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Abstract. In this paper, we propose a novel algorithm to learn a Büchi automa-
ton from a teacher who knows an ω-regular language. The algorithm is based on
learning a formalism named family of DFAs (FDFAs) recently proposed by An-
gluin and Fisman [10]. The main catch is that we use a classification tree structure
instead of the standard observation table structure. The worst case storage space
required by our algorithm is quadratically better than the table-based algorithm
proposed in [10]. We implement the first publicly available library ROLL (Reg-
ular Omega Language Learning), which consists of all ω-regular learning algo-
rithms available in the literature and the new algorithms proposed in this paper.
Experimental results show that our tree-based algorithms have the best perfor-
mance among others regarding the number of solved learning tasks.

1 Introduction

Since the last decade, learning-based automata inference techniques [7,11,30,36] have
received significant attention from the community of formal system analysis. In general,
the primary applications of automata learning in the community can be categorized into
two: improving efficiency and scalability of verification [6,15,17,19,21,23,25,33] and
synthesizing abstract system model for further analysis [1,5,16,18,22,24,26,35,37,40].

The former usually is based on the so called assume-guarantee compositional veri-
fication approach, which divides a verification task into several subtasks via a compo-
sition rule. Learning algorithms are applied to construct environmental assumptions of
components in the rule automatically. For the latter, automata learning has been used to
automatically generate interface model of computer programs [5,22,26,37,41], a mod-
el of system error traces for diagnosis purpose [16], behavior model of programs for
statistical program analysis [18], and model-based testing and verification [24, 35, 40].

Besides the classical finite automata learning algorithms, people also apply and de-
velop learning algorithm for richer models for the above two applications. For example,
learning algorithms for register automata [27, 28] have been developed and applied to
synthesis system and program interface models. Learning algorithm for timed automata
has been developed for automated compositional verification for timed systems [33].
However, all the results mentioned above are for checking safety properties or synthe-
sizing finite behavior models of systems/programs. Büchi automaton is the standard
model for describing liveness properties of distributed systems [4]. The model has been



applied in automata theoretical model checking [39] to describe the property to be veri-
fied. It is also often used in the synthesis of reactive systems. Moreover, Büchi automata
have been used as a means to prove program termination [31]. However, unlike the case
for finite automata learning, learning algorithms for Büchi automata are very rarely used
in our community. We believe this is a potentially fertile area for further investigation.

The first learning algorithm for the full-class of ω-regular languages represented
as Büchi automata was described in [20], based on the L∗ algorithm [7] and the result
of [14]. Recently, Angluin and Fisman propose a new learning algorithm for ω-regular
languages [10] using a formalism called a family of DFAs (FDFAs), based on the results
of [34]. The main problem of applying their algorithm in verification and synthesis is
that their algorithm requires a teacher for FDFAs. In this paper, we show that their
algorithm can be adapted to support Büchi automata teachers.

We propose a novel ω-regular learning algorithm based on FDFAs and a classifi-
cation tree structure (inspired by the tree-based L∗ algorithm in [30]). The worst case
storage space required by our algorithm is quadratically better than the table-based al-
gorithm proposed in [10]. Experimental results show that our tree-based algorithms
have the best performance among others regarding the number of solved learning tasks.

For regular language learning, there are robust and publicly available libraries, e.g.,
libalf [12] and LearnLib [29]. A similar library is still lacking for Büchi automata
learning. We implement the first publicly available Büchi automata learning library,
named ROLL (Regular Omega Language Learning, http://iscasmc.ios.ac.cn/
roll), which includes all Büchi automata learning algorithms of the full class of ω-
regular languages available in the literature and the ones proposed in this paper. We
compare the performance of those algorithms using a benchmark consisting of 295
Büchi automata corresponding to all 295 LTL specifications available in BüchiStore [38].

To summarize, our contribution includes the following. (1) Adapting the algorithm
of [10] to support Büchi automata teachers. (2) A novel learning algorithm forω-regular
language based on FDFAs and classification trees. (3) The publicly available library
ROLL that includes all Büchi automata learning algorithms can be found in the litera-
ture. (4) A comprehensive empirical evaluation of Büchi automata learning algorithms.

2 Preliminaries

Let A and B be two sets. We use A ⊕ B to denote their symmetric difference, i.e., the set
(A \ B) ∪ (B \ A). Let Σ be a finite set called alphabet. We use ε to represent an empty
word. The set of all finite words is denoted by Σ∗, and the set of all infinite words, called
ω-words, is denoted by Σω. Moreover, we also denote by Σ+ the set Σ∗ \ {ε}. We use |u|
to denote the length of the finite word u. We use [i · · · j] to denote the set {i, i+1, · · · , j}.
We denote by w[i] the i-th letter of a word w. We use w[i..k] to denote the subword of
w starting at the i-th letter and ending at the k-th letter, inclusive, when i ≤ k and the
empty word ε when i > k. A language is a subset of Σ∗ and an ω-language is a subset
of Σω. Words of the form uvω are called ultimately periodic words. We use a pair of
finite words (u, v) to denote the ultimately periodic word w = uvω. We also call (u, v) a
decomposition of w. For an ω-language L, let UP(L) = {uvω | u ∈ Σ∗, v ∈ Σ+, uvω ∈ L},
i.e., all ultimately periodic words in L.



