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Abstract. In the Map-Reduce programming model for data parallel computa-
tion, a reducer computes an output from a list of input values associated with a
key. The inputs however may not arrive at a reducer in a fixed order due to non-
determinism in transmitting key-value pairs over the network. This gives rise to
the reducer commutativity problem, that is, is the reducer computation indepen-
dent of the order of its inputs? In this paper, we study the reducer commutativity
problem formally. We introduce a syntactic subset of integer programs termed in-
teger reducers to model real-world reducers. In spite of syntactic restrictions, we
show that checking commutativity of integer reducers over unbounded lists of ex-
act integers is undecidable. It remains undecidable even with input lists of a fixed
length. The problem however becomes decidable for reducers over unbounded
input lists of bounded integers. We propose an efficient reduction of commutativ-
ity checking to conventional assertion checking and report experimental results
using various off-the-shelf program analyzers.

1 Introduction

Map-Reduce is a widely adopted programming model for data-parallel computation
such as those in a cloud computing environment. The computation consists of two key
phases: map and reduce. Each phase is carried out by a number of map and reduce
instances called mappers and reducers respectively. A mapper takes a key-value pair
as input and produces zero or more output key-value pairs. The output pairs produced
by all mappers are shuffled by a load-balancing algorithm and delivered to appropriate
reducers. A reducer iterates through the input values associated with a particular key and
produces an output key-value pair. Consider the example which counts frequencies of
each word in a distributed file system. A mapper takes an input pair (filename, content)
and produces an output pair (w, 1) for each word w in content. A reducer then receives
an input pair (w, [1; 1; · · · ; 1]) and returns an output pair (w, n) where n is the sum of
values associated with the word w, equivalently, the frequency of the word w.

Due to the deployment of mappers/reducers, load-balancing algorithm and network
latency, the order of values received by a reducer is not fixed. If a reducer computes
different outputs for different input orders (namely, it is not commutative), the Map-
Reduce program may yield different results on different runs. This makes such pro-
grams hard to debug and even cause errors. The commutativity problem for a reducer
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program R is to check if the computation of R is commutative over its (possibly un-
bounded) list of inputs. A recent study [19] found that the majority of analyzed real-life
reducers are in fact non-commutative. Somewhat surprisingly, the problem of formally
checking commutativity of reducers however has attracted little attention.

At a first glance, the commutativity problem for arbitrary reducers appears to be un-
decidable by the Rice’s theorem. Yet reducers are seldom Turing machines in practice.
Most real-world reducers simply iterate through their input list and compute their out-
puts; they do not have complicated control or data flows. Therefore, one wonders if the
commutativity problem for such reducers can be decided for practical purposes.

On the other hand, because real-world reducers have a simple structure, perhaps
manual inspection is enough to decide if a reducer is commutative? Consider the two
sample reducers dis and rangesum shown below (in C syntax, simplified by omitting
the key input). Both reducers compute the average of a selected set of elements from
the input array x of length N and are very similar structurally. However, note that dis
is commutative while rangesum is not: dis selects elements from x which are greater
than 1000, while rangesum selects elements at index more than 1000. Checking com-
mutativity of such reducers manually can be tricky. Automated tool support is required.

int dis (int x[N]) {
int i = 0, ret = 0, cnt = 0;
for (i = 0; i < N; i++) {
if (x[i] > 1000){

ret = ret + x[i];
cnt = cnt + 1;

}
}
if (cnt !=0) return ret / cnt;
else return 0;

}

int rangesum (int x[N]) {
int i, ret = 0, cnt = 0;
for (i = 0; i < N; i++) {
if (i > 1000){

ret = ret + x[i];
cnt = cnt + 1;

}
}
if (cnt !=0) return ret / cnt;
else return 0;

}

In this paper, we investigate the problem of reducer commutativity checking for-
mally. To model real-world reducers, we introduce integer reducers, a syntactically re-
stricted class of loopy programs over integer variables. In addition to assignments and
conditional branches, a reducer contains an iterator to loop over inputs. Two operations
are allowed on the iterator: next, which moves the iterator to the subsequent element
in the input list; and initialize, which moves the iterator to the beginning of input list.
Integer reducers do not allocate memory and are assumed to always terminate. In spite
of these restrictions, we believe that integer reducers can capture the core computation
of real-world reducers faithfully. The paper makes the following contributions:

– Via a reduction from solving Diophantine equations, we first show that checking
the commutativity of integer reducers over exact integers with unbounded lengths
of input lists is undecidable. The problem remains undecidable even with a bounded
number of input values.

