
Relational Dynamic Influence Diagram

Language (RDDL): Language Description

Scott Sanner (ssanner@gmail.com)
NICTA and the Australian National University

Abstract

The Relational Dynamic Influence Diagram Language (RDDL) is a uniform lan-
guage where states, actions, and observations (whether discrete or continuous) are
parameterized variables and the evolution of a fully or partially observed (stochastic)
process is specified via (stochastic) functions over next state variables conditioned
on current state and action variables (n.b., concurrency is allowed). Parameter-
ized variables are simply templates for ground variables that can be obtained when
given a particular problem instance defining possible domain objects. Semantically,
RDDL is simply a dynamic Bayes net (DBN) [1] (with potentially many interme-
diate layers) extended with a simple influence diagram (ID) [2] utility node rep-
resenting immediate reward. An objective function specifies how these immediate
rewards should be optimized over time for optimal control. For a ground instance,
RDDL is just a factored MDP (or POMDP, if partially observed).

Contents

1 What’s wrong with (P)PDDL? 2

2 Principles of RDDL 3
2.1 What RDDL Is . 3
2.2 What RDDL Isn’t (Yet) . 4

3 RDDL Examples 4
3.1 Simple Boolean Propositional Domain 4
3.2 Non-parameterized Partially-observed Domain 7
3.3 Parameterized Domain: Concurrent Interactive Game of Life 11
3.4 Additional Models . 16

4 RDDL File Structure 17
4.1 domain block . 17
4.2 non-fluents block . 20
4.3 instance block . 20

5 rddlsim RDDL Simulator 20

1

http://users.cecs.anu.edu.au/~ssanner/

1 What’s wrong with (P)PDDL?

In short, nothing is wrong with (P)PDDL. Every planning domain language serves a
purpose to compactly specify a set of planning problems with common characteristics
for exploitation by domain-independent (but domain language-specific) planners.

However, it would be unreasonable to assume there is one single compact and correct
syntax for specifying all useful planning problems. Thus, RDDL is not intended as a
replacement for the PDDL family of languages [3] or PPDDL [4], rather it is intended
to model a class of problems that are difficult to model with PPDDL and PDDL. If
(P)PDDL suffices for a problem description, then RDDL’s expressivity is not needed.

As a motivating example for RDDL, we discuss the cell transition model (CTM) of traffic
flow [5], which requires the following constructs not jointly expressible in (P)PDDL:

1. Each traffic signal is independently controlled by a concurrently executed action.

2. Cars move independently and stochastically.1

3. The full CTM uses integers to model counts of vehicles, real values to model traffic
speed and density, and stochastic difference equations to specify transitions.

4. The CTM dynamics are simple, complexity derives from a nonfluent network topol-
ogy. One would like to plan for given nonfluents independent of an initial state.

5. One would like to minimize traffic density in a CTM, which requires summing over
all traffic cells (which change with each domain instance).

6. In concurrent domains, action preconditions cannot be checked locally, they must
be checked globally, e.g., a joint configuration of two or more traffic signals may
be illegal. For this one needs global state-action constraint checks.

Many other domains are difficult to formalize in PPDDL. Multi-elevator control with
independent random arrivals, logistics domains with independently moving vehicles and
noise, and UAVs with sensors for partially observed state are all important domains
that cannot be specified in PPDDL. The obvious solution might simply be to extend
PPDDL, as PDDL has been extended numerous times [3]. However, stochastic effects
and concurrency are difficult to jointly reconcile in an effects-based language. If we take
the approach that concurrent actions that possibly conflict (c.f., probabilistic mutex [6])
are disallowed — similar to the way concurrency is handled in PDDL 2.1 [7] — then we
end up with a restrictive definition of concurrency that prevents concurrent actions that
may only conflict 1% of the time. Instead we opt for unrestricted concurrency [8], for
which it appears there is no well-defined PDDL-style transition semantics. Rather than
add a layer of stochastic conflict resolution to PPDDL, a dynamic Bayes net (DBN) [1]
transition formalism offers a simple solution — hence the motivation for RDDL.

1While a careful encoding of a probabilistic effect under a forall effect can encode this in PPDDL, it
is not clear there is any way to resolve conflicting stochastic effects (two cars that stochastically move
into a traffic cell, where there is only room for one of them).

2 Principles of RDDL

RDDL is influenced by the PDDL family [3], PPDDL [4], stochastic programs [9], in-
fluence diagrams [2], the SPUDD [10] and Symbolic Perseus [11, 12] representations
for factored MDPs and POMDPs, first-order probabilitic inference (FOPI) – especially
parfactors [13], and (factored) first-order MDPs and POMDPs [14, 15, 16].

A central design principle of RDDL is that the language should be simple and uniform
with its expressive power deriving from composition of simple constructs.

2.1 What RDDL Is

RDDL is based on the following principles:

• Everything is a a parameterized variable (fluent or nonfluent)

– Action fluents

– State fluents

– [Optional] Observation fluents (for partially observed domains)

– [Optional] Intermediate fluents (derived predicates, correlated effects, . . .)

– [Optional] Constant nonfluents (general constants, topology relations, . . .)