A finite automaton (FA) is a tuple A = (Σ,Q, q0, F, δ) consisting of a finite alphabet
Σ, a finite set Q of states, an initial state q0, a set F ⊆ Q of accepting states, and a
transition relation δ ⊆ Q × Σ × Q. For convenience, we also use δ(q, a) to denote the
set {q′ | (q, a, q′) ∈ δ}. A run of an FA on a finite word v = a1a2a3 · · · an is a sequence
of states q0, q1, · · · , qn such that (qi, ai+1, qi+1) ∈ δ. The run v is accepting if qn ∈ F.
A word u is accepting if it has an accepting run. The language of A, denoted by L(A),
is the set {u ∈ Σ∗ | u is accepted by A}. Given two FAs A and B, one can construct a
product FA A × B recognizing L(A) ∩ L(B) using a standard product construction.

A deterministic finite automaton (DFA) is an FA such that δ(q, a) is a singleton for
any q ∈ Q and a ∈ Σ. For DFA, we write δ(q, a) = q′ instead of δ(q, a) = {q′}. The
transition can be lifted to words by defining δ(q, ε) = q and δ(q, av) = δ(δ(q, a), v) for
q ∈ Q, a ∈ Σ and v ∈ Σ∗. We also use A(v) as a shorthand for δ(q0, v).

A Büchi automaton (BA) has the same structure as an FA, except that it accepts only
infinite words. A run of an infinite word in a BA is an infinite sequence of states defined
similarly to the case of a finite word in an FA. An infinite word w is accepted by a BA
iff it has a run visiting at least one accepting state infinitely often. The language defined
by a BA A, denoted by L(A), is the set {w ∈ Σω | w is accepted by A}. An ω-language
L ⊆ Σω is ω-regular iff there exists a BA A such that L = L(A).

Theorem 1 (Ultimately Periodic Words of ω-Regular Languages [13]). Let L, L′ be
two ω-regular languages. Then L = L′ if and only if UP(L) = UP(L′).

Definition 1 (Family of DFAs (FDFA) [10]). A family of DFAs F = (M, {Aq}) over
an alphabet Σ consists of a leading automaton M = (Σ,Q, q0, δ) and progress DFAs
Aq = (Σ,Qq, sq, δq, Fq) for each q ∈ Q.

Notice that the leading automaton M is a DFA without accepting states. Each FDFA
F characterizes a set of ultimately periodic words UP(F ). Formally, an ultimately pe-
riodic word w is in UP(F ) iff it has a decomposition (u, v) accepted by F . A decom-
position (u, v) is accepted by F iff M(uv) = M(u) and v ∈ L(AM(u)). An example of
an FDFA F is depicted in Fig. 1. The leading automaton M has only one state ε. The
progress automaton of ε is Aε . The word (ba)ω is in UP(F ) because it has a decomposi-
tion (ba, ba) such that M(ba · ba) = M(ba) and ba ∈ L(AM(ba)) = L(Aε). It is easy to see
that the decomposition (bab, ab) is not accepted by F since ab < L(AM(bab)) = L(Aε).

ε

M a

b

ε a

Aε

a, b

a

b

Fig. 1. An example of an FDFA

For any ω-regular language L, there exists an
FDFAF such that UP(L) = UP(F ) [10]. We show
in Sec. 6 that it is not the case for the reverse
direction. More precisely, in [10], three kinds of
FDFAs are suggested as the canonical represen-
tations of ω-regular languages, namely period-
ic FDFA, syntactic FDFA and recurrent FDFA.
Their formal definitions are given in terms of right
congruence.

An equivalence relation v on Σ∗ is a right congruence if x v y implies xv v yv for
every x, y, v ∈ Σ∗. The index of v, denoted by |v|, is the number of equivalence classes
of v. We use Σ∗/v to denote the equivalence classes of the right congruence v. A finite
right congruence is a right congruence with a finite index. For a word v ∈ Σ∗, we use



the notation [v]v to represent the class of v in which v resides and ignore the subscript
v when the context is clear. The right congruence vL of a given ω-regular language L
is defined such that x vL y iff ∀w ∈ Σω.xw ∈ L ⇐⇒ yw ∈ L. The index of vL is finite
because it is not larger than the number of states in a deterministic Muller automaton
recognizing L [34].

Definition 2 (Canonical FDFA [10]). Given an ω-regular language L, a periodic (re-
spectively, syntactic and recurrent) FDFA F = (M, {Aq}) of L is defined as follows.
The leading automaton M is the tuple (Σ, Σ∗/vL , [ε]vL , δ), where δ([u]vL , a) = [ua]vL for
all u ∈ Σ∗ and a ∈ Σ.

We define the right congruences ≈u
P,≈

u
S , and ≈u

R for progress automata Au of peri-
odic, syntactic, and recurrent FDFA respectively as follows:

x ≈u
P y iff ∀v ∈ Σ∗, u(xv)ω ∈ L⇐⇒ u(yv)ω ∈ L,

x ≈u
S y iff ux vL uy and ∀v ∈ Σ∗, uxv vL u =⇒ (u(xv)ω ∈ L⇐⇒ u(yv)ω ∈ L), and

x ≈u
R y iff ∀v ∈ Σ∗, uxv vL u ∧ u(xv)ω ∈ L⇐⇒ uyv vL u ∧ u(yv)ω ∈ L.

The progress automaton Au is the tuple (Σ, Σ∗/≈u
K
, [ε]≈u

K
, δK , FK), where δK([u]≈u

K
, a) =

[ua]≈u
K

for all u ∈ Σ∗ and a ∈ Σ. The accepting states FK is the set of equivalence
classes [v]≈u

K
for which uv vL u and uvω ∈ L when K ∈ {S ,R} and the set of equivalence

classes [v]≈u
K

for which uvω ∈ L when K ∈ {P}.

In this paper, by an abuse of notation, we use a finite word u to denote the state in a
DFA in which the equivalence class [u] resides.