– Most reducer programs do not use exact integers in practice. We investigate the prob-
lem of checking reducer commutativity over bounded integers but with unbounded
lengths of input lists. This problem turns out to be decidable. Using automata- and
group-theoretic constructions, we reduce the commutativity checking problem to the
language equivalence problem over two-way deterministic finite automata.

– Finally, we reduce the reducer commutativity problem to program assertion check-
ing. The reduction applies to arbitrary reducers instances with input lists of a bounded



Commutativity of Reducers 133

length. It enables checking the commutativity of real-world reducers automatically
using off-the-shelf program analyzers. We present an evaluation of different program
analysis techniques for checking reducer commutativity.

Related Work. Previous work on commutativity [17,15,6] has focused on checking if
interface operations on a shared data structure commute, often to enable better paral-
lelization. Their approach is event-centric, that is, it checks for independence of oper-
ations on data with arbitrary shapes. In contrast, our approach is data-centric: we use
group-theoretic reductions on ordered data collections for efficient checking.

A recent survey [19] points out the abundance of non-commutative reducers in indus-
trial Map-Reduce deployments. Previous approaches to checking reducer commutativ-
ity use black-box testing [20] and symbolic execution [4]. They generate large number
of tests using permutations of the input and verify that the output is same. This does not
scale even for small input sizes. Checking commutativity of reducers may be seen as
a specific form of regression checking [10,7] where the two versions are identical ex-
cept permuting the input order. The work in [11] proposes a static analysis technique to
check re-orderings in the data-flow architecture consisting of multiple map and reduce
phases using read or write conflicts between different phases. It does not consider the
data commutativity problem.

The paper is organized as follows. We review basic notions in Sec. 2. Sec. 3 presents a
formal model for reducers and a definition of the commutativity problem. It is followed
by the undecidability result (Sec. 4). We then consider reducers with only bounded inte-
gers in Sec. 5. Sec. 6 shows the commutativity problem for bounded integer reducers is
decidable. Sec. 7 gives the experimental results. We conclude in Sec. 8.

2 Preliminaries

Let Z,Z+,N denote the set of integers, positive integers, and non-negative integers
respectively. Define n = {1, 2, . . . , n} when n ∈ Z

+. A permutation on n is a one-
to-one and onto mapping from n to n. The set of permutations on n is denoted by Sn.
It can be shown that Sn is a group (called the symmetric group on n letters) under the
functional composition. Let l1, l2, . . . , lm ∈ Z. We write [l1; l2; · · · ; lm] to denote the
integer list consisting of the elements l1, l2, . . . , lm. For an integer list �, the notations
|�|, hd(�), and tl(�) denote the length, head, and tail of � respectively. The function
empty(�) returns 1 if � is empty; otherwise, it returns 0. For instance, hd([0; 1; 2]) = 0,
tl([0; 1; 2]) = [1; 2], and empty(tl([0; 1; 2])) = 0.

We define the semantics of reducer programs using transition systems. A transition
system T = 〈S,−→〉 consists of a (possibly infinite) set S of states and a transition
relation −→⊆ S × S. For s, t ∈ S, we write s −→ t for (s, t) ∈→.

A two-way deterministic finite automaton (2DFA) M = 〈Q,Σ,Δ, q0, F 〉 consists
of a finite state set Q, a finite alphabet Σ, a transition function Δ : Q × Σ → Q ×
{L,R,−}, an initial state q0 ∈ Q, and an accepting set F ⊆ Q. A 2DFA has a read-only
tape and a read head to indicate the current symbol on the tape. If Δ(q, a) = (q′, γ),
M at the state q reading the symbol a transits to the state q′. It then moves its read head
to the left, right, or same position when γ is L, R, or − respectively. A configuration
of M is of the form wqv where w ∈ Σ∗, v ∈ Σ+, and q ∈ Q; it indicates that M is
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at the state q and reading the first symbol of v. The initial configuration of M on input
w is q0w. For any qf ∈ F , a ∈ Σ, and w ∈ Σ∗, wqfa is an accepting configuration.
M accepts a string w ∈ Σ∗ if M starts from the initial configuration on input w and
reaches an accepting configuration. Define L(M) = {w : M accepts w}. A 2DFA can
be algorithmically translated to a classical deterministic finite automata accepting the
same language [16]. It hence recognizes a regular language.

