to their simplicity, and parity due to being the simplest for which the deterministic variant
is strong enough to express all ω-regular languages.
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each state q of Q, a progress automaton Pq, which is a dfa that runs on the period-word v.
A straightforward definition of acceptance for a pair (u, v), could have been that the

run of the leading automaton Q on u ends at some state q, and the run of the progress
automaton Pq on v is accepting. This goes along the lines of L$-automata [4]. However,
such an acceptance definition does not fit well the saturation requirement, and might enforce
very large automata [1]. The intuitive reason is that every progress automaton might need
to handle the period-words of all prefix-words.

To better fit the saturation requirement, the acceptance condition of an fdfa is defined
with respect to a normalization of the input pair (u, v). The normalization is a new pair
(x, y), such that xyω = uvω, and in addition, the run of the leading automaton Q on xyi ends
at the same state for every natural number i. Over the normalized pair (x, y), the acceptance
condition follows the straightforward approach discussed above. This normalization resembles
the implicit flexibility in the acceptance conditions of ω-automata, such as the Büchi condition,
and allows saturated fdfas to be up to exponentially more succinct than L$-automata [1].

Below, we formally define an fdfa, the normalization of an input pair (u, v), and the
acceptance condition. We shall use Σ∗+ as a shorthand for Σ∗ × Σ+, whereby the input to
an fdfa is a pair (u, v) ∈ Σ∗+.

I Definition 1 (A family of dfas (fdfa)). 3

A family of dfas (fdfa) is a pair (Q,P), where Q = (Σ, Q, ι, δ) is a deterministic leading
automaton, and P is a set of |Q| dfas, including for each state q ∈ Q, a progress dfa
Pq = (Σ, Pq, ιq, δq, Fq).
Given a pair (u, v) ∈ Σ∗+ and an automaton A, the normalization of (u, v) w.r.t A is the
pair (x, y) ∈ Σ∗+, such that x = uvi, y = vj , and i ≥ 0, j ≥ 1 are the smallest numbers
for which A(uvi) = A(uvi+j). (Since we consider complete automata, such a unique pair
(x, y) is guaranteed.)
Let F = (Q,P) be an fdfa, (u, v) ∈ Σ∗+, and (x, y) ∈ Σ∗+ the normalization of (u, v)
w.r.t Q. We say that (u, v) is accepted by F iff Q(x) = q for some state q of Q and Pq(y)
is an accepting state of Pq.
We use JFK to denote the set of pairs accepted by F .
We define the size of F , denoted by |F|, as the pair (|Q|,max{|Pq|}q∈Q), where |A| is
the number of states in a dfa A.
An fdfa F is saturated if for every two pairs (u, v) and (u′, v′) such that uvω = u′v′ω,
either both (u, v) and (u′, v′) are in JFK or both are not in JFK.

A saturated fdfa can be used to characterize an ω-regular language (see Theorem 10),
while an unsaturated fdfa cannot.

An unsaturated fdfa is depicted in Figure 1 on the left. Consider the pairs (b, a) and
(ba, aa). The former is normalized into (b, aa), as the run of the leading automaton U on “b”
reaches the state l, and then when U iterates on “a”, the first state to be revisited is l, which
happens after two iterations. The latter is normalized into (ba, aa), namely it was already
normalized. Now, (b, a) is accepted since in the run on its normalization (b, aa), U reaches
the state l when running on “b”, and the progress automaton PUl accepts “aa”. On the other

3 The fdfas defined here follow the definition in [1], which is a little different from the definition of
fdfas in [9]; the latter provide a machine model for the families of right congruences introduced in [10].
The main differences between the two definitions are: i) In [9], a pair (u, v) is accepted by an fdfa
F = (Q,P) if there is some factorization (x, y) of (u, v), such that Q(u) = q and Pq accepts v; and
ii) in [9], the fdfa F should also satisfy the constraint that for all words u ∈ Σ∗ and v, v′ ∈ Σ+, if
PQ(u)(v) = PQ(u)(v′) then Q(uv) = Q(uv′).
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Figure 1 Left: an unsaturated fdfa with the leading automaton U and progress dfas PUl and
PUr . Right: a saturated fdfa with the leading automaton S and progress dfas PSl and PSr .

hand, (ba, aa) is not accepted since the run of U on “ba” reaches the state r, and the progress
automaton PUr does not accept “aa”. Yet, baω = ba(aa)ω, so the fdfa should have either
accepted or rejected both (b, a) and (ba, aa), were it saturated, which is not the case.

A saturated fdfa is depicted in Figure 1 on the right. It accepts pairs of the forms
(Σ∗, a+) and (Σ∗, b+), and characterizes the ω-regular language (a+ b)∗(aω + bω) of words in
which there are eventually only a’s or only b’s.

4 Boolean Operations and Decision Procedures

We provide below algorithms for performing the Boolean operations of complementation,
union, and intersection on saturated fdfas, and deciding the basic questions on them, such
as emptiness, universality, and language containment. All of these algorithms can be done in
nondeterministic logarithmic space, taking advantage of the partial deterministic nature of
fdfas.4 We conclude the section with the decision problem of whether an arbitrary fdfa is
saturated, showing that it can be resolved in polynomial space.

Boolean operations

Saturated fdfas are closed under Boolean operations as a consequence of Theorem 10, which
shows that they characterize exactly the set of ω-regular languages. We provide below explicit
algorithms for these operations, showing that they can be done effectively.