• Flexible fluent types

– Binary (predicate) fluents

– Multi-valued (enumerated) fluents

– Integer and continuous fluents (numerical fluents from PDDL 2.1 [7])

• The semantics is simply a ground Dynamic Bayes Net (DBN)

– Supports factored state and observations

– Supports factored actions, hence concurrency (and never conflicts!)

– Supports intermediate state fluents for multi-layered DBNs

∗ Express (stochastic) derived predicates (c.f., PDDL 1.2 [17] and 2.2 [18])

∗ Express correlated effects

∗ Stratification by levels enforces a well-defined relational multi-layer DBN

– Naturally supports independent exogenous events

• General expressions in transition and reward functions

– Logical expressions (∧, |,∼,=>,<=> plus ∃/∀ quantification over variables)

– Arithmetic expressions (+,−, ∗, / plus
∑

/
∏

aggregation over variables)

– (In)equality comparison expressions (==,∼=, <, >, <=, >=)

– Conditional expressions (if-then-else, switch)

– Basic probability distributions (Bernoulli, Discrete, Normal, Poisson, ...)

• Classical Planning as well as General (PO)MDP objectives

– Arbitrary reward (goals, numerical preferences) (c.f., PDDL 3.0 [19])

– Finite horizon

– Discounted or undiscounted

• State/action constraints

– Encode legal actions (i.e., action preconditions)

– Assert state invariants (e.g., a package cannot be in two locations)

2.2 What RDDL Isn’t (Yet)

Notably, RDDL does not (at this time) support the following language features:

• Continuous time (c.f., PDDL2.1 [7])

• Durative actions / options / semi-(PO)MDPs (c.f., PDDL2.1 [7], also options [20])

• Temporal state/action goals or preferences (c.f., PDDL3.0 [19])

• Non-determinism or strict uncertainty (c.f., oneof construct in PPDDL [4])

• Game-theoretic constructs (c.f., Game Description Language (GDL) [21])

• Object fluents (c.f., PPDDL3.1/functional STRIPS [22]; enumerated types can
substitute when the number of enumerated type values is fixed for all instances)

All features other than continuous time would be straightforward to add to RDDL.

3 RDDL Examples

Before we provide a formal language description, perhaps the best introduction to the
language is through a few examples.

3.1 Simple Boolean Propositional Domain

We begin with a simple use of RDDL to encode a non-parameterized DBN with three
boolean state variables p, q, r and one boolean action variable a.

dbn prop.rddl
1 // //
2 // A simple propositional 2-slice DBN (variables are not parameterized).
3 //
4 // Author: Scott Sanner (ssanner [at] gmail.com)
5 // //
6 domain prop_dbn {
7
8 requirements = { reward -deterministic };
9

10 // Define the state and action variables (not parameterized here)
11 pvariables {
12 p : { state -fluent , bool , default = false };
13 q : { state -fluent , bool , default = false };
14 r : { state -fluent , bool , default = false };
15 a : { action -fluent , bool , default = false };
16 };
17
18 // Define the conditional probability function for each next
19 // state variable in terms of previous state and action
20 cpfs {
21 p’ = if (p ^ r) then Bernoulli (.9) else Bernoulli (.3);
22
23 q’ = if (q ^ r) then Bernoulli (.9)
24 else if (a) then Bernoulli (.3) else Bernoulli (.8);
25
26 r’ = if (~q) then KronDelta(r) else KronDelta(r <=> q);
27 };
28
29 // Define the reward function; note that boolean functions are
30 // treated as 0/1 integers in arithmetic expressions
31 reward = p + q - r;
32 }
33
34 // Define an instance of the above problem specifying an initial
35 // state and objective to achieve (discount and horizon)
36 instance inst_dbn {
37
38 domain = prop_dbn;
39 init -state {
40 p = true; // could also just say ’p’ by itself
41 q = false; // default so unnecessary , could also say ’~q’ by itself
42 r; // same as r = true
43 };
44
45 max -nondef -actions = 1; // No concurrency here , so set to 1
46 horizon = 20;
47 discount = 0.9;
48 }

Reward Function

r’

Next State and Reward

p’

q’a

Current State and Actions

r

q

p

Figure 1: DBN and influence diagram for dbn prop.rddl automatically produced by
rddl.viz.RDDL2Graph in rddlsim Java package [23].

Before getting into details of this domain definition, we note that it can be simply
represented by a DBN [1] and influence diagram [2] as provided in Figure 1.

Following is a line-by-line discussion of the domain description:

• All domains need an identifying name (here prop dbn) provided on line 6.

• Domains should list their requirements as done on line 8, see Section 4.1.1 for a
listing of possible requirements and their meaning.

• Lines 11–16 define parameterized variables (pvariables), although in this case we
do not use parameters so these variables are in fact just the simple boolean proposi-
tional variables. default is used to specify the most common value of a pvariable,
which is useful for minimizing communication in client/server interaction.

• Lines 20–27 list the domain transition function. Next-state variables are shown
primed (p′, q′, r′) to differentiate them from current state variables (p, q, r). The
definition for p′ simply gives the following conditional probability P (p′|p, r):

p r p′ P (p′|p, q)
true true true 0.9
true true false 0.1
true false true 0.3
true false false 0.7
false true true 0.3
false true false 0.7
false false true 0.3
false false false 0.7

(1)

Likewise a similar conditional probability can be generated for P (q′|q, r, a); note
here that the transition probability is dependent upon the action a. P (r′|r, q) is a
conditional expression over a Kronecker delta function. A Kroneckor delta simply
places probability 1.0 on it’s argument and 0 on all other possible values, so it is

useful whenever a transition is deterministic. Here, if q is false, then r′ is assigned
the value of r, otherwise r′ is assigned the boolean value of the logical expression
r ⇔ q. Note that if the argument of a delta function is from a continuous domain
rather than a discrete domain, the Dirac delta function DiracDelta would be used
instead.