Lemma 1 ([10]). Let F be a periodic (syntactic, recurrent) FDFA of an ω-regular
language L. Then UP(F ) = UP(L).

Lemma 2 ([9]). Let F be a periodic (syntactic, recurrent) FDFA of an ω-regular lan-
guage L. One can construct a BA recognizing L from F .

3 Büchi Automata Learning Framework based on FDFA

We begin with an introduction of the framework of learning BA recognizing an un-
known ω-regular language L.

Overview of the framework: First, we assume that we already have a BA teacher who
knows the unknown ω-regular language L and answers membership and equivalence
queries about L. More precisely, a membership query MemBA(uvω) asks if uvω ∈ L.
For an equivalence query EquBA(B), the BA teacher answers “yes” when L(B) = L,
otherwise it returns “no” as well as a counterexample uvω ∈ L ⊕ L(B).

The framework depicted in Fig. 2 consists of two components, namely the FDFA
learner and the FDFA teacher. Note that one can place any FDFA learning algorithm
to the FDFA learner component. For instance, one can use the FDFA learner from [10]
which employs a table to store query results, or the FDFA learner using a classification
tree proposed in this paper. The FDFA teacher can be any teacher who can answer
membership and equivalence queries about an unknown FDFA.
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Fig. 2. Overview of the learning framework based on FDFA learning. The components in
boxes are results from existing works. The components in boxes are our new contributions.

FDFA learners: The FDFA learners component will be introduced in Sec. 4 and 5.
We first briefly review the table-based FDFA learning algorithms [10] in Sec. 4. Our
tree-based learning algorithm for canonical FDFAs will be introduced in Sec. 5. The al-
gorithm is inspired by the tree-based L∗ learning algorithm [30]. Nevertheless, applying
the tree structure to learn FDFAs is not a trivial task. For example, instead of a binary
tree used in [30], we need to use a K-ary tree to learn syntactic FDFAs. The use of
K-ary tree complicates the procedure of refining the classification tree and automaton
construction. More details will be provided in Sec. 5.

FDFA teacher: The task of the FDFA teacher is to answer queries MemFDFA(u, v) and
EquFDFA(F) posed by the FDFA learner. Answering MemFDFA(u, v) is easy. The FDFA
teacher just needs to redirect the result of MemBA(uvω) to the FDFA learner. Answering
equivalence query EquFDFA(F) is more tricky.

From an FDFA F to a BA B: The FDFA teacher needs to transform an FDFA F to a
BA B to pose an equivalence query EquBA(B). In Sec. 6, we show that, in general, it
is impossible to build a BA B from an FDFA F such that UP(L(B)) = UP(F). There-
fore in Sec. 6, we propose two methods to approximate UP(F), namely the under-
approximation method and the over-approximation method. As the name indicates,
the under-approximation (respectively, over-approximation) method constructs a BA
B from F such that UP(L(B)) ⊆ UP(F) (respectively, UP(F) ⊆ UP(L(B))). The under-
approximation method is modified from the algorithm in [14]. Note that if the FDFAs
are the canonical representations, the BAs built by the under-approximation method
recognize the same ultimately periodic words as the FDFAs, which makes it a complete



method for BA learning (Lem. 1 and 2). As for the over-approximation method, we can-
not guarantee to get a BA B such that UP(L(B)) = UP(F) even if the F is a canonical
representation, which thus makes it an incomplete method. However, in the worst case,
the over-approximation method produces a BA whose number of states is only quadrat-
ic in the size of the FDFA. In contrast, the number of states in the BA constructed by
the under-approximation method is cubic in the size of the FDFA.

Counterexample analysis: If the FDFA teacher receives “no” and a counterexample uvω

from the BA teacher, the FDFA teacher has to return “no” as well as a valid decom-
position (u′, v′) that can be used by the FDFA learner to refine F. In Sec. 7, we show
how the FDFA teacher chooses a pair (u′, v′) from uvω that allows FDFA learner to re-
fine current FDFA F. As the dashed line with a label F in Fig. 2 indicates, we use the
current conjectured FDFA F to analyze the counterexample. The under-approximation
method and the over-approximation method of FDFA to BA translation require different
counterexample analysis procedures. More details will be provided in Sec. 7.

Once the BA teacher answers “yes” for the equivalence query EquBA(B), the FDFA
teacher will terminate the learning procedure and outputs a BA recognizing L.

Due to the lack of space, all missing proofs and details for our Büchi learning algo-
rithm are provided in [32].

4 Table-based Learning Algorithm for FDFAs

In this section, we briefly introduce the table-based learner for FDFAs [10]. It employs
a structure called observation table [7] to organize the results obtained from queries and
propose candidate FDFAs. The table-based FDFA learner simultaneously runs several
instances of DFA learners. The DFA learners are very similar to the L∗ algorithm [7],
except that they use different conditions to decide if two strings belong to the same state
(based on Def. 2). More precisely, the FDFA learner uses one DFA learner L∗M for the
leading automaton M, and for each state u in M, one DFA learner L∗Au for each progress
automaton Au. The table-based learning procedure works as follows. The learner L∗M
first closes the observation table by posing membership queries and then constructs a
candidate for leading automaton M. For every state u in M, the table-based algorithm
runs an instance of DFA learner L∗Au to find the progress automaton Au. When all D-
FA learners propose candidate DFAs, the FDFA learner assembles them to an FDFA
F = (M, {Au}) and then poses an equivalence query for it. The FDFA teacher will ei-
ther return “yes” which means the learning algorithm succeeds or return “no” accom-
panying with a counterexample. Once receiving the counterexample, the table-based
algorithm will decide which DFA learner should refine its candidate DFA. We refer
interested readers to [10] for more details of the table-based algorithm.