Complementation of an fdfa is simply done by switching between accepting and non-
accepting states in the progress automata, as is done with dfas.

I Theorem 2. Let F be an fdfa. There is a constant-space algorithm to obtain an fdfa
Fc, such that JFcK = Σ∗+ \ JFK, |Fc| = |F|, and Fc is saturated iff F is.

Proof. Let F = (Q,P), where for each state q of Q, P has the dfa Pq = (Σ, Pq, ιq, δq, Fq).
We define Fc to be the fdfa (Q,Pc), where for each state q of Q, Pc has the dfa Pcq =
(Σ, Pq, ιq, δq, Pq \Fq). We claim that Fc recognizes the complement language of F . Indeed, let
(u, v) ∈ Σ∗+ and (x, y) its normalization with respect to Q. Then (u, v) ∈ JFK iff y ∈ JPQ(x)K.
Thus (u, v) /∈ JFK iff y /∈ JPQ(x)K iff y ∈ JPcQ(x)K iff (u, v) ∈ JFcK.

4 Another model that lies in between deterministic and nondeterministic automata are “semi-deterministic
Büchi automata” [25], which are Büchi automata that are deterministic in the limit: from every
accepting state onward, their behaviour is deterministic. Yet, as opposed to fdfas, complementation of
semi-deterministic Büchi automata might involve an exponential state blowup [2].
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Since F is saturated, so is Fc, as for all pairs (u, v) and (u′, v′) such that uvω = u′v′ω, F
either accepts or rejects them both, implying that Fc either rejects or accepts them both,
respectively. J

Union and intersection of saturated fdfas also resemble the case of dfas, and are done
by taking the product of the leading automata and each pair of progress automata. Yet,
the correctness proof is a bit subtle, and relies on the following lemma, which shows that
for a normalized pair (x, y), the period-word y can be manipulated in a certain way, while
retaining normalization.

I Lemma 3. Let Q be an automaton, and let (x, y) be the normalization of some (u, v) ∈ Σ∗+
w.r.t. Q. Then for every i ≥ 0, j ≥ 1 and finite words y′, y′′ such that y = y′y′′, we have
that (xyiy′, (y′′y′)j) is the normalization of itself w.r.t. Q.

Proof. Let x1 = xyiy′ and y1 = (y′′y′)j . Since (x, y) is normalized w.r.t. Q, we know that
the run of Q on xyω is of the form q0, q1, . . . , qk−1, (qk, qk+1, qk+2, . . . , qm)ω, where |x| = k

and |y| = (m − k) + 1. As xyω = x1y
ω
1 , the run of Q on x1y

ω
1 is identical. Since x is a

prefix of x1, the position |x1| lies within the repeated period, implying that |x1| is the first
position, from |x1| onwards, that is repeated along the aforementioned run. Since y1 is a
cyclic repetition of y, and Q loops back over y, it also loops back over y1. Thus (x1, y1) is
the normalization of itself w.r.t. Q. J

We continue with the union and intersection of saturated fdfas.

I Theorem 4. Let F1 and F2 be saturated fdfas of size (n1, k1) and (n2, k2), respect-
ively. There exist logarithmic-space algorithms to obtain saturated fdfas H and H′ of size
(n1n2, k1k2), such that JHK = JF1K ∩ JF2K and JH′K = JF1K ∪ JF2K.

Proof. The constructions of the union and intersection fdfas are similar, only differing by
the accepting states. We shall thus describe them together.

Construction:
Given two automata A1 and A2, where Ai = (Σ, Ai, ιi, δi), we denote by A1×A2

the product automaton (Σ, A1×A2, (ι1, ι2), δ×), where for every σ ∈ Σ, δ×((q1, q2), σ) =
(δ(q1, σ), δ(q2, σ)).

Given two dfas D1 = (A1, F1) and D2 = (A2, F2), over the automata A1 and A2, and
with the accepting states F1 and F2, respectively, we define the dfas D1 ⊗D2 and D1 ⊕D2
as follows:
D1 ⊗D2 = (A1×A2, F1×F2)
D1 ⊕D2 = (A1×A2, F1×A2 ∪A1×F2)

Given two sets of dfas P1 and P2, we define the sets of dfas P1 ⊗P2 and P1 ⊕P2 as
follows:

P1 ⊗P2 = {D1 ⊗D2 | D1 ∈ P1 and D2 ∈ P2}
P1 ⊕P2 = {D1 ⊕D2 | D1 ∈ P1 and D2 ∈ P2}

Given saturated fdfas F1 = (Q1,P1) and F2 = (Q2,P2), we claim that H = (Q1 ×
Q2,P1⊗P2) and H′ = (Q1×Q2,P1⊕P2) are saturated fdfas that recognize the intersection
and union of JF1K and JF2K, respectively.

Notice that the number of states in H and H′ is quadratic in the number of states in F1
and F2, yet their representations is very similar to the representations of F1 and F2, for
which reason the construction can be done in logarithmic space.
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Correctness:
Consider a pair (u, v) ∈ Σ∗+. Let (x1, y1) and (x2, y2) be its normalization with respect

to Q1 and Q2, respectively, where x1 = uvi1 , y1 = vj1 , x2 = uvi2 , and y2 = vj2 . Let
i = max(i1, i2) and j be the least common multiple of (j1, j2). Define x = uvi and y = vj .
One can verify that the normalization of (u, v) with respect to Q1×Q2 is (x, y).