• Line 31 lists the reward function, which determines what the agent should optimize
at each step of time. Here we note that boolean variables are used in an arithmetic
expression; whenever a logical expression is used in such an arithmetic expression,
true is treated as 1 and false as 0.

• Lines 36–48 define an instance of this domain. Typically an instance will define
domain objects, but this is not a parameterized domain, so only an initial state,
action restrictions, and objective are provided here.

– init-state lists ground fluent atoms and their truth assignment. Default
fluent assignments need not be provided, but it is not an error to do so.

– max-nondef-actions is used to specify how many actions in a domain are
allowed to use a non-default value – a value larger than 1 would be specified
for concurrent domains, but for non-concurrent domains like this one, a value
of 1 should be used.

– The objective evaluated by RDDL is simply the expected (i.e., average) sum
of discounted rewards over multiple trials, where here the discount factor
γ = 0.9 and horizon h = 20. At the end of each trial, the RDDL simulator
returns the value Vπ(s0) for the state-action trajectory encountered during
the trial starting from the init-state definition of state s0 and following
the client agent’s policy π : S → A which provides an action a ∈ A for each
state s ∈ S encountered during the trial:

Vπ(s0) =
h∑

t=0

γt ·R(st, π(st)). (2)

Here R(st, at) is the reward (sampled if requirement reward-deterministic
is not specified) in state st at time t when action at = π(st) is taken. The
state trajectory (s0, . . . , sh) is simply sampled according to the defined cpfs.

3.2 Non-parameterized Partially-observed Domain

Before we move on to a true relational parameterized domain example, we first extend
the previous dbn prop.rddl with defined enumerated types, intermediate variables, and
partial observability.

dbn types interm po.rddl
1 // //
2 // A simple DBN (variables are not parameterized) exhibiting use of
3 // bools , ints , reals , enumerated types , intermediate variables , and
4 // observation variables.
5 //
6 // Author: Scott Sanner (ssanner [at] gmail.com)
7 // //
8 domain prop_dbn2 {
9

10 requirements = {
11 reward -deterministic , // Reward is a deterministic function
12 integer -valued , // Uses integer variables
13 continuous , // Uses continuous variables
14 multivalued , // Uses enumerated variables
15 intermediate -nodes , // Uses intermediate nodes
16 partially -observed // Uses observation nodes
17 };
18
19 // User -defined types
20 types {
21 enum_level : {@low , @medium , @high }; // An enumerated type
22 };
23
24 pvariables {
25 p : { state -fluent , bool , default = false };
26 q : { state -fluent , bool , default = false };
27 r : { state -fluent , bool , default = false };
28
29 i1 : { interm -fluent , int , level = 1 };
30 i2 : { interm -fluent , enum_level , level = 2 };
31
32 o1 : { observ -fluent , bool };
33 o2 : { observ -fluent , real };
34
35 a : { action -fluent , bool , default = false };
36 };
37
38 cpfs {
39
40 // Some standard Bernoulli conditional probability tables
41 p’ = if (p ^ r) then Bernoulli (.9) else Bernoulli (.3);
42
43 q’ = if (q ^ r) then Bernoulli (.9)
44 else if (a) then Bernoulli (.3) else Bernoulli (.8);
45
46 // KronDelta is a delta function for a discrete argument
47 r’ = if (~q) then KronDelta(r) else KronDelta(r <=> q);
48

49 // Just set i1 to a count of true state variables
50 i1 = KronDelta(p + q + r);
51
52 // Choose a level with given probabilities that sum to 1
53 i2 = Discrete(enum_level ,
54 @low : if (i1 >= 2) then 0.5 else 0.2,
55 @medium : if (i1 >= 2) then 0.2 else 0.5,
56 @high : 0.3
57);
58
59 // Note: Bernoulli parameter must be in [0,1]
60 o1 = Bernoulli((p + q + r)/3.0);
61
62 // Conditional linear stochastic equation
63 o2 = switch (i2) {
64 case @low : i1 + 1.0 + Normal (0.0, i1*i1),
65 case @medium : i1 + 2.0 + Normal (0.0, i1*i1/2.0),
66 case @high : i1 + 3.0 + Normal (0.0, i1*i1 /4.0) };
67 };
68
69 // A boolean functions as a 0/1 integer when a numerical value is needed
70 reward = p + q - r + 5*(i2 == @high);
71 }
72
73 instance inst_dbn {
74 domain = prop_dbn2;
75 init -state { p; r; };
76 max -nondef -actions = 1;
77 horizon = 20;
78 discount = 0.9;
79 }

The DBN and influence diagram for this RDDL description is provided in Figure 2.

Here we simply cover the differences between this domain and the previous domain
dbn prop.rddl.