5 Tree-based Learning Algorithm for FDFAs

In this section, we provide our tree-based learning algorithm for FDFAs. To that end,
we first define the classification tree structure for FDFA learning in Sec. 5.1 and present
the tree-based algorithm in Sec. 5.2.



5.1 Classification Tree Structure in Learning

Here we present our classification tree structure for FDFA learning. Compared to the
classification tree defined in [30], ours is not restricted to be a binary tree. Formally,
a classification tree is a tuple T = (N, r, Ln, Le) where N = I ∪ T is a set of nodes
consisting of the set I of internal nodes and the set T of terminal nodes, the node r ∈ N
is the root of the tree, Ln : N → Σ∗∪(Σ∗×Σ∗) labels an internal node with an experiment
and a terminal node with a state, and Le : N × D → N maps a parent node and a label
to its corresponding child node, where the set of labels D will be specified below.

During the learning procedure, we maintain a leading tree T for the leading au-
tomaton M, and for every state u in M, we keep a progress tree Tu for the progress
automaton Au. For every classification tree, we define a tree experiment function TE :
Σ∗ × (Σ∗ ∪ (Σ∗ ×Σ∗))→ D. Intuitively, TE(x, e) computes the entry value at row (state)
x and column (experiment) e of an observation table in table-based learning algorithms.
The labels of nodes in the classification tree T satisfy the follow invariants: Let t ∈ T
be a terminal node labeled with a state x = Ln(t). Let t′ ∈ I be an ancestor node of t
labeled with an experiment e = Ln(t′). Then the child of t′ following the label TE(x, e),
i.e., Le(t′,TE(x, e)), is either the node t or an ancestor node of t.

Leading tree T : The leading tree T for M is a binary tree with labels D = {F,T}.
The tree experiment function TE(u, (x, y)) = T iff uxyω ∈ L (recall the definition of
vL in Sec. 2) where u, x, y ∈ Σ∗. Intuitively, each internal node n in T is labeled by an
experiment xyω represented as (x, y). For any word u ∈ Σ∗, uxyω ∈ L (or uxyω < L)
implies that the equivalence class of u lies in the T-subtree (or F-subtree) of n.

Progress tree Tu: The progress trees Tu and the corresponding function TE(x, e) are
defined based on the right congruences ≈u

P, ≈u
S , and ≈u

R of canonical FDFAs in Def. 2.
Periodic FDFA: The progress tree for periodic FDFA is also a binary tree labeled with
D = {F,T}. The experiment function TE(x, e) = T iff u(xe)ω ∈ L where x, e ∈ Σ∗.
Syntactic FDFA: The progress tree for syntactic FDFA is a K-ary tree with labels D =

Q × {A,B,C} where Q is the set of states in the leading automaton M. For all x, e ∈ Σ∗,
the experiment function TE(x, e) = (M(ux), t), where t = A iff u = M(uxe)∧u(xe)ω ∈ L,
t = B iff u = M(uxe) ∧ u(xe)ω < L, and t = C iff u , M(uxe).

For example, assuming that M is constructed from the right congruence vL, for
any two states x and y such that TE(x, e) = TE(y, e) = (z, A), it must be the case that
ux vL uy because M(ux) = z = M(uy). Moreover, the experiment e cannot distinguish
x and y because uxe vL u vL uye and both u(xe)ω, u(ye)ω ∈ L.
Recurrent FDFA: The progress tree for recurrent FDFA is a binary tree labeled with
D = {F,T}. The function TE(x, e) = T iff u(xe)ω ∈ L ∧ u = M(uxe) where x, e ∈ Σ∗.

5.2 Tree-based Learning Algorithm

The tree-based learning algorithm first initializes the leading tree T and the progress
tree Tε as a tree with only one terminal node r labeled by ε.



From a classification tree T = (N, r, Ln, Le), the learner constructs a candidate of
a leading automaton M = (Σ,Q, ε, δ) or a progress automaton Au = (Σ,Q, ε, δ, F) as
follow. The set of states is Q = {Ln(t) | t ∈ T }. Given s ∈ Q and a ∈ Σ, the transition
function δ(s, a) is constructed by the following procedure. Initially the current node
n := r. If n is a terminal node, it returns δ(s, a) = Ln(n). Otherwise, it picks a unique
child n′ of n with Le(n,TE(sa, Ln(n))) = n′, updates the current node to n′, and repeats
the procedure4. By Def. 2, the set of accepting states F of a progress automaton can be
identified from the structure of M with the help of membership queries. For periodic
FDFA, F = {v | uvω ∈ L, v ∈ Q} and for syntactic and recurrent FDFA, F = {v | uv vM

u, uvω ∈ L, v ∈ Q}.
Whenever the learner has constructed an FDFA F = (M, {Au}), it will pose an

equivalence query for F . If the teacher returns “no” and a counterexample (u, v), the
learner has to refine the classification tree and propose another candidate of FDFA.

Definition 3 (Counterexample for FDFA Learner). Given the conjectured FDFA F
and the target language L, we say that the counterexample

– (u, v) is positive if uv vM u, uvω ∈ UP(L), and (u, v) is not accepted by F ,
– (u, v) is negative if uv vM u, uvω < UP(L), and (u, v) is accepted by F .

We remark that in our case all counterexamples (u, v) from the FDFA teacher satisfy
the constraint uv vM u, which corresponds to the normalized factorization form in [10].