Theorem 1. Let M = 〈Q,Σ,Δ, q0, F 〉 be a 2DFA. L(M) is regular.

2.1 Facts about Symmetric Groups

We will need notations and facts from basic group theory. Let x1, x2, . . . , xk ∈ n be
distinct. The notation (x1 x2 · · · xk) denotes a permutation function on n such that
x1 �→ x2, x2 �→ x3, . . . , xk−1 �→ xk, and xk �→ x1. Define τk = (1 2 · · · k).
Theorem 2 ([12]). For every σ ∈ Sn, σ is equal to a composition of τ2 and τn.

For � = [l1; l2; · · · ; lm] and σ ∈ Sm, define σ(�) = [lσ(1); lσ(2); · · · ; lσ(m)]. For
example, τ3([3; 2; 1]) = [2; 1; 3]. The following proposition will be useful.

Proposition 1. Let A be a set of lists. The following are equivalent:

1. for every � ∈ A with |�| > 1, both τ2(�) and τ|�|(�) are in A;
2. for every � ∈ A and σ ∈ S|�|, σ(�) is in A.

In other words, to check whether all permutations of a list belong to a set, it suffices
to check two specific permutations by Proposition 1.

3 Integer Reducers

Map-Reduce is a programming model for data parallel computation. Programmers can
choose to implement map and reduce phases in a programming language of their choice.
In order to analyze real-world reducers, we give a formal model to characterize the
essence of reducers. Our model allows to describe the computation of reducers and
investigate their commutativity.

A reducer receives a key k and a non-empty list of values associated with k as input; it
returns a key-value pair as an output. We are interested in checking whether the output is
independent of the order of input list. Since both input and output keys are not essential,
they are ignored in our model. Most data parallel computation moreover deals with
numerical values [19] We assume that both input and output values are integers. To
access values in a input list, our model has iterators adopted from modern programming
languages. A reducer performs its core computation by iterating over the input list.

Reducers are represented by control flow graphs. Let Var denote the set of integer
variables. Define the syntax of commands Cmd as follows.

v ∈ Var
�
= x | y | z | · · ·

e ∈ Exp
�
= e = e | e>e | ! e | e && e | · · · | −2 | −1 | 0 | 1 | 2 | · · · | v | e+e | e×e |

cur() | end()
c ∈ Cmd

�
= v := e | init() | next() | assume e | return e
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In addition to standard expressions and commands, the command assume e blocks
the computation when e evaluates to false. The command init() initializes the iterator
by pointing to the first input value in the list. The expression cur() returns the current
input value pointed to by the iterator. The next() command updates the iterator by
pointing to the next input value. The expression end() returns 1 if the iterator is at the
end of the list; it returns 0 otherwise.

A control flow graph (CFG) G = 〈N,E, cmd, ns, ne〉 consists of a finite set of
nodes N , a set of edges E ⊆ N × N , a command labeling function cmd : E → Cmd,
a start node ns ∈ N , and an end node ne ∈ N . The start node has no incoming edges.
The end node has no outgoing edges and exactly one incoming edge. The only incoming
edge of the end node is the only edge labeled with a return command. Without loss
of generality, we assume that the first command is always init() and all variables
are initialized to 0. Moreover, edges with the same source must all be labeled assume

commands; the Boolean expressions in these assume commands must be exhaustive
and exclusive. In other words, we only consider deterministic reducers.

ns

n1 n2 n3 n5 n7

ne

n4

n6

init()

m := current() n := current() assume m > n

assume (end() = 1)

return massume !(m > n) m := n

assume (end() = 0)next()

Fig. 1. A max Reducer

Figure 1 shows the CFG of a reducer. After the iterator is initialized, the reducer
stores the first input value in the variable m. For each input value, it stores the value in
n. If m is not greater than n, the reducer updates the variable m. It then checks if there
are more input values. If so, the reducer performs a next() command and examines the
next input value. Otherwise, m is returned. The reducer thus computes the maximum
value of the input list.