• In lines 10–17, we’ve added a number of requirements since this domain uses inte-
ger, continuous, and multivalued (enumerated) pvariables in addition to boolean
variables. The domain uses intermediate variables that help determine the next
state, but are not part of the state. Also the domain is partially observed, which
means that in simulation, the server will determine both state and observations
during simulation, but only provide the observations to the client agent for use in
its policy decision.

• Lines 20–22 define the possible values for a user-defined enumerated (multivalue)
type named enum level.

• Lines 24–36 present additional pvariable definitions for the intermediate and ob-

Reward Function

r’

Next State and Reward

p’

q’a

Current State and Actions

r

o1

i1

q

p

o2

Observations

Intermediate @ Level 2

i2

Intermediate @ Level 1

Figure 2: DBN and influence diagram for dbn types interm po.rddl automatically
produced by rddl.viz.RDDL2Graph in rddlsim Java package [23].

servation fluents. Again, parameters are not used here, but here we show types
can also be int, real, or any of the user-defined types, in this case enum level.
Intermediate fluents must list a level of stratification. Intermediate variables are
strictly stratified so that an intermediate variable can only condition on interme-
diate pvariables of a strictly lower level, or state pvariables. Intermediate and
observation pvariables do not specify a default value.

• Lines 40–47 start with cpf definitions that are identical to the previous domain.

• Line 50 shows a simple cpf for an int type, where the value of intermediate
variable i1 is simply deterministically set to the sum p + q + r (which takes
values in {0, 1, 2, 3}). For an actually stochastic distribution, a Poisson with an
appropriate rate parameter could be used in place of this KronDelta.

• Lines 53–57 show a useful way to sample a multivalued parameter from a Discrete
distribution (the k-ary extension of the Bernoulli distribution). The first param-
eter here specifies the variable type being sampled (so that the simulator can
perform type-checking). Next, each of the possible values are listed with the prob-
abilities of each value. Note that these values must sum to 1.0 (otherwise the
RDDL simulator will complain that the distribution is not well-defined). i2 con-
ditions on i1 to determine the distribution and one will note that it sums to 1.0
for all values of i1.

• Line 60 is a standard Bernoulli sample where we simply show here that the pa-
rameters of any expression or random variable, can themselves be expressions. A
Bernoulli parameter must be in [0, 1] and one can verify this expression guarantees

that property; such properties are checked at runtime by the RDDL simulator.

• Lines 63–66 show that RDDL can be easily used to encode (stochastic) differ-
ence equations and via composition, more complex constructs like the conditional
stochastic difference equation shown here, which makes use of a switch statement
over various enumerated values of intermediate variable i1. We point out here
that the parameters of distributions, in this case Normal with respective µ and σ2

parameters, can be expressions.

• Line 70 demonstrates that intermediate pvariables can be used in a reward, and
also that logical equality == can be used with any pvariable.

For a full listing of distributions that can be currently used with RDDL, please see
Section 4.1.4.

3.3 Parameterized Domain: Concurrent Interactive Game of Life

Previously we showed non-parameterized RDDL domains that showed off the expres-
siveness of the language for specifying factored MDPs and POMDPs with potentially
hybrid mixes of multivalued, integer, or continuous states and actions.

Already, this non-parameterized version of RDDL makes for quite an expressive lan-
guage, but it is not always compact when variables and their cpfs must be repeated in
a domain.

For example, a traffic domain can be modeled with traffic cells and all cells have essen-
tially the same behavior — traffic flows into a cell from upstream cells when a cell is
not at full capacity, and traffic flows out of a cell when the traffic signals permit and the
downstream cells are not at capacity. There are simple rules that govern the behavior
of a traffic cell and hence it does not make sense to repeatedly copy these rules for
cell-1, cell-2, . . . , cell-n. Obviously, here we would want to parameterize (i.e., lift)
the transition dynamics and this requires parameterizing the RDDL DBN.

In Section 3.4, we provide an external link to the parameterized traffic domain specified
in RDDL; however, because traffic is a fairly complex domain, we instead choose to
demonstrate the parameterized DBN properties of RDDL in an interactive, stochastic,
and potentially concurrent version of John H. Conway’s Game of Life [24].

In short, the Game of Life specifies simple rules for a cellular automata where the
next state properties of a cell depend on its surrounding cells. In the following RDDL
description, we parameterize cells by their (x, y) coordinates and specify neighboring
cells by a nonfluent boolean pvariable. The cpf transition function dynamics are based
on the original rules plus some additional enhancements for stochasticity, resetting a
dead row, and agent interaction — an agent can concurrently set a number of cells up
to max-nondef-actions defined in an instance. We note that this domain explicitly
defines the neighbor topology with nonfluents, thus allowing a lifted planner to exploit
a fixed topology in its solution.

game of life stoch.rddl
1 // //
2 // A simple DBN to encode Conway ’s cellular automata "game of life"
3 // on a grid with some additional rules. One gets a reward for
4 // generating patterns that keep the most cells alive.
5 //
6 // Author: Scott Sanner (ssanner [at] gmail.com)
7 // //
8 domain game_of_life {
9