Counterexample guided refinement of F : Below we show how to refine the classi-
fication trees based on a negative counterexample (u, v). The case of a positive coun-
terexample is symmetric. By definition, we have uv ∼M u, uvω < UP(L) and (u, v) is
accepted by F . Let ũ = M(u), if ũvω ∈ UP(L), the refinement of the leading tree is
performed, otherwise ũvω < UP(L), the refinement of the progress tree is performed.

Refinement for the leading tree: In the leading automaton M of the conjectured
FDFA, if a state p has a transition to a state q via a letter a, i.e, q = M(pa), then
pa has been assigned to the terminal node labeled by q during the construction of M.
If one also finds an experiment e such that TE(q, e) , TE(pa, e), then we know that q
and pa should not belong to the same state in a leading automaton. W.l.o.g., we assume
TE(q, e) = F. In such a case, the leading tree can be refined by replacing the terminal
node labeled with q by a tree such that (i) its root is labeled by e, (ii) its left child is a
terminal node labeled by q, and (iii) its right child is a terminal node labeled by pa.

Below we discuss how to extract the required states p, q and experiment e. Let |u| =
n and s0s1 · · · sn be the run of M over u. Note that s0 = M(ε) = ε and sn = M(u) = ũ.
From the facts that (u, v) is a negative counterexample and ũvω ∈ UP(L) (the condition
to refine the leading tree), we have TE(s0, (u[1 · · · n], v)) = F , T = TE(sn, (ε, v)) =

TE(sn, (u[n + 1 · · · n], v)) because uvω < UP(L) and ũvω ∈ UP(L). Recall that we have
w[ j · · · k] = ε when j > k. Therefore, there must exist a smallest j ∈ [1 · · · n] such

4 For syntactic FDFA, it can happen that δ(s, a) goes to a “new” terminal node. A new state for
the FDFA is identified in such a case.



that TE(s j−1, (u[ j · · · n], v)) , TE(s j, (u[ j + 1 · · · n], v)). It follows that we can use the
experiment e = (u[ j + 1 · · · n], v) to distinguish q = s j and pa = s j−1u[ j].

Example 1. Consider a conjectured FDFA F in Fig. 1 produced during the process of
learning L = aω + bω. The corresponding leading tree T and the progress tree Tε are
depicted on the left of Fig. 3. The dashed line is for the F label and the solid one is for
the T label. Suppose the FDFA teacher returns a negative counterexample (ab, b). The
leading tree has to be refined since M(ab)bω = bω ∈ L. We find an experiment (b, b)
to differentiate ε and a using the procedure above and update the leading tree T to T ′.
The leading automaton M constructed from T ′ is depicted on the right of Fig. 3.

ε

T

ε

ε a

Tε

CE (ab, b)
(b, b)

a ε

T ′

ε a

M

a

b

a

b

Fig. 3. Refinement of the leading tree and the corresponding leading automaton

Refinement for the progress tree: Here we explain the case of periodic FDFAs. The
other cases are similar and we leave the details in [32]. Recall that ũvω < UP(L) and
thus the algorithm refines the progress tree Tũ. Let |v| = n and h = s0s1 · · · sn be the
corresponding run of Aũ over v. Note that s0 = Aũ(ε) = ε and sn = Aũ(v) = ṽ. We have
ũ(ṽ)ω ∈ UP(L) because ṽ is an accepting state. From the facts that ũvω < UP(L) and
ũ(ṽ)ω ∈ UP(L), we have TE(s0, v[1 · · · n]) = F , T = TE(sn, ε) = TE(sn, v[n + 1 · · · n]).
Therefore, there must exist a smallest j ∈ [1 · · · n] such that TE(s j−1, v[ j · · · n]) ,
TE(s j, v[ j + 1 · · · n]). It follows that we can use the experiment e = v[ j + 1 · · · n] to
distinguish q = s j, pa = s j−1v[ j] and refine the progress tree Tũ.

Optimization: Example 1 also illustrates the fact that the counterexample (ab, b) may
not be eliminated right away after the refinement. In this case, it is still a valid counterex-
ample (assuming that the progress tree Tε remains unchanged). Thus as an optimization
in our tool, one can repeatedly use the counterexample until it is eliminated.

6 From FDFA to Büchi Automata
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Fig. 4. An FDFA F such that UP(F ) does
not characterize an ω-regular language

Since the FDFA teacher exploits the BA
teacher for answering equivalence queries, it
needs first to convert the given FDFA into a
BA. Unfortunately, with the following exam-
ple, we show that in general, it is impossible
to construct a precise BA B for an FDFA F
such that UP(L(B)) = UP(F ).

Example 2. Consider a non-canonical FDFAF in Fig. 4, we have UP(F ) =
⋃∞

n=0{a, b}
∗·

(abn)ω. We assume that UP(F ) characterizes an ω-regular language L. It is known that



the periodic FDFA recognizes exactly the ω-regular language and the index of each
right congruence is finite [10]. However, we can show that the right congruence ≈εP of
a periodic FDFA of L is of infinite index. Observe that abk 6≈εP ab j for any k, j ≥ 1 and
k , j, because ε · (abk ·abk)ω ∈ UP(F ) and ε · (ab j ·abk)ω < UP(F ). It follows that ≈εP is
of infinite index. We conclude that UP(F ) cannot characterize an ω-regular language.