In order to define the semantics of reducers, we assume a set of reserved variables
r = {vals, iter, result}. The reserved variable vals contains the list of input val-
ues; result contains the output value. The reserved variable iter is a list; it is used to
model the iterator for input values. A reserved valuation maps each reserved variable
to a value. Val [r] denotes the set of reserved valuations.

In addition to reserved variables, a reducer has a finite set of program variables x. A
program valuation assigns integers to program variables. Val [x] is the set of program
valuations. For ρ ∈ Val [r], η ∈ Val [x], and e ∈ Exp, define [|e|]ρ,η as follows.

[|n|]ρ,η
�
= n [|x|]ρ,η

�
= η(x)

[|e0+e1|]ρ,η
�
= [|e0|]ρ,η + [|e1|]ρ,η [|e0×e1|]ρ,η

�
= [|e0|]ρ,η × [|e1|]ρ,η

[|!e|]ρ,η
�
= ¬[|e|]ρ,η [|e0 && e1|]ρ,η

�
= [|e0|]ρ,η ∧ [|e1|]ρ,η

[|e0=e1|]ρ,η
�
= [|e0|]ρ,η = [|e1|]ρ,η [|e0>e1|]ρ,η

�
= [|e0|]ρ,η > [|e1|]ρ,η

[|cur()|]ρ,η
�
= hd(ρ(iter)) [|end()|]ρ,η

�
= empty(tl(ρ(iter)))
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Let G = 〈N,E, cmd, ns, ne〉 be a CFG. Define CmdG = {cmd(m,n) : (m,n) ∈
E}. We first define the exact integer semantics of G. IntReducerG is a transition
system 〈Q,−→〉 where Q = N ×Val [r]×Val [x] and −→ is defined as follows.

(m, ρ, η) −→ (n, ρ, η[x �→ [|e|]ρ,η]) if cmd(m,n) is x := e
(m, ρ, η) −→ (n, ρ[iter �→ ρ(vals)], η) if cmd(m,n) is init()
(m, ρ, η) −→ (n, ρ[iter �→ tl(ρ(iter))], η) if cmd(m,n) is next()
(m, ρ, η) −→ (n, ρ[result �→ [|e|]ρ,η], η) if cmd(m,n) is return e
(m, ρ, η) −→ (n, ρ, η) if cmd(m,n) is assume e and [|e|]ρ,η = tt

On an init() command, IntReducerG re-initializes the reserved variable iter

with the input values in inputs. The head of iter is the current input value of the
iterator. On a next() command, iter discards the head and hence moves to the next
input value. If iter is the empty list, no more input values remain to be read. Finally,
he reserved variable result records the output value on the return command.

For (n, ρ, η), (n′, ρ′, η′) ∈ Q, we write (n, ρ, η)
∗−→ (n′, ρ′, η′) if there are states

(ni, ρi, ηi) such that (n, ρ, η) = (n1, ρ1, η1), (n′, ρ′, η′) = (nk+1, ρk+1, ηk+1), and
for every 1 ≤ i ≤ k, (ni, ρi, ηi) −→ (ni+1, ρi+1, ηi+1). Since variables are initialized
to 0, let ρ0 ∈ Val [r] and η0 ∈ Val [x] be constant 0 valuations. For any non-empty list
� of integers, IntReducerG returns r on � if (ns, ρ0[vals �→ �], η0)

∗−→ (ne, ρ
′, η′)

and ρ′(result) = r. The elements in � are the input values. The returned value r is an
output value. We will also write IntReducerG(�) for the output value on �.

The commutativity problem for integer reducers is the following: given an integer re-
ducer IntReducerG, decide whether IntReducerG(�) is equal to IntReducerG(σ(�))
for every non-empty list � of input values and every permutation σ ∈ S|�|.

4 Undecidability of Commutativity for Integer Reducers

By Rice’s theorem, the commutativity problem for Turing machines is undecidable. In
practice, reducers must terminate and are often simple processes running on commodity
machines. In this section, we show that the commutativity problem is undecidable even
for a very restricted class of integer reducers which can iterate through each input value
at most once. Such reducers are called single-pass integer reducers.