10 requirements = { reward -deterministic };
11
12 types {
13 x_pos : object;
14 y_pos : object;
15 };
16
17 pvariables {
18 // Probability cell topology non -fluents (unchanging)
19 PROB_REGENERATE : { non -fluent , real , default = 0.5 };
20 NEIGHBOR(x_pos ,y_pos ,x_pos ,y_pos) : {non -fluent ,bool ,default=false };
21
22 // State , intermediate and action fluents
23 alive(x_pos ,y_pos) : { state -fluent , bool , default = false };
24 count -neighbors(x_pos ,y_pos) : { interm -fluent , int , level = 1 };
25 set(x_pos ,y_pos) : { action -fluent , bool , default = false };
26 };
27
28 cpfs {
29 // Conway ’s game of life rules:
30 // 1. Under -population: cell with < 2 live neighbors dies
31 // 2. Overcrowding: cell with > 3 live neighbors dies
32 // 3. Survival: cell with 2 or 3 live neighbors lives
33 // 4. Reproduction: cell with 3 live neighbors becomes live
34 //
35 // Scott ’s additional rules for RDDL:
36 // 5. Stochastic: above rules hold with PROB_REGENERATE certainty
37 // 6. Extra rule: all cells at same x-pos dead => random regeneration
38 // 7. Interactivity: agent can concurrently set different cells
39
40 // Store alive -neighbor count for each cell
41 count -neighbors (?x,?y) =
42 KronDelta(sum_{?x2 : x_pos , ?y2 : y_pos}
43 [NEIGHBOR (?x,?y,?x2 ,?y2) ^ alive (?x2 ,?y2)]);
44
45 // Determine whether cell (?x,?y) is alive in next state
46 alive ’(?x,?y) = if (forall_ {?y2 : y_pos} ~alive (?x,?y2))
47 then Bernoulli(PROB_REGENERATE) // Rule 6
48

49 else if ([alive(?x,?y)
50 ^ (count -neighbors (?x,?y) >= 2)
51 ^ (count -neighbors (?x,?y) <= 3)]
52 | [~alive (?x,?y)
53 ^ (count -neighbors (?x,?y) == 3)]
54 | set(?x,?y))
55 then Bernoulli(PROB_REGENERATE)
56 else Bernoulli (1.0 - PROB_REGENERATE);
57 };
58
59 // Reward is number of alive cells
60 reward = sum_{?x : x_pos , ?y : y_pos} alive (?x,?y);
61
62 state -action -constraints {
63 // Assertion: ensure PROB_REGENERATE is a valid probability
64 (PROB_REGENERATE >= 0.0) ^ (PROB_REGENERATE <= 1.0);
65
66 // Precondition: perhaps we should not set a cell if already alive
67 forall_ {?x : x_pos , ?y : y_pos} alive(?x,?y) => ~set(?x,?y);
68 };
69 }
70
71 // Define numerical and topological constants
72 non -fluents game2x2 {
73 domain = game_of_life;
74 objects {
75 x_pos : {x1,x2};
76 y_pos : {y1,y2};
77 };
78 non -fluents {
79 PROB_REGENERATE = 0.9; // Numerical constants are just non -fluents
80 NEIGHBOR(x1,y1,x1,y2); NEIGHBOR(x1,y1,x2,y1); NEIGHBOR(x1,y1,x2,y2);
81 NEIGHBOR(x1,y2,x1,y1); NEIGHBOR(x1,y2,x2,y1); NEIGHBOR(x1,y2,x2,y2);
82 NEIGHBOR(x2,y1,x1,y1); NEIGHBOR(x2,y1,x1,y2); NEIGHBOR(x2,y1,x2,y2);
83 NEIGHBOR(x2,y2,x1,y1); NEIGHBOR(x2,y2,x1,y2); NEIGHBOR(x2,y2,x2,y1);
84 };
85 }
86
87 instance is1 {
88 domain = game_of_life;
89 non -fluents = game2x2;
90 init -state {
91 alive(x1,y1);
92 alive(x2,y2);
93 };
94 max -nondef -actions = 3; // Allow up to 3 cells to be set concurrently
95 horizon = 20;
96 discount = 0.9;
97 }

Reward Function

Next State and Reward

alive’(x2, y1)

alive’(x1, y1)

alive’(x2, y2)

alive’(x1, y2)

set(x2, y1)

alive(x1, y2)

count-neighbors(x2, y1)

count-neighbors(x1, y1)

count-neighbors(x2, y2)

count-neighbors(x1, y2)

Current State and Actions

set(x1, y2)

alive(x2, y2)

alive(x1, y1)

set(x2, y2)

set(x1, y1)

alive(x2, y1)

Intermediate @ Level 1

Figure 3: DBN and influence diagram for game of life stoch.rddl automatically pro-
duced by rddl.viz.RDDL2Graph in rddlsim Java package [23].

The DBN and influence diagram for this RDDL description and instance is1 is provided
in Figure 3. This diagram is crucial for understanding that the semantics of RDDL is
simply a DBN over the ground pvariables of the domain instance.

Perhaps the most confusing issue for those familiar with PPDDL will be the
semantics of parameterized actions in RDDL. For this we again refer to Figure 3
where we note that there are four ground action fluents denoted by green rectangles.
We note that each of these ground fluents is a separate variable taking on a distinct
value determined by the user, and if we examine line 54 of the cpf for alive, we see that
it conditions on all of these ground action fluent truth value assignments as needed.

This is in contrast to the PPDDL view of actions where all of the action information
is given in the action name and parameters. Here an action is not viewed as a param-
eterized variable so it does not make sense to say a PPDDL action consists of multiple
ground boolean variables (or int, real, or enumerated variables) as is the case in RDDL.