We circumvent the above problem by proposing two BAs B, B, which under- and
over-approximate the ultimately periodic words of an FDFA. Given an FDFA F =

(M, {Au}) with M = (Σ,Q, q0, δ) and Au = (Σ,Qu, su, δu, Fu) for all u ∈ Q, we define
Ms

v = (Σ,Q, s, δ, {v}) and (Au)s
v = (Σ,Qu, s, δu, {v}), i.e., the DFA obtained from M

and Au by setting their initial and accepting states as s and {v}, respectively. Define
N(u,v) = {vω | uv vM u ∧ v ∈ L((Au)su

v )}. Then UP(F ) =
⋃

u∈Q,v∈Fu
L(Mq0

u ) · N(u,v).
We construct B and B by approximating the set N(u,v). For B, we first define an FA

P(u,v) = (Σ,Qu,v, su,v, { fu,v}, δu,v) = Mu
u × (Au)su

v and let N(u,v) = L(P(u,v))ω. Then one can
construct a BA (Σ,Qu,v ∪ { f }, su,v, { f }, δu,v ∪ δ f ) recognizing N(u,v) where f is a “fresh”
state and δ f = {( f , ε, su,v), ( fu,v, ε, f )}. For B, we define an FA P(u,v) = Mu

u×(Au)su
v ×(Au)v

v
and let N(u,v) = L(P(u,v))

ω. One can construct a BA recognizing N(u,v) using a similar
construction to the case of N(u,v). In Def. 4 we show how to construct BAs B and B s.t.
UP(L(B)) =

⋃
u∈Q,v∈Fu

L(Mq0
u ) · N(u,v) and UP(L(B)) =

⋃
u∈Q,v∈Fu

L(Mq0
u ) · N(u,v).

Definition 4. Let F = (M, {Au}) be an FDFA where M = (Σ,Q, q0, δ) and Au =

(Σ,Qu, su, Fu, δu) for every u ∈ Q. Let (Σ,Qu,v, su,v, { fu,v}, δu,v) be a BA recognizing
N(u,v) (respectively N(u,v)). Then the BA B (respectively B) is defined as the tupleΣ,Q ∪ ⋃

u∈Q,v∈Fu

Qu,v, q0,
⋃

u∈Q,v∈Fu

{ fu,v}, δ ∪
⋃

u∈Q,v∈Fu

δu,v ∪
⋃

u∈Q,v∈Fu

{(u, ε, su,v)}

 .
Lemma 3 (Sizes and Languages of B and B). Let F be an FDFA and B, B be the
BAs constructed from F by Def. 4. Let n and k be the numbers of states in the leading
automaton and the largest progress automaton of F . The number of states of B and B
are in O(n2k3) and O(n2k2), respectively. Moreover, UP(L(B)) ⊆ UP(F ) ⊆ UP(L(B))
and we have UP(L(B)) = UP(F ) when F is a canonical FDFA.

The properties below will be used later in analyzing counterexamples.

Lemma 4. Given an FDFA F = (M, {Au}), and B the BA constructed from F by Def. 4.
If (u, vk) is accepted by F for every k ≥ 1, then uvω ∈ UP(L(B)).

Lemma 5. Given an ω-word w ∈ UP(L(B)), there exists a decomposition (u, v) of w
and n ≥ 1 such that v = v1 · v2 · · · vn and for all i ∈ [1 · · · n], vi ∈ L(AM(u)) and uvi vM u.

Fig. 5 depicts the BAs B and B constructed from the FDFA F in Fig. 1. In the
example, we can see that the bω ∈ UP(F ) while bω < UP(L(B)).
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Fig. 5. NBA B and B for F in Fig. 1

7 Counterexample Analysis for FDFA Teacher

During the learning procedure, if we failed the equivalence query for the BA B, the BA
teacher will return a counterexample uvω to the FDFA teacher.

Definition 5 (Counterexample for the FDFA Teacher). Given the conjectured BA
B ∈ {B, B}, the target language L, we say that

– uvω is a positive counterexample if uvω ∈ UP(L) and uvω < UP(L(B)),
– uvω is a negative counterexample if uvω < UP(L) and uvω ∈ UP(L(B)).

Obviously, the above is different to the counterexample for the FDFA learner in
Def. 3. Below we illustrate the necessity of the counterexample analysis by an example.

Example 3. Again, consider the conjectured FDFAF depicted in Fig. 1 for L = aω+bω.
Suppose the BA teacher returns a negative counterexample (ba)ω. In order to remove
(ba)ω ∈ UP(F ), one has to find a decomposition of (ba)ω that F accepts, which is the
goal of the counterexample analysis. Not all decompositions of (ba)ω are accepted by
F . For instance, (ba, ba) is accepted while (bab, ab) is not.

A positive (respectively negative) counterexample uvω for the FDFA teacher is
spurious if uvω ∈ UP(F ) (respectively uvω < UP(F )). Suppose we use the under-
approximation method to construct the BA B from F depicted in Fig. 5. The BA teacher
returns a spurious positive counterexample bω, which is in UP(F ) but not in UP(L(B)).
We show later that in such a case, one can always find a decomposition, in this example
(b, bb), as the counterexample for the FDFA learner.

Given FDFA F = (M, {Au}), in order to analyze the counterexample uvω , we define:

– an FADu$v with L(Du$v) = {u′$v′ | u′ ∈ Σ∗, v′ ∈ Σ+, uvω = u′v′ω},
– an FAD1 with L(D1) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv vM u, v ∈ L(AM(u))}, and
– an FAD2 with L(D2) = {u$v | u ∈ Σ∗, v ∈ Σ∗, uv vM u, v < L(AM(u))}.

Here $ is a letter not in Σ. Intuitively,Du$v accepts every possible decomposition (u′, v′)
of uvω, D1 recognizes every decomposition (u′, v′) which is accepted by F and D2
accepts every decomposition (u′, v′) which is not accepted by F yet u′v′ vM u′.