Undecidability is obtained by a reduction from the Diophantine problem. Let x1, x2,
. . . , xm be variables. A Diophantine equation over x1, x2, . . . , xm is of the form

p(x1, x2, . . . , xm) =

D∑

δ=0

∑

δ1+δ2+···+δm=δ

cδ1,δ2,...,δmxδ1
1 xδ2

2 · · ·xδm
m = 0

where δi ∈ N for every 1 ≤ i ≤ m and D is a constant. A system of k Diophantine
equations S(x1, x2, . . . , xm) over x1, x2, . . . , xm consists of k Diophantine equations
pj(x1, x2, . . . , xm) = 0 where 1 ≤ j ≤ k. A solution to a system of k Diophantine
equations S(x1, x2, . . . , xm) is a tuple of integers i1, i2, . . . , im such that
pj(i1, i2, . . . , im) = 0 for every 1 ≤ j ≤ k. The Diophantine problem is to determine
whether a given system of Diophantine equations has a solution.
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Theorem 3 ([13]). The Diophantine problem is undecidable.

Given a system of Diophantine equations, it is straightforward to construct a single-
pass integer reducer to check whether the input list of integers is a solution to the system.
If the input list is indeed a solution, the reducer returns 1; otherwise, it returns 0. Hence
if the given system has no solution, the reducer always returns 0 on any permutation of
an input list. Note that the reducer is also commutative when the given system is trivially
solved. Our construction introduces two additional variables to make the reducer not
commutative on any solvable systems of Diophantine equations.

Theorem 4. Commutativity problem for single-pass integer reducers is undecidable.

4.1 Single-Pass Reducers over Fixed-Length Inputs

The commutativity problem for single-pass integer reducers is undecidable. It is there-
fore impossible to verify whether an arbitrary integer reducer produces the same output
on the same input values in different orders. In the hope of identifying a decidable sub-
problem, we consider the commutativity problem with a fixed number of input values.
The m-commutativity problem for integer reducers is the following: given an integer
reducer IntReducerG, determine whether IntReducerG(�) = IntReducerG(σ(�))
for every list of input values � of length m and σ ∈ Sm. Because solving Diophan-
tine equations with 9 non-negative variables is undecidable [12], the m-commutativity
problem is undecidable when m ≥ 11.

Theorem 5. The m-commutativity problem of single-pass integer reducers is undecid-
able when m ≥ 11.

4.2 From m-Commutativity to Program Analysis

l1 := ∗; l2 := ∗; . . . lm := ∗;

x1 := l1; x2 := l2; . . . xm := lm;
ret :=IntReducerG([x1; x2; . . . ; xm]);

x1 := l2; x2 := l1; x3 := l3; . . . xm := lm;
ret2 :=IntReducerG([x1; x2; . . . ; xm]);
assert (ret = ret2);

x1 := l2; x2 := l3; . . . xm−1 := lm; xm := l1;
retm:=IntReducerG([x1; x2; . . . ; xm]);
assert (ret = retm);

Fig. 2. Checking m-Commutativity

Since it is impossible to solve
the m-commutativity problem
completely, we propose a sound
but incomplete solution to the
problem. For any m input val-
ues, the naı̈ve solution is to
check whether an integer re-
ducer returns the same output
value on all permutations of the
m input values. Since the num-
ber of permutations grows ex-
ponentially, the solution clearly
is impractical. A more effective
technique is needed.

Our idea is to apply the
group-theoretic reduction from Proposition 1. Figure 2 shows a program that realizes
the idea. In the program, the expression ∗ denotes a non-deterministic value. The pro-
gram starts with m non-deterministic integer values in l1, l2, . . . , lm. It stores the re-
sult of IntReducerG([l1; l2; . . . ; lm]) in ret. The program then computes the results
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of IntReducerG(τ2([l1; l2; . . . ; lm])) and IntReducerG(τm([l1; l2; . . . ; lm])). If
both results are equal to ret for every input values, IntReducerG is m-commutative.

Theorem 6. If assertions in Figure 2 hold for all computation, IntReducerG is m-
commutative.

Theorem 6 gives a sound but incomplete technique for the m-commutativity prob-
lem. Using off-the-shelf program analyzers, we can verify whether the assertions in
Figure 2 always hold for all computation. If program analyzers establish both asser-
tions, we conclude that IntReducerG is m-commutativity.