The view of RDDL actions as templates for ground variables directly supports concur-
rency. If actions are boolean pvariables as for the action pvariable alive in the Game of
Life domain and false is the default value, then taking a single action in domain instance
is1 corresponds to setting any one of set(x1, y1), set(x1, y2), set(x2, y1), set(x2, y2)
to be true and the rest to be false. This corresponds to the non-concurrent case
where max-nondef-actions=1 and only one action is executed at time. However, if
max-nondef-actions=3 then up to three of set(x1, y1), set(x1, y2), set(x2, y1), set(x2, y2)
can be set to true, thereby allowing up to three concurrent actions. One will note that
the cpf semantics for alive in the Game of Life domain description still holds in this
concurrent case; hence, changing max-nondef-actions is all that is needed to control
concurrency in RDDL.2

Having explained some of the major details of game of life stoch.rddl, we proceed
to highlight some remaining novel aspects of this domain:

• In lines 12–15, we’ve defined two user-defined object types for the x and y positions
used to parameterize cells in the Game of Life.

• In lines 17–26, we note the definition of pvariables with parameters. Here the
parameters listed are just the object types previously defined.

• In lines 19–20, we first note the definition of non-fluent pvariables. This is used
for any pvariables that will not change during planning, but which can change
between instances. Non fluents can be specified separately from an instance as
shown in line 72 and referenced in the instance is1 on line 89.

• In lines 29–57, we define parameterized cpfs:

– In lines 41–43, since the count of alive neighbors of a cell is needed multiple
times to determine the next state of every cell, we simply compute it for each
cell and store it in a temporary intermediate variable. We note here the use
of a sum over x and y position objects to perform this sum over all possible
neighboring cells. As before, logical expressions (here in [. . .]) are treated as
0/1 values when used in an arithmetic expression (here sum).

– Line 46 implements the rule to determine whether each cell is alive in the
next state. Lines 46–47 use a universal quantifier over objects in the if
condition test to implement Rule 6 in the comments, lines 49–54 implement
Conway’s standard rules, and lines 55–56 simply make the outcome predicted
by Conway’s rules stochastic according to the non-fluent PROB REGENERATE.

2Of course, if multiple concurrent actions could interfere with each other, this would have to be
handled directly in the cpf semantics for any affected pvariables. This is addressed in the Sidewalk
domain referenced in Section 3.4.

• Line 60 specifies the deterministic reward, which is simply a sum over alive cells
(again, this sum scales with the number of cells in a particular domain instance).

• Lines 62–68 demonstrate state-action constraints, which have not been used
previously. state-action constraints serve the following two purposes:

– Logical assertions on all states that can be reached from any legal initial state.
For example, line 64 ensures that the PROB REGENERATE pvariable is a valid
probability in [0, 1]. Such a constraint could also apply to any (quantified)
logical expression over fluents.

– Action preconditions for local and global precondition checks. Because pre-
conditions in concurrent domains must be checked globally — two or more
actions may mutually constain each other — we adopt the uniform approach
of specifying all action preconditions in the state-action constraints section,
whether concurrent or not. An example of a simple local action precondition
is given in line 67.

Any joint state and action that violate a state-action constraint during a trial
should cause the RDDL trial simulator to abort in error since there was either an
error in the domain description leading to an illegal state, or the agent made an
error in the policy and tried to execute an illegal action. Implicitly, if the agent
only executes legal actions, then all possible sampled trajectories should satisfy
the state-action constraints. State-action constraints are crucial for lifted and
regression-style planners that plan independently of any initial state (and hence
cannot exploit reachability from an initial state to determine legal states).

• Lines 72–85 define a non-fluents section where a cell topology is specified. This
particular assignment to non-fluents is referenced in line 89 of the instance defi-
nition. The separation of non-fluents from an initial state is intended to support
lifted planning that is independent of an initial state, while allowing a planner to
exploit specific nonfluent structure common to many problem instances (e.g. a
cellular topology for the Game of Life, or a road network in a logistics domain).

• Line 94 specifies that max-nondef-actions=3, which is used to allow multiple set
actions to be executed concurrently in this domain as explained previously. If this
domain is intended to support only serial actions then this should be changed to
max-nondef-actions=1.

3.4 Additional Models

RDDL is a very expressive language, so to give the reader a sense of a few other inter-
esting domains that can be encoded in RDDL, we refer them to the following domains
(with external links that are hosted on the rddlsim code repository [23]):

• Multi-intersection traffic control: This domain specification uses a simple binary
cell transition model (a higher fidelity cell transition model would model velocity

http://code.google.com/p/rddlsim/source/browse/trunk/files/rddl/test/traffic_binary_ctm.rddl

and density as real values and use stochastic difference equation updates). It is a
good example of how the topology of a particular problem can be compiled away
into the nonfluents.

• Sidewalk: This is a simple domain that illustrates how to handle conflicts in
RDDL, in this case, two people walking on a sidewalk and trying to reach op-
posite ends without colliding. Here, intermediate variables are used to detect a
conflict and then the next state variable cpfs condition on this conflict detection
in determining the next state.

• System Administration: This is a commonly referenced factored MDP/POMDP
domain is used here to demonstrate various expressive abilities of RDDL.