Given a BA B constructed by the under-approximation method to construct a BA
B from F , we have that UP(L(B)) ⊆ UP(F ). Fig. 6(a) depicts all possible cases of
uvω ∈ UP(L(B)) ⊕ UP(L).



LB

F

uvω

uvω uvω

(a) Under-Approximation

LF

B

uvω

uvω

uvω

(b) Over-Approximation

Fig. 6. The Case for Counterexample Analysis

U1 : uvω ∈ UP(L)∧uvω < UP(F ) (square). The word uvω is a positive counterexample,
one has to find a decomposition (u′, v′) such that u′v′ vM u′ and u′v′ω = uvω. This
can be easily done by taking a word u′$v′ ∈ L(Du$v) ∩ L(D2).

U2 : uvω < UP(L)∧uvω ∈ UP(F ) (circle). The word uvω is a negative counterexample,
one needs to find a decomposition (u′, v′) of uvω that is accepted by F . This can be
done by taking a word u′$v′ ∈ L(Du$v) ∩ L(D1).

U3 : uvω ∈ UP(L)∧ uvω ∈ UP(F ) (triangle). The word uvω is a spurious positive coun-
terexample. Suppose the decomposition (u, v) of uvω is accepted by F , according
to Lem. 4, there must exist some k ≥ 1 such that (u, vk) is not accepted by F . Thus,
we can also use the same method in U1 to get a counterexample (u′, v′).

We can also use the over-approximation construction to get a BA B from F such
that UP(F ) ⊆ UP(L(B)), and all possible cases for a counterexample uvω ∈ UP(L(B))⊕
UP(L) is depicted in Fig. 6(b).

O1 : uvω ∈ UP(L)∧ uvω < UP(F ) (square). The word uvω is a positive counterexample
that can be dealt with the same method for case U1.

O2 : uvω < UP(L) ∧ uvω ∈ UP(F ) (circle). The word uvω is a negative counterexample
that can be dealt with the same method for case U2.

O3 : uvω < UP(L) ∧ uvω < UP(F ) (triangle). In this case, uvω is a spurious negative
counterexample. In such a case it is possible that we cannot find a valid decompo-
sition of uvω to refine F . By Lem. 5, we can find a decomposition (u′, v′) of uvω

such that v′ = v1v2 · · · vn, u′vi vM u′, and vi ∈ L(AM(u′)) for some n ≥ 1. It follows
that (u′, vi) is accepted by F . If we find some i ∈ [1 · · · n] such that u′vωi < UP(L),
then we return (u′, vi), otherwise, the algorithm aborts with an error.

Finally, we note that determining whether uvω ∈ UP(L) can be done by posing a
membership query MemBA(uvω), and checking whether uvω ∈ UP(F ) boils down to
checking the emptiness of L(Du$v) ∩ L(D1). The construction for Du$v, D1, and D2,
and the correctness proof of counterexample analysis are given in [32].

8 Complexity

We discuss the complexity of tree-based FDFA learning algorithms in Sec. 5. Let F =

(M, {Au}) be the corresponding periodic FDFA of the ω-regular language L, and let n
be the number of states in the leading automaton M and k be the number of states in
the largest progress automaton Au. We remark that F is uniquely defined for L and the



table-based algorithm needs the same amount of equivalence queries as the tree-based
one in the worst case. Given a counterexample (u, v) returned from the FDFA teacher,
we define its length as |u| + |v|.

Theorem 2 (Query Complexity). Let (u, v) be the longest counterexample returned
from the FDFA teacher. The number of equivalence queries needed for the tree-based
FDFA learning algorithm to learn the periodic FDFA of L is in O(n + nk), while the
number of membership queries is in O((n + nk) · (|u| + |v| + (n + k) · |Σ |)).

For the syntactic and recurrent FDFAs, the number of equivalence queries need-
ed for the tree-based FDFA learning algorithm is in O(n + n3k), while the number of
membership queries is in O((n + n3k) · (|u| + |v| + (n + nk) · |Σ |)).

The learning of syntactic and recurrent FDFAs requires more queries since once
their leading automata have been modified, they need to redo the learning of all progress
automata from scratch.

Theorem 3 (Space Complexity). For all tree-based algorithms, the space required to
learn the leading automaton is in O(n). For learning periodic FDFA, the space required
for each progress automaton is in O(k), while for syntactic and recurrent FDFAs, the
space required is in O(nk). For all table-based algorithms, the space required to learn
the leading automaton is in O((n + n · |Σ |) · n). For learning periodic FDFA, the space
required for each progress automaton is in O((k + k · |Σ |) · k), while for syntactic and
recurrent FDFAs, the space required is in O((nk + nk · |Σ |) · nk).

Theorem 4 (Correctness and Termination). The BA learning algorithm based on
the under-approximation method always terminates and returns a BA recognizing the
unknown ω-regular language L in polynomial time. If the BA learning algorithm based
on the over-approximation method terminates without reporting an error, it returns a
BA recognizing L.

Given a canonical FDFA F , the under-approximation method produces a BA B such
that UP(F ) = UP(L(B)), thus in the worst case, FDFA learner learns a canonical FDFA
and terminates. In practice, the algorithm very often finds a BA recognizing L before
converging to a canonical FDFA.

9 Experimental results

The ROLL library (http://iscasmc.ios.ac.cn/roll) is implemented in JAVA.
The DFA operations in ROLL are delegated to the dk.brics.automaton package, and
we use the RABIT tool [2, 3] to check the equivalence of two BAs. We evaluate the
performance of ROLL using the smallest BAs corresponding to all the 295 LTL specifi-
cations available in BüchiStore [38], where the numbers of states in the BAs range over
1 to 17 and transitions range over 0 to 123. The machine we used for the experiments is
a 2.5 GHz Intel Core i7-6500 with 4 GB RAM. We set the timeout period to 30 minutes.