5 Bounded Integer Reducers

The commutativity problem for integer reducers is undecidable (Theorem 4). Unde-
cidability persists even if the number of input values is fixed (Theorem 5). One may
conjecture that the number of input values is irrelevant to undecidability of the commu-
tativity problem. What induces undecidability of the problem then?

Exact integers induce undecidability in computational problems such as the Dio-
phantine problem. However, in most programming languages, exact integers are not
supported natively. Consequently, real-world reducers seldom use exact integers. It is
thus more faithful to consider reducers with only bounded integers.

Fix d ∈ Z
+. Define Zd = {0, 1, . . . , d− 1}. Recall that r = {vals, iter, result}

are reserved variables. A bounded reserved valuation assigns the reserved variables
vals, iter lists of values in Zd, and result a value in Zd; a bounded program val-
uation maps x to Zd. We write BVal [r] and BVal [x] for the sets of bounded re-
served valuations and bounded program valuations respectively. For every ρ ∈ BVal [r],
η ∈ BVal [x], and e ∈ Exp, define �|e|
ρ,η as follows.

�|n|
ρ,η
�
= n mod d �|x|
ρ,η

�
= η(x)

�|e0+e1|
ρ,η
�
= �|e0|
ρ,η + �|e1|
ρ,η mod d

�|e0×e1|
ρ,η
�
= �|e0|
ρ,η × �|e1|
ρ,η mod d

�|!e|
ρ,η
�
= ¬�|e|
ρ,η �|e0 && e1|
ρ,η

�
= �|e0|
ρ,η ∧ �|e1|
ρ,η

�|e0=e1|
ρ,η
�
= �|e0|
ρ,η = �|e1|
ρ,η �|e0>e1|
ρ,η

�
= �|e0|
ρ,η > �|e1|
ρ,η

�|cur()|
ρ,η
�
= hd(ρ(iter)) �|end()|
ρ,η

�
= empty(tl(ρ(iter)))

Let G = 〈N,E, cmd, ns, ne〉 be a CFG over program variablesx. We now define the
bounded integer semantics of G. BoundedReducerG is a transition system 〈Q, ↪−→〉
where Q = N × BVal [r]× BVal [x] and the following transition relation ↪−→:

(m, ρ, η) ↪−→ (n, ρ, η[x �→ �|e|
ρ,η]) if cmd(m,n) is x := e
(m, ρ, η) ↪−→ (n, ρ[iter �→ ρ(vals)], η) if cmd(m,n) is init()
(m, ρ, η) ↪−→ (n, ρ[iter �→ tl(ρ(iter))], η) if cmd(m,n) is next()
(m, ρ, η) ↪−→ (n, ρ[result �→ �|e|
ρ,η], η) if cmd(m,n) is return e
(m, ρ, η) ↪−→ (n, ρ, η) if cmd(m,n) is assume e and �|e|
ρ,η = tt
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Except that expressions are evaluated in modular arithmetic, BoundedReducerG be-

haves exactly the same as the integer reducer IntReducerG. We write (n, ρ, η)
∗
↪→

(n′, ρ′, η′) if there are (n1, ρ1, η1) = (n, ρ, η) and (nk+1, ρk+1, ηk+1) = (n′, ρ′, η′)
such that (ni, ρi, ηi) ↪→ (ni+1, ρi+1, ηi+1) for every 1 ≤ i ≤ k. For any non-empty
list � of values in Zd, the bounded integer reducer BoundedReducerG returns r on �

if (ns, ρ0[vals �→ �], η0)
∗
↪→ (ne, ρ

′, η′) and ρ′(result) = r. BoundedReducerG(�)
denotes the output value r returned by BoundedReducerG on the list � of input values.

Note that the number of input values is unbounded.BoundedReducerG is an infinite-
state transition system due to the reserved variables vals and iter. On the other hand,
all program variables and the reserved variable result can only have finitely many
different values. We will exploit this fact to attain our decidability result.

6 Deciding Commutativity of Bounded Integer Reducers

We present an automata-theoretic technique to solve the commutativity problem for
bounded integer reducers. Although bounded integer reducers receive input lists of ar-
bitrary lengths, their computation can be summarized by 2DFA exactly. Based on the
2DFA characterizing the computation of a bounded integer reducer, we construct an-
other 2DFA to summarize the computation of the reducer on permuted input values.
Using Proposition 1, we reduce the commutativity problem for bounded integer reduc-
ers to the language equivalence problem for 2DFA. Since language equivalence problem
of 2DFA is decidable, checking bounded integer reducer commutativity is decidable.