4 RDDL File Structure

A RDDL file may contain three types of top-level declarations: domains, non-fluents,
and instances. The following is a minimal description, we rely on the previous code
and listings for examples of each construct listed below.

4.1 domain block

A domain description consists of a requirements statement, parameter type definitions,
variable definitions, transition dynamics, and a reward.

4.1.1 requirements block

• continuous: this domain uses real-valued parameterized variables

• multivalued: this domain uses enumerated pvariables

• reward-deterministic: this domain does not use a stochastic reward

• intermediate-nodes: this domain uses intermediate pvariable nodes

• constrained-state: this domain uses state constraints

• partially-observed: this domain uses observation pvariables so it is treated as
a POMDP (not an MDP as is otherwise the case)

• concurrent: this domain does not permit multiple non-default actions

• integer-valued: this domain does not use integer variables

• cpf-deterministic: this domain uses deterministic conditional functions for
transitions (it is important to note that RDDL can also be used to model de-
terministic domains)

http://code.google.com/p/rddlsim/source/browse/trunk/files/rddl/test/sidewalk.rddl
http://code.google.com/p/rddlsim/source/browse/trunk/files/rddl/test/sysadmin.rddl

4.1.2 types

Allowed types are object and enumerated types. Enumerated type values must be
specified in a set and must be prefixed with an @ symbol.

4.1.3 pvariables

Allowed pvariable types are non-fluent, state-fluent, action-fluent, interm-fluent,
and observ-fluent. The first three require a default value, and interm-fluent requires
a stratification level.

Possible pvariable ranges are bool, int, real, object, or enumerated. The latter two
require the user-defined name as the range specification.

4.1.4 cpfs

If the requirement cpf-deterministic is specified, then this section should be named
cdf (conditional deterministic function) in place of cpf (conditional probabilistic func-
tion). cdfs should not reference any probability distributions; cpfs should also use a
probability distribution or a KronDelta or DiracDelta if the cpf is actually determin-
istic.

cpfs and cdfs must be specified for all non-fluent, non-action pvariables. cpfs begin
with a pvariable name and logical variable specification (variables must begin with ?)
corresponding to the argument types listed in the pvariable declaration. A pvariable
name for a next-state fluent must be primed with a ’ to differentiate it from any mentions
of the current-state value of the pvariable.

cpf expressions are compositional and can consist of the following constructs:

• Constants

– true, false (evaluated respectively as 1 or 0 if used in arithmetic expressions)

– integers (-2,0,1790,. . .) and reals (-2.0, 0.0001, 3.14159)

– enumerated values (although these have no boolean or arithmetic evaluation)

• Grouping can use either balanced parens (. . .) or brackets [. . .]

• Logical expressions (∧, |,∼,=>,<=> plus ∃/∀ quantification over variables)

– Negation ∼ or any binary logical connective ∧, |,∼,=>,<=>

– ∃/∀ quantification over object types using forall and exists

• Arithmetic expressions (+,−, ∗, /) plus
∑

/
∏

aggregation over variables)

– Any binary arithmetic expression using +,−, ∗, /

–
∑

and
∏

aggregation over object types using sum and prod

• (In)equality comparison expressions (==,∼=, <, >, <=, >=)

– Equality (==) and disequality (∼=) between any identical range pvariables

– Inequality (<,>,<=, >=) between any numerically valued pvariables (real,
int, bool) or expressions

• Conditional expressions

– if-then-else: see numerous code examples

– switch: see code example in dbn types interm po.rddl, lines 63–66

• Basic probability distributions (note: all parameters can be expressions)

– KronDelta(v): places all probability mass on its discrete argument v, discrete
sample is thus deterministic

– DiracDelta(v): places all probability mass on its continuous argument v,
continuous sample is thus deterministic

– Bernoulli(p): samples a boolean with probability of true given by parameter
p ∈ [0, 1]

– Discrete(var-name,~p): samples an enumerated value with probability vec-
tor ~p (

∑
i ~pi = 1) where ~p is described as in the example of lines 53–57 in

dbn types interm po.rddl.

– Normal(µ,σ2): samples a continuous value from a Normal distribution with
mean µ and variance σ2, σ2 > 0.

– Poisson(λ): samples an integer value from a Poisson distribution with rate
parameter λ per fixed time interval, λ > 0.

– (more to come in future)

4.1.5 reward

A reward section specifies any arithmetic expression that can be evaluated/sampled to a
numerical constant (so no unbound variables) over the current state of any non-fluent,
state-fluent, action-fluent, or interm-fluent pvariables.

If the reward-deterministic requirement is specified, the reward specification should
not reference any distributions (e.g., Bernoulli).

4.1.6 state-action constraints

A state-action constraints section consists of lines containing logical expressions that
can be evaluated to true or false (so no unbound variables) over the current state of any
non-fluent, state-fluent, or action-fluent pvariables.

Note that intermediate variables cannot be referenced in the state-action constraints as
this would correspond to checking the (partial) outcome of an action, rather than its
preconditions.

A violation of any state-action constraint should lead to termination of the current
RDDL simulator trial with an error.

4.2 non-fluents block

An non-fluents block describes an instantiation of non-fluents, e.g, a fixed cell topology
in the Game of Life or a road topology in a logistics or traffic domain, and the object
domains that parameterize those non-fluent variables. Only user-defined object domains
used as a non-fluent parameter need to be specified in this section. Other object domains
can be specified in the instance block.