The overall experimental results are given in Tab. 1. In this section, we use L$ to
denote the ω-regular learning algorithm in [20], and LPeriodic, LSyntactic, and LRecurrent



Table 1. Overall experimental results. We show the results of 285 cases where all algorithms can
finish the BA learning within the timeout period and list the number of cases cannot be solved
(#Unsolved). The mark n∗/m denotes that there are n cases terminate with an error (in the over-
approximation method) and it ran out of time for m − n cases. The rows #St., #Tr., #MQ, and
#EQ, are the numbers of states, transitions, membership queries, and equivalence queries. Timeeq

is the time spent in answering equivalence queries and Timetotal is the total execution time.

Models L$ LPeriodic LSyntactic LRecurrent

Struct.&
Approxi.

Table Tree
Table Tree Table Tree Table Tree

under over under over under over under over under over under over
#Unsolved 4 2 3 0/2 2 0/1 1 4*/5 0 3*/3 1 0/1 1 0/1
#St. 3078 3078 2481 2468 2526 2417 2591 2591 2274 2274 2382 2382 2400 2400
#Tr. 10.6k 10.3k 13.0k 13.0k 13.4k 12.8k 13.6k 13.6k 12.2k 12.2k 12.7k 12.7k 12.8k 12.8k
#MQ 105k 114k 86k 85k 69k 67k 236k 238k 139k 139k 124k 124k 126k 126k
#EQ 1281 2024 1382 1351 1950 1918 1399 1394 2805 2786 1430 1421 3037 3037
Timeeq(s) 146 817 580 92 186 159 111 115 89 91 149 149 462 465
Timetotal(s) 183 861 610 114 213 186 140 144 118 120 175 176 499 501
EQ(%) 79.8 94.9 95.1 80.7 87.3 85.5 79.3 79.9 75.4 75.8 85.1 84.6 92.6 92.8

to represent the periodic, syntactic, and recurrent FDFA learning algorithm introduced
in Sec. 4 and 5. From the table, we can find the following facts: (1) The BAs learned
from L$ have more states but fewer transitions than their FDFA based counterpart. (2)
LPeriodic uses fewer membership queries comparing to LSyntactic and LRecurrent. The rea-
son is that LSyntactic and LRecurrent need to restart the learning of all progress automata
from scratch when the leading automaton has been modified. (3) Tree-based algorithms
always solve more learning tasks than their table-based counterpart. In particular, the
tree-based LSyntactic with the under-approximation method solves all 295 learning tasks.
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Fig. 7. Growth of state counts in BA

In the experiment, we observe
that table-based L$ has 4 cases
cannot be finished within the time-
out period, which is the largest
number amount all learning algo-
rithms5. We found that for these
4 cases, the average time required
for L$ to get an equivalence query
result is much longer than the
FDFA algorithms. Under scruti-
ny, we found that the growth rate
of the size (number of states) of
the conjectured BAs generated by
table-based L$ is much faster than
that of table-based FDFA learning

algorithms. In Fig. 7, we illustrate the growth rate of the size (number of states) of the
BAs generated by each table-based learning algorithm using one learning task that can-

5 Most of the unsolved tasks using the over-approximation method are caused by the situation
that the FDFA teacher cannot find a valid counterexample for refinement.



not be solved by L$ within the timeout period. The figures of the other three learning
tasks show the same trend and hence are omitted. Another interesting observation is
that the sizes of BAs generated by LSyntactic can decrease in some iteration because the
leading automaton is refined and thus the algorithms have to redo the learning of all
progress automata from scratch.

It is a bit surprise to us that, in our experiment, the size of BAs B produced by
the over-approximation method is not much smaller than the BAs B produced by the
under-approximation method. Recall that the progress automata of B comes from the
product of three DFAs Mu

u × (Au)su
v × (Au)v

v while those for B comes from the product
of only two DFAs Mu

u × (Au)su
v (Sec. 6). We found the reason is that very often the

language of the product of three DFAs is equivalent to the language of the product of
two DFAs , thus we get the same DFA after applying DFA minimizations. Nevertheless,
the over-approximation method is still helpful for LPeriodic and LRecurrent. For LPeriodic, the
over-approximation method solved more learning tasks than the under-approximation
method. For LRecurrent, the over-approximation method solved one tough learning task
that is not solved by the under-approximation method.

As we mentioned at the end of Sec. 5.2, a possible optimization is to reuse the
counterexample and to avoid equivalence query as much as possible. The optimization
helps the learning algorithms to solve nine more cases that were not solved before.

10 Discussion and Future works

Regarding our experiments, the BAs from LTL specifications are in general simple; the
average sizes of the learned BAs are around 10 states. From our experience of applying
DFA learning algorithms, the performance of tree-based algorithm is significantly bet-
ter than the table-based one when the number of states of the learned DFA is large, say
more than 1000. We believe this will also apply to the case of BA learning. Nevertheless,
in our current experiments, most of the time is spent in answering equivalence queries.
One possible direction to improve the scale of the experiment is to use a PAC (proba-
bly approximately correct) BA teacher [8] instead of an exact one, so the equivalence
queries can be answered faster because the BA equivalence testing will be replaced with
a bunch of BA membership testings.

There are several avenues for future works. We believe the algorithm and library
of learning BAs should be an interesting tool for the community because it enables the
possibility of many applications. For the next step, we will investigate the possibility of
applying BA learning to the problem of reactive system synthesis, which is known to
be a very difficult problem and learning-based approach has not been tried yet.
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