We have Q1×Q2 (xy) = Q1×Q2 (x) = (Q1(x),Q2(x)). Since xyω = x1y
ω
1 and F1 is

saturated, we get that (x, y) ∈ JF1K iff (x1, y1) ∈ JF1K. Since the pair (x, y) satisfies the
requirements of Lemma 3 w.r.t. (x1, y1) and Q1, it follows that (x, y) is a normalization of
itself w.r.t. Q1. Thus, y ∈ PQ1(x) iff y1 ∈ PQ1(x1). Analogously, y ∈ PQ2(x) iff y2 ∈ PQ2(x2).

Hence, (u, v) ∈ JF1K ∩ JF2K iff (y1 ∈ PQ1(x1) and y2 ∈ PQ2(x2)) iff y ∈ PQ1(x) ⊗ PQ2(x)
iff (u, v) ∈ H. Similarly, (u, v) ∈ JF1K ∪ JF2K iff (y1 ∈ PQ1(x1) or y2 ∈ PQ2(x2)) iff y ∈
PQ1(x) ⊕ PQ2(x) iff (u, v) ∈ H′.

The saturation of H and H′ directly follows from the above proof of the languages
they recognize: consider two pairs (u, v) and (u′, v′), such that uvω = u′v′ω. Then, by the
saturation of F1 and F2, both pairs either belong, or not, to each of JF1K and JF2K. Hence,
both pairs belong, or not, to each of JHK = JF1K ∩ JF2K and JH′K = JF1K ∪ JF2K. J

Decision procedures

All of the basic decision problems can be resolved in nondeterministic logarithmic space,
using the Boolean operations above and corresponding decision algorithms for dfas.

The first decision question to consider is that of membership: given a pair (u, v) and
an fdfa F = (Q,P), does F accept (u, v)? The question is answered by normalizing (u, v)
into a pair (x, y) and evaluating the runs of Q over x and of PQ(x) over y. A normalized
pair is determined by traversing along Q, making up to |Q| repetitions of v. Notice that
memory wise, x and y only require a logarithmic amount of space, as they are of the form
x = uvi and y = vj , where the representation of i and j is bounded by log |Q|. The overall
logarithmic-space solution follows from the complexity of algorithms for deterministically
traversing along an automaton.

I Proposition 5. Given a pair (u, v) ∈ Σ∗+ and an fdfa F of size (n, k), the membership
question, of whether (u, v) ∈ JFK, can be resolved in deterministic space of O(logn+ log k).

The next questions to consider are those of emptiness and universality, namely given an
fdfa F = (Q,P), whether JFK = ∅, and whether JFK = Σ∗+, respectively. Notice that the
universality problem is equivalent to the emptiness problem over the complement of F . For
nondeterministic automata, the complement automaton might be exponentially larger than
the original one, making the universality problem much harder than the emptiness problem.
Luckily, fdfa complementation is done in constant space, as is the case with deterministic
automata, making the emptiness and universality problems equally easy.

The emptiness problem for an fdfa (Q,P) cannot be resolved by only checking whether
there is a nonempty progress automaton in P, since it might be that the accepted period v
is not part of any normalized pair. Yet, the existence of a prefix-word x and a period-word y,
such that Q(x) = Q(xy) and PQ(x) accepts y is a sufficient and necessary criterion for the
nonemptiness of F . This can be tested in NLOGSPACE. Hardness in NLOGSPACE follows
by a reduction from graph reachability [8].

I Theorem 6. Emptiness and universality for fdfas are NLOGSPACE-complete.

Proof. An fdfa F = (Q,P) is not empty iff there exists a pair (u, v) ∈ Σ∗+, whose
normalization is some pair (x, y), such that PQ(x) accepts y. As a normalized pair is a
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normalization of itself, a sufficient and necessary criterion for the nonemptiness of F is the
existence of a pair (x, y), such that Q(x) = Q(xy) and PQ(x) accepts y.

We can nondeterministically find such a pair (x, y) in logarithmic space by guessing x
and y (a single letter at each step), and traversing along Q and PQ(x) [?].

Hardness in NLOGSPACE follows by a reduction from graph reachability [8].
As fdfa complementation is done in constant space (Theorem 2), the universality problem

has the same space complexity. J

The last decision questions we handle are those of equality and containment, namely
given saturated fdfas F and F ′, whether JFK = JF ′K and whether JFK ⊆ JF ′K, respectively.
Equality reduces to containment, as JFK = JF ′K iff JFK ⊆ JF ′K and JF ′K ⊆ JFK. Containment
can be resolved by intersection, complementation, and emptiness check, as JFK ⊆ JF ′K iff
JFK∩JF ′Kc = ∅. Hence, by Theorems 2, 4, and 6, these problems are NLOGSPACE-complete.
Note that NLOGSPACE hardness immediately follows by reduction from the emptiness
problem, which asks whether JFK = ∅. The complexity for equality and containment is easily
derived from that of emptiness, intersection and complementation.

I Proposition 7. Equality and containment for saturated fdfas are NLOGSPACE-complete.

Saturation check

All of the operations and decision problems above assumed that the given fdfas are saturated.
This is indeed the case when learning fdfas via the algorithm of [1], and when translating
ω-automata to fdfas (see Section 5). We show below that the decision problem of whether
an arbitrary fdfa is saturated is in PSPACE. We leave the question of whether it is
PSPACE-complete open.