The non-fluents block may contain domain, objects, and non-fluents sections.

4.3 instance block

An instance block consists of remaining object instantiations not made in an optional
non-fluents specification, an initial state, and an objective criterion.

The instance block may contain domain, non-fluents, objects, init-state,
max-nondef-actions (for concurrency), horizon, and discount sections.

See the discussion after prop dbn to understand how RDDL evaluates the objective on
any trial.

5 rddlsim RDDL Simulator

For now, please refer to the documentation provided in the root directory of the rddlsim
code repository located at http://code.google.com/p/rddlsim/.

http://code.google.com/p/rddlsim/

References

[1] Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and
causation. Computational Intelligence, 5(3):142–150, 1989.

[2] Ronald A. Howard and James E. Matheson. Influence diagrams. In Ronald A.
Howard and James E. Matheson, editors, Readings on the Principles and Applica-
tions of Decision Analysis. Strategic Decision Group, Menlo Park, CA, 1984.

[3] Malte Helmert. PDDL resources: http://ipc.informatik.uni-freiburg.de/
PddlResources, 2009.

[4] Hakan Younes and Michael Littman. PPDDL: The probabilistic planning domain
definition language: http://www.cs.cmu.edu/∼lorens/papers/ppddl.pdf, 2004.

[5] Carlos Daganzo. The cell transmission model: Network traffic. Institute of trans-
portation studies, research reports, working papers, proceedings, Institute of Trans-
portation Studies, UC Berkeley, 1994.

[6] Avrim Blum and John Langford. Probabilistic planning in the graphplan frame-
work. In 5th European Conference on Planning (ECP), pages 319–332, London,
UK, 2000.

[7] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing
temporal planning domains. Journal of Artificial Intelligence Research, 20(1):61–
124, 2003.

[8] Iain Little and Sylvie Thiebaux. Concurrent probabilistic planning in the graphplan
framework. In ICAPS, pages 263–273. AAAI, 2006.

[9] D. Koller, D. McAllester, and A. Pfeffer. Effective Bayesian inference for stochastic
programs. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI), pages 740–747, 1997.

[10] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochastic
planning using decision diagrams. In Uncertainty in Artificial Intelligence (UAI-
99), pages 279–288, Stockholm, 1999.

[11] Pascal Poupart. Exploiting Structure to Efficiently Solve Large Scale Partially Ob-
servable Markov Decision Processes. PhD thesis, Department of Computer Science,
University of Toronto, Toronto, Canada, 2005.

[12] Pascal Poupart. Symbolic perseus code repository, 2005.

[13] David Poole. First-order probabilistic inference. In IJCAI, pages 985–991, 2003.

[14] Craig Boutilier, Ray Reiter, and Bob Price. Symbolic dynamic programming for
first-order MDPs. In IJCAI-01, pages 690–697, Seattle, 2001.

http://ipc.informatik.uni-freiburg.de/PddlResources
http://ipc.informatik.uni-freiburg.de/PddlResources
http://www.cs.cmu.edu/~lorens/papers/ppddl.pdf

[15] Scott Sanner and Craig Boutilier. Approximate solution techniques for factored
first-order MDPs. In Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling (ICAPS 07), 2007.

[16] Scott Sanner and Kristian Kersting. Symbolic dynamic programming for first-order
poMDPs. In In Proceedings of the 24th AAAI Conference on Artificial Intelligence
(AAAI-10), Atlanta, Georgia, July 19-23 2010. AAAI Press.

[17] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. PDDL – the planning domain
definition language – version 1.2. Technical report, Yale Center for Computational
Vision and Control, October 1998.

[18] Stefan Edelkamp and Jörg Hoffmann. PDDL2.2: The language for the classical
part of IPC-4. Technical report, Albert-Ludwigs-Universitt Freiburg, Institut fr
Informatik, January 2004.

[19] Alfonso Gerevini and Derek Long. Plan constraints and preferences in PDDL3.
Technical report, Dipartimento di Elettronica per l’Automazione, Universit degli
Studi di Brescia, August 2005.

[20] Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112(1-2):181–211, 1999.

[21] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and Michael Gene-
sereth. General game playing: Game Description Language specification. Technical
report, Stanford University Logic Group, March 2008.

[22] Hctor Geffner. Functional strips: A more flexible language for planning and problem
solving. In Jack Minker, editor, Logic-based Artificial Intelligence, pages 188–209.
Kluwer, 2000.

[23] Scott Sanner and Sungwook Yoon. rddlsim RDDL simulator: http://code.
google.com/p/rddlsim/, 2010.

[24] M. Gardner. Column: Mathematical games. Scientific American, October 1970.

http://code.google.com/p/rddlsim/
http://code.google.com/p/rddlsim/

	What's wrong with (P)PDDL?
	Principles of RDDL
	What RDDL Is
	What RDDL Isn't (Yet)

	RDDL Examples
	Simple Boolean Propositional Domain
	Non-parameterized Partially-observed Domain
	Parameterized Domain: Concurrent Interactive Game of Life
	Additional Models

	RDDL File Structure
	domain block
	non-fluents block
	instance block

	rddlsim RDDL Simulator