More precisely, let G be a CFG, m > 0, and l1, l2, . . . , lm, r ∈ Zd. We con-
struct a 2DFA AG such that it accepts the string �l1l2 · · · lm � r exactly when the
bounded integer reducer BoundedReducerG returns r on the list [l1; l2; . . . ; lm]. For
clarity, we say li is the i-th input value of AG, which is in fact the i-th input value
of BoundedReducerG. We use the read-only tape as the reserved vals variable. Two
additional reserved variables cur and end are introduced for the cur() and end() ex-
pressions. On a return command,AG stores the returned value in the reserved result

variable. If the last symbol r of the input string is equal to result, AG accepts the in-
put. Otherwise, it rejects the input. More concretely, let s = {cur, end, result} be
reserved variables and G = 〈N,E, cmd, ns, ne〉 a CFG over program variables x. A
finite reserved valuation maps s to Zd; a finite program valuation maps x to Zd. We
write FVal [s] and FVal [x] for the sets of finite reserved valuations and finite program
valuations respectively. Note that FVal [s] and FVal [x] are finite sets since s, x, Zd are
finite. For every ρ ∈ FVal [s], η ∈ FVal [x], and e ∈ Exp, define {|e|}ρ,η as follows.

{|n|}ρ,η
�
= n mod d {|x|}ρ,η

�
= η(x)

{|e0+e1|}ρ,η
�
= {|e0|}ρ,η + {|e1|}ρ,η mod d

{|e0×e1|}ρ,η
�
= {|e0|}ρ,η × {|e1|}ρ,η mod d

{|!e|}ρ,η
�
= ¬{|e|}ρ,η {|e0 && e1|}ρ,η

�
= {|e0|}ρ,η ∧ {|e1|}ρ,η

{|e0=e1|}ρ,η
�
= {|e0|}ρ,η = {|e1|}ρ,η {|e0>e1|}ρ,η

�
= {|e0|}ρ,η > {|e1|}ρ,η

{|cur()|}ρ,η
�
= ρ(cur) {|end()|}ρ,η

�
= ρ(end)
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m

n

�
m, qnor , ρ, η

n, qnor , ρ, η[x �→ {|e|}ρ,η ]
x:=e −/−

(a) Assignments

When {|e|}ρ,η = tt

m

n

�
m, qnor , ρ, η

n, qnor , ρ, η

assume e −/−

(b) assume Commands

m

n

�

m,qnor , ρ, η

n, qreturn0 , ρ[result �→ {|e|}ρ,η ], η

n, qreturn1 , ρ[result �→ {|e|}ρ,η ], η

n, qf , ρ[result �→ {|e|}ρ,η ], η n, qerr , ρ[result �→ {|e|}ρ,η ], η

return e

−/− �/R

�/R

a/−, ρ(result) = a a/−, ρ(result) �= a

(c) return Commands

Fig. 3. Construction of AG

A state of AG is a quadruple (n, q, ρ, η) where n is a node in G, q is a control
state, ρ is a finite reserved valuation, and η is a finite program valuation. The control
state qnor means the “normal” operation mode. For an assignment command in G, AG

simulates the assignment in its finite states (Figure 3a). For an assume command, AG

has a transition exactly when the assumed expression evaluated to tt (Figure 3b). For
a return command, AG stores the returned value in result and enters the control
state qreturn0 . AG then moves its read head to the right until it sees the � symbol
(Figure 3c)2. On the � symbol, AG enters the control state qreturn1 and compares the
last symbol a with the returned value. It enters the accepting state qf if they are equal.

For an init() command, AG initializes the iterator at the control state qrewind by
moving its read head to the left until the � symbol is read. AG then moves its read head
to the first input value, sets end to 0 and enters the control state qnext0 to update the
reserved variable current (Figure 4a). For the next() command, AG enters qnext0 to
update the value of current (Figure 4b). At the control state qnext0 , the symbol under
its read head is the next input value. If end is 1, AG enters the error control state qerr
immediately. Otherwise, it updates the reserved variable cur, moves its read head to the
right, and checks if there are more input values at the control state qnext1 . If the symbol
is �, AG sets end to 1 and enters the normal operation mode (Figure 4c).