I Theorem 8. The problem of deciding whether a given fdfa is saturated is in PSPACE.

Proof. Let F = (Q,P) be an fdfa of size (n, k). We first show that if F is unsaturated
then there exist words u, v′, v′′ such that |u| ≤ n and |v′|, |v′′| ≤ nnk2k, and non-negative
integers l, r ≤ k such that (u, (v′v′′)l) ∈ F while (uv′, (v′′v′)r) /∈ F .

If F is unsaturated then there exists some ultimately periodic word w ∈ Σω that has two
different decompositions to prefix and periodic words on which F provides different answers.
Let P and P ′ be the respective progress automata, corresponding to states q and q′ of Q. Let
the run of Q on w be q0, q1, q2, . . .. Since w is ultimately periodic, there exist i, j ∈ N such
that qh+j = qh for all h > i. That is, eventually the run cycles through a certain sequence of
states. Then q and q′ must be two states on the cycle where w settles. Let v′ and v′′ be the
subwords of w that are read on the part of the shortest such cycle from q to q′ and from q′

back to q, respectively. Then the different decompositions are of the form (u, (v′v′′)l) and
(uv′, (v′v′′)r) where u is a string that takes Q to q. Let l and r be the shortest such, then
since P and P ′ have at most k states, we can assume l, r ≤ k. We can also assume u is a
shortest such string and thus |u| ≤ n.

For a dfa A = 〈Σ, Q, ι, δ, F 〉 and a word v ∈ Σ∗, we use χAv to denote the function from Q

to Q defined as χAv (q) = δ(q, v). Note that given |Q| = n there are at most nn different such
functions. Let X = {χv | χv = 〈χQv , χP1

v , χP2
v 〉, v ∈ Σ∗}. Then X is the set of congruence

classes of the relation v1 ≈X v2 iff χQv1
= χQv2

, χPv1
= χPv2

, and χP′

v1
= χPv2

. We can build an
automaton such that each state corresponds to a class in X , the initial state is χε, and the
transition relation is δX (χw, σ) = χwσ. The cardinality of X is at most nnk2k. Thus, every
state has a representative word of length at most nnk2k taking the initial state to that state.
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Therefore, there exist words y′, y′′ such that y′ ≈X v′ and y′′ ≈X v′′ and |y′|, |y′′| ≤ nnk2k.
Thus u, y′, y′′ and l, r satisfy the promised bounds.

Now, to see that fdfa saturation is in PSPACE note we can construct an algorithm
that guesses integers l, r ≤ k and words u, v′, v′′ such that |u| ≤ n and |v′|, |v′′| ≤ nnk2k.
It guesses the words letter by letter and constructs on the way χv′v′′ and χv′′v′ . It also
constructs along the way the states q′ and q such that q = δ(u) and q′ = δ(uv′). It then
computes the l and r powers of χv′v′′ and χv′′,v′ , respectively. Finally, it checks whether
one of (χPv′v′′)l(q) and (χP′

v′′v′)r(q′) is accepting and the other is not, and if so returns that
F is unsaturated. The required space is O(nk2 lognk2). This shows that saturation is in
coNPSPACE, and by Savitch’s and Immerman–Szelepcsényi’s theorems, in PSPACE. J

5 Translating To and From ω-Automata

As two ω-regular languages are equivalent iff they agree on the set of ultimately periodic
words [11], an ω-regular language can be characterized by a language of pairs of finite words,
and in particular by a saturated fdfa. We shall write L ≡ L′ to denote that a language
L ⊆ Σ∗+ characterizes an ω-regular language L′. Formally:

I Definition 9. A language L ⊆ Σ∗+ characterizes an ω-regular language L′ ⊆ Σω, denoted
by L ≡ L′, if for every pair (u, v) ∈ L, we have uvω ∈ L′, and for every ultimately periodic
word uvω ∈ L′, we have (u, v) ∈ L.

The families of dfas defined in [9], as well as the analogous families of right congruences
of [10], are known to characterize exactly the set of ω-regular languages [9, 10]. This is also
the case with our definition of saturated fdfas.

I Theorem 10. Every saturated fdfa characterizes an ω-regular language, and for every
ω-regular language, there is a saturated fdfa characterizing it.

Proof. The two directions are proved in Theorems 12 and 17, below. J

In this section, we analyze the state blowup involved in translating deterministic and
nondeterministic ω-automata into equivalent saturated fdfas, and vice versa. For non-
deterministic automata, we consider the Büchi acceptance condition, since it is the simplest
and most commonly used among all acceptance conditions. For deterministic automata,
we consider the parity acceptance condition since it is the simplest among all acceptance
conditions whose deterministic version is equi-expressible to the ω-regular languages. We
also consider deterministic Büchi and co-Büchi, for the simple sub-classes they recognize.

5.1 From ω-Automata to FDFAs
We show that dba, dca, and dpa have polynomial translations to saturated fdfas, whereas
translation of nbas to fdfas may involve an inevitable exponential blowup.

From deterministic ω-automata
The constructions of a saturated fdfa that characterize a given dba, dca, or dpa D share
the same idea: The leading automaton is equivalent to D, except for ignoring the acceptance
condition, and each progress automaton consists of several copies of D, memorizing the
acceptance level of the period-word. For a dba or a dca, two such copies are enough,
memorizing whether or not a Büchi (co-Büchi) accepting state was visited. For a dpa with k
colors, k such copies are required.
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We start with the constructions of an fdfa for a given dba or dca, which are almost
the same.

I Theorem 11. Let D be a dba or a dca with n states. There exists a saturated fdfa F
of size (n, 2n), such that JFK ≡ JDK.

Proof.

Construction: Let D = 〈Σ, Q, ι, δ, α〉 be a dba or a dca. We define the fdfa F = (Q,P),
where Q is the same as D (without acceptance), and each progress automaton Pq has two
copies of D, having (q, 0) as its initial state, and moving from the first to the second copy
upon visiting a D-accepting state. Formally: Q = 〈Σ, Q, ι, δ〉, and for each state q ∈ Q, P
has the dfa Pq = 〈Σ, Q×{0, 1}, (q, 0), δ′, F 〉, where for every σ ∈ Σ, δ′((q, 0), σ) = (δ(q, σ), 0)
if δ(q, σ) 6∈ α and (δ(q, σ), 1) otherwise; and δ′((q, 1), σ) = (δ(q, σ), 1). The set F of accepting
states is Q×{1} if D is a dba and Q×{0} if D is a dca.

Correctness: We show the correctness for the case that D is a dba. The case that D is a
dca is analogous.

Consider a word uvω ∈ JDK, and let (x, y) be the normalization of (u, v) w.r.t. Q. Since
xyω = uvω ∈ JDK, it follows that D visits an accepting state when running on y from the
state D(x), implying that PQ(x)(y) is an accepting state. Hence, (u, v) ∈ JFK.

As for the other direction, consider a pair (u, v) ∈ JFK, and let (x, y) be the normalization
of (u, v) w.r.t. Q. Since PQ(x)(y) is an accepting state, it follows that D visits an accepting
state when running on y from the state D(x), implying that xyω = uvω ∈ JDK.

Note that F is saturated as a direct consequence of the proof that it characterizes an
ω-regular language. J

We continue with the construction of an fdfa for a given dpa.

I Theorem 12. Let D be a dpa with n states and k colors. There exists a saturated fdfa
F of size (n, kn), such that JFK ≡ JDK.

Proof.

Construction: Let D = 〈Σ, Q, ι, δ, κ〉 be a dpa, where κ : Q → [1..k]. We define the fdfa
F = (Q,P), where Q is the same as D (without acceptance), and each progress automaton
Pq has k copies of D, having (q, κ(q)) as its initial state, and moving to a j-th copy upon
visiting a state with color j, provided that j is lower than the index of the current copy. The
accepting states are those of the odd copies.

Formally: Q = 〈Σ, Q, ι, δ〉, and for each state q ∈ Q, P has the dfa Pq = 〈Σ, Q×
[1..k], (q, κ(q)), δ′, F 〉, where for every σ ∈ Σ and i ∈ [1..k], δ′((q, i), σ) = (δ(q, σ),min(i, κ(δ(q, σ)))).
The set F of accepting states is {Q×{i} | i is odd }.

Correctness: Analogous to the arguments in the proof of Theorem 11. J

From nondeterministic ω-automata
An nba A can be translated into a saturated fdfa F , by first determinizing A into an
equivalent dpa A′ [18, 7] (which might involve a 2O(n logn) state blowup and O(n) colors
[23]), and then polynomially translating A′ into an equivalent fdfa (Theorem 12).

I Proposition 13. Let B be an nba with n states. There is a saturated fdfa that char-
acterizes JBK with a leading automaton and progress automata of at most 2O(n logn) states
each.
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A 2O(n logn) state blowup in this case is inevitable, based on the lower bound for com-
plementing nbas [12, 28, 22], the constant complementation of fdfas, and the polynomial
translation of a saturated fdfa to an nba:

I Theorem 14. There exists a family of nbas B1,B2, . . ., such that for every n ∈ N, Bn is
of size n, while a saturated fdfa that characterizes JBnK must be of size (m, k), such that
max(m, k) ≥ 2Ω(n logn).

Proof. Michel [12] has shown that there exists a family of languages {Ln}n≥1, such that for
every n, there exists an nba of size n for Ln, but an nba for Lcn, the complement of Ln,
must have at least 2n logn states.

Assume, towards a contradiction, that exist n ∈ N and a saturated fdfa F of size (m, k)
that characterizes Ln, such that max(m, k) < 2Ω(n logn). Then, by Theorem 2, there is a
saturated fdfa Fc of size (m, k) that characterizes Lcn. Thus, by Theorem 17, we have an
nba of size smaller than (2Ω(n logn))5 = 2Ω(n logn) for Lcn. Contradiction. J

5.2 From FDFAs to ω-automata
We show that saturated fdfas can be polynomially translated into nbas, yet translations of
saturated fdfas to dpas may involve an inevitable exponential blowup.

To nondeterministic ω-automata
We show below that every saturated fdfa can be polynomially translated to an equivalent
nba. Since an nba can be viewed as a special case of an npa, a translation of saturated
fdfas to npas follows. Translating saturated fdfas to ncas is not always possible, as the
latter are not expressive enough.

The translation goes along the lines of the construction given in [4] for translating an
L$-automaton into an equivalent nba. We prove below that the construction is correct for
saturated fdfas, despite the fact that saturated fdfas can be exponentially smaller than
L$-automata.

We start with a lemma from [4], which will serve us for one direction of the proof.

I Lemma 15 ([4]). Let M,N ⊆ Σ∗ such that M ·N∗ = M and N+ = N . Then for every
ultimately periodic word w ∈ Σω we have that w ∈M ·Nω iff there exist words u ∈M and
v ∈ N such that uvω = w.

I Lemma 16. Let F = (Q,P) be a saturated fdfa, and let Mq, Nq,f and L be as defined
in Theorem 17. There exists an nba B with up to O(n2k3) states that recognizes L.

We continue with the translation and its correctness.

I Theorem 17. For every saturated fdfa F of size (n, k), there exists an nba B with
O(n2k3) states, such that JFK ≡ JBK.

Proof.

Construction: Consider a saturated fdfa F = (Q,P), where Q = 〈Σ, Q, ι, δ〉, and for each
state q ∈ Q, P has the progress dfa Pq = 〈Σ, Pq, ιq, δq, Fq〉.

For every q ∈ Q, let Mq be the language of finite words on which Q reaches q, namely
Mq = {u ∈ Σ∗ | Q(u) = q}. For every q ∈ Q and for every accepting state f ∈ Fq, let Nq,f
be the language of finite words on which Q makes a self-loop on q, Pq reaches f , and Pq
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makes a self-loop on f , namely Nq,f = {v ∈ Σ∗ | (δ(q, v) = q)∧ (Pq(v) = f)∧ (δq(f, v) = f)}.
We define the ω-regular language

L =
⋃

{(q,f) | (q∈Q)∧(f∈Fq)}

Mq ·Nω
q,f (1)

One can construct an nba B that recognizes L and has up to O(n2k3) states: L is the union
of nk sublanguages; B will have nk corresponding subautomata, and will nondeterministically
start in one of them. In each subautomaton, recognizing the language Mq ·Nω

q,f , a component
of size n for Mq is obtained by a small modification to Q, in which q can nondeterministically
continue with an ε-transition5 to a component realizing Nω

q,f . An nba for the language
Nq,f consists of the intersection of three nbas, for the languages {v ∈ Σ∗ | δ(q, v) = q},
{v ∈ Σ∗ | Pq(v) = f}, and {v ∈ Σ∗ | δq(f, v) = f}, each of which can be obtained by
small modifications to either Q or Pq, resulting in nk2 states. Finally, the automaton
for Nω

q,f is obtained by adding ε-transitions in the automaton of Nq,f from its accepting
states to its initial state. Thus, each subautomaton is of size n + nk2, and B is of size
nk(n+ nk2) ∈ O(n2k3).

Correctness: Consider an ultimately periodic word uvω ∈ JBK. By the construction of B,
uvω ∈ L, where L is defined by Equation (1). Hence, uvω ∈Mq ·Nω

q,f , for some q ∈ Q and
f ∈ Fq. By the definitions of Mq and Nq,f , we get that Mq and Nq,f satisfy the hypothesis
of Lemma 15, namely N+

q,f = Nq,f and Mq · N∗q,f = Mq. Therefore, by Lemma 15, there
exist finite words u′ ∈ Mq and v′ ∈ Nq,f such that u′v′ω = uvω. From the definitions of
Mq and Nq,f , it follows that the run of Q on u′ ends in the state q, and Pq accepts v′.
Furthermore, by the definition of Nq,f , we have δ(q, v′) = q, implying that (u′, v′) is the
normalization of itself. Hence, (u′, v′) ∈ JFK. Since F is saturated and u′v′ω = uvω, it follows
that (u, v) ∈ JFK, as required.

As for the other direction, consider a pair (u, v) ∈ JFK, and let (x, y) be the normalization
of (u, v) w.r.t. Q. We will show that xyω ∈ L, where L is defined by Equation (1), implying
that uvω ∈ JBK. Let q = Q(x), so we have that Pq(y) reaches some accepting state f of
Pq. Note, however, that it still does not guarantee that y ∈ Nq,f , since it might be that
δq(f, y) 6= f .

To prove that xyω ∈ L, we will show that there is a pair (x, y′) ∈ Σ∗+ and an accepting
state f ′ ∈ Pq, such that y′ = yt for some positive integer t, and y′ ∈ Nq,f ′ ; namely δ(q, y′) = q,
Pq(y′) = f ′, and δq(f ′, y′) = f ′. Note first that since F is saturated, it follows that for every
positive integer i, (x, yi) ∈ JFK, as x(yi)ω = xyω.

Now, for every positive integer i, Pq reaches some accepting state fi when running on yi.
Since Pq has finitely many states, for a large enough i, Pq must reach the same accepting
state f̂ twice when running on yi. Let h be the smallest positive integer such that Pq(yh) = f̂ ,
and r the smallest positive integer such that δq(f̂ , yr) = f̂ . Now, one can verify that choosing
t to be an integer that is bigger than or equal to h and is divisible by r guarantees that
δ(q, yt) = q and δq(f ′, yt) = f ′, where f ′ = Pq(yt). J

To deterministic ω-automata
Deterministic Büchi and co-Büchi automata are not expressive enough for recognizing every
ω-regular language. We thus consider the translation of saturated fdfas to deterministic

5 The ε-transitions can be removed from an nba with no state blowup.
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parity automata. A translation is possible by first polynomially translating the fdfa into
an nba (Theorem 17) and then determinizing the latter into a dpa (which might involve a
2O(n logn) state blowup [12]).

I Proposition 18. Let F be a saturated fdfaof size (n, k). There exists a dpa D of size
2O(n2k3 logn2k3), such that F ≡ D.

We show below that an exponential state blowup is inevitable.6 The family of languages
{Ln}n≥1 below demonstrates the inherent gap between fdfas and dpas; an fdfa for Ln
may only “remember” the smallest and biggest read numbers among {1, 2, ..., n}, using n2

states, while a dpa for it must have at least 2n−1 states.
We define the family of languages {Ln}n≥1 as follows. The alphabet of Ln is {1, 2, ..., n},

and a word belongs to it iff the following two conditions are met:
A letter i is always followed by a letter j, such that j ≤ i+ 1. For example, 533245 . . . is
a bad prefix, since 2 was followed by 4, while 55234122 . . . is a good prefix.
The number of letters that appear infinitely often is odd. For example, 2331(22343233)ω
is in Ln, while 1(233)ω is not.

We show below how to construct, for every n ≥ 1, a saturated fdfa of size polynomial in
n that characterizes Ln. Intuitively, the leading automaton handles the safety condition of
Ln, having n+ 1 states, and ensuring that a letter i is always followed by a letter j, such that
j ≤ i+ 1. The progress automata, which are identical, maintain the smallest and biggest
number-letters that appeared, denoted by s and b, respectively. Since a number-letter i
cannot be followed by a number-letter j, such that j > i+ 1, it follows that the total number
of letters that appeared is equal to b− s+ 1. Then, a state is accepting iff b− s+ 1 is odd.

I Lemma 19. Let n ≥ 1. There is a saturated fdfa of size (n+ 1, n2) characterizing Ln.

Proof. We formally define an fdfa F = (Q,P) for Ln over Σ = {1, 2, . . . , n}, as follows.
The leading automaton is Q = (Σ, Q, ι, δ), where Q = {⊥, q1, q2, . . . , qn}; ι = qn; and for

every i, j ∈ [1..n], δ(qi, j) = qj if j ≤ i+ 1, and ⊥ otherwise, and δ(⊥, j) = ⊥.
The progress automaton for the state ⊥ consists of a single non-accepting state with a

self-loop over all letters.
For every i ∈ [1..n], the progress automaton for qi is Pi = (Σ, Pi, ιi, δi, Fi), where:
Pi = [1..n]× [1..n]
ιi = (n, 1)
δi: For every σ ∈ Σ and s, b ∈ [1..n], δi((s, b), σ) = (min(s, σ),max(b, σ)).
Fi = {(s, b) | b− s is even }

Notice that the progress automaton need not handle the safety requirement, as the leading
automaton ensures it, due to the normalization in the acceptance criterion of an fdfa.

J

A dpa for Ln cannot just remember the smallest and largest letters that were read, as
these letters might not appear infinitely often. Furthermore, we prove below that the dpa
must be of size exponential in n, by showing that its state space must be doubled when
moving from Ln to Ln+1.

I Lemma 20. Every dpa that recognizes Ln must have at least 2n−1 states.

6 This is also the case when translating fdfas to deterministic Rabin [19], Streett [24], and Muller [13]
automata, as explained in Remark 22.
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Proof. The basic idea behind the proof is that the dpa cannot mix between 2 cycles of n
different letters each. This is because a mixed cycle in a parity automaton is accepting/re-
jecting if its two sub-cycles are, while according to the definition of Ln, the mixed cycle
should reject if both its sub-cycles accept, and vice versa. Hence, whenever adding a letter,
the state space must be doubled.

In the formal proof below, we dub a reachable state from which the automaton can accept
some word a live state. Consider a dpa Dn that recognizes Ln, and let q be some live state
of Dn. Observe that JDqnK, namely the language of the automaton that we get from Dn
by changing the initial state to q, is the same as Ln except for having some restriction on
the word prefixes. More formally, if a word w ∈ JDqnK then w ∈ Ln, and if w ∈ Ln then
there is a finite word u, such that uw ∈ JDqnK. For every n ∈ N, and every u ∈ Σ∗, let
Ln,u = {w | uw ∈ Ln} and let Ln denote the set of languages {Ln,u | u ∈ Σ∗}. Note that
there is actually only a finite number of prefixes u to consider (this follows e.g. from [10,
Thm. 22]). Moreover, for every state q of Dn there is a corresponding word uq such that
JDqnK = Ln,uq .

We prove by induction on n the following claim, from which the statement of the lemma
immediately follows: Let Dn be a dpa over Σ = {1, 2, . . . , n} that recognizes some language
in Ln. Then there are finite words u, v ∈ Σ∗, such that:
i) v contains all the letters in Σ;
ii) the run of Dn on u reaches some live state p; and
iii) the run of Dn on v from p returns to p, while visiting at least 2n−1 different states.

The base cases, for n ∈ {1, 2}, are trivial, as they mean a cycle of size at least 1 over v,
for n = 1, and a cycle of size 2 for n = 2.

In the induction step, for n ≥ 2, we consider a dpa Dn+1 that recognizes some language
L ∈ Ln+1. We shall define D′ and D′′ to be the dpas that result from Dn+1 by removing all
the transitions over the letter n + 1 and by removing all the transitions over the letter 1,
respectively.

Observe that for every state q that is live w.r.t. Dn+1, we have that JD′qK ∈ Ln, namely
the language of the dpa that results from Dn+1 by removing all the transitions over the
letter n+ 1 and setting the initial state to q is in Ln. (Note that q might only be reachable
via the letter n+ 1, yet it must have outgoing transitions over letters in [2..n].) Analogously,
JD′′qK is isomorphic to a language in Ln via the alphabet mapping of i 7→ (i− 1). Hence, for
every state q that is live w.r.t. Dn+1, the induction hypothesis holds for D′q and D′′q.

We shall prove the induction claim by describing words u, v ∈ Σ∗, and showing that they
satisfy the requirements above w.r.t. Dn+1. We construct u by iteratively concatenating
the words u′i, v′i, u′′i , and v′′i , which we define below, until the starting and ending states in
some iteration k are the same. We then define the word v to be the last iteration, namely
u′k v

′
k u
′′
k v
′′
k . Let q1 be the initial state of Dn+1. We define for every i ∈ [1..k]:

u′i and v′i are the words that follow from the induction hypothesis on D′qi , where qi is
the state that Dn+1 reaches when reading u′1 v′1 u′′1 v′′1 . . . u′i−1 v

′
i−1 u

′′
i−1 v

′′
i−1.

u′′1 and v′′1 are the words that follow from the induction hypothesis on D′′q′
i , where q′i is

the state that Dn+1 reaches when reading u′1 v′1 u′′1 v′′1 . . . u′i−1 v
′
i−1 u

′′
i−1 v

′′
i−1 u

′
i v
′
i.

The word v obviously contains all the letters in Σ, as it is composed of subwords that
contain all the letters in Σ \ {1} and in Σ \ {n+ 1}. By the definition of u and v, we also
have that the run of Dn+1 on u reaches some live state p, and the run of Dn+1 on v from
p returns to p. Now, we need to prove that the run of Dn+1 on v from p visits at least 2n
states.
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We claim that when Dn+1 runs on v from p, it visits disjoint set of states when reading
v′k and v′′k . This will provide the required result, as Dn+1 visits at least 2n−1 states when
reading each of v′k and v′′k .

Assume, by way of contradiction, that Dn+1 visits some state s both when reading v′k
and when reading v′′i . Let l′ and r′ be the parts of v′k that Dn+1 reads before and after
reaching s, respectively, and l′′ and r′′ the analogous parts of v′′k . Now, define the infinite
words m′ = uu′k (l′ r′)ω, m′′ = uu′k l

′ (r′′ l′′)ω, and m = uu′k (l′ r′′ l′′ r′)ω.
Observe that m′ and m′′ both belong or both do not belong to L, since there is the same

number of letters (n) that appear infinitely often in each of them. The word m, on the other
hand, belongs to L if m′ and m′′ do not belong to L, and vice versa, since n+1 letters appear
infinitely often in it. However, the set of states that are visited infinitely often in the run of
Dn+1 on m is the union of the sets of states that appear infinitely often in the runs of Dn+1
on m′ and m′′. Thus, if Dn+1 accepts both m′ and m′′ it also accepts m, and if it rejects
both m′ and m′′ it rejects m. (This follows from the fact that the minimal number in a union
of two sets is even/odd iff the minimum within both sets is even/odd.) Contradiction. J

I Theorem 21. There is a family of languages {Ln}n≥1 over the alphabet {1, 2, . . . , n}, such
that for every n ≥ 1, there is a saturated fdfa of size (n+ 1, n2) that characterizes Ln, while
a dpa for Ln must be of size at least 2n−1.

Proof. By Lemmas 19 and 20. J

I Remark 22. A small adaptation to the proof of Lemma 20 shows an inevitable exponential
blowup also when translating a saturated fdfa to a deterministic ω-automaton with a stronger
acceptance condition of Rabin [19] or Streett [24]: A mixed cycle in a Rabin automaton is
rejecting if its two sub-cycles are, and a mixed cycle in a Streett automaton is accepting if its
two sub-cycles are. Hence, the proof of Lemma 20 holds for both Rabin and Streett automata
if proceeding in the induction step from an alphabet of size n to an alphabet of size n + 2,
yielding a Rabin/Streett automaton of size at least 2 n

2 .
As for translating a saturated fdfa to a deterministic Muller automaton [13], it is known

that translating a dpa of size n into a deterministic Muller automaton might require the
latter to have an accepting set of size exponential in n [21]. (The family of languages in
[21] uses an alphabet of size exponential in the number of states of the dpa, however it can
easily be changed to use an alphabet of linear size.) Hence, by Theorem 12, which shows a
polynomial translation of dpas to fdfas, we get that translating an fdfa to a deterministic
Muller automaton entails an accepting set of exponential size, in the worst case.

6 Discussion

The interest in fdfas as a representation for ω-regular languages stems from the fact that
they possess a correlation between the automaton states and the language right congruences,
a property that traditional ω-automata lack. This property is beneficial in the context of
learning, and indeed an algorithm for learning ω-regular languages by means of saturated
fdfas was recently provided [1]. Analyzing the succinctness of saturated fdfas and the
complexity of their Boolean operations and decision problems, we believe that they provide
an interesting formalism for representing ω-regular languages. Indeed, Boolean operations
and decision problems can be performed in nondeterministic logarithmic space and their
succinctness lies between deterministic and nondeterministic ω-automata.
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