Lemma 1. Let BoundedReducerG be a bounded integer reducer for a CFG G =
〈N,E, cmd, ns, ne〉, m > 0, and l1, l2, . . . , lm, r ∈ Zd. Then

L(AG) = {�l1l2 · · · lm � r : BoundedReducerG([l1; l2; · · · ; lm]) = r}.

The commutativity problem for bounded integer reducers asks us to check whether
a given bounded integer reducer returns the same output value on any permutation of

2 α denotes any symbol other than α.
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m

n

�

m, qnor , ρ, η

n, qrewind , ρ, η

n, qnext0 , ρ[end �→ 0], η

init()

−/−
�/L

�/R

(a) init() Commands

m

n

�
m, qnor , ρ, η

n, qnext0 , ρ, η

next() −/−

(b) next() Commands

When ρ(end) = 1

n, qnext0 , ρ, η n, qerr , ρ, η

When ρ(end) = 0

n, qnext0 , ρ, η n, qnext1 , ρ[cur �→ a], η

n, qnor , ρ[cur �→ a,end �→ 1], ηn, qnor , ρ[cur �→ a,end �→ 0], η

−/−

a/R

�/−�/−

(c) Next input Value

Fig. 4. Construction of AG (continued)

input values. Applying Proposition 1, it suffices to consider two particular permuta-
tions. We have shown that the computation of a bounded integer reducer can be sum-
marized by a 2DFA. Our proof strategy hence is to summarize the computation of the
given bounded integer reducer on permuted input values by two 2DFA. We compare
the computation of a bounded integer reducer on original and permuted input values by
checking if the two 2DFA accept the same language.

We will generalize the construction of AG to define another 2DFA named Aτ2
G for

the computation on permuted input values. Consider a non-empty list of input values
� = [l1; l2; · · · ; lm] with m > 1. The 2DFA Aτ2

G will accept the string �l1l2 · · · lm � r
where r is BoundedReducerG(τ2(�)) and BoundedReducerG is the bounded integer
reducer for the CFG G. Our construction uses additional reserved variables to store the
first two input values. Aτ2

G also has two new control states to indicate whether the first
two input values are to be read. Since the construction of Aτ2

G is more complicated, we
skip its description due to page limit.

Lemma 2. Let BoundedReducerG be a bounded integer reducer for a CFG G =
〈N,E, cmd, ns, ne〉, m > 0, and l1, l2, . . . , lm, r ∈ Zd. Then

L(Aτ2
G ) = {�l1l2 · · · lm � r : BoundedReducerG(τ2([l1; l2; · · · ; lm])) = r}.

Lemma 3. LetBoundedReducerG be a bounded integer reducer for a CFGG= 〈N,E,
cmd, ns, ne〉. The languages L(Aτ2

G ) = L(AG) if and only if BoundedReducerG(�) =
BoundedReducerG(τ2(�)) for every non-empty list � of values in Zd.

Based on the construction of AG, we construct another 2DFA named Aτ∗
G which

characterizes the computation of the given bounded integer reducer BoundedReducerG
on input values in a different permutation. More precisely, for any non-empty list of
input values � = [l1; l2; · · · ; l|�|], Aτ∗

G accepts the string �l1l2 · · · l|�| � r where r is
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BoundedReducerG(τ|�|(�)). For the string �l1l2 · · · l|�| � r on Aτ∗
G ’s tape, we want to

summarize the computation of BoundedReducerG on [l2; l3; · · · ; l|�|; l1]. Observe that
l2 is the 2nd input value of Aτ∗

G and the 1st input value of BoundedReducerG on τ|�|(�).
A state of Aτ∗

G is a quadruple (n, q, ρ, η) where n is a node in G, q is a control state,
ρ is a finite reserved valuation, and η is a finite program valuation. In addition to s, Aτ∗

G

has the reserved variable fst to memorize the first input value of Aτ∗
G . It also has three

new control states: q0 for initialization, qnor for the normal operation mode, and qlast
for the case where the last input value of BoundedReducerG on τ|�|(�) has been read.

m

n

�
m, q, ρ, η

n, qnext , ρ, η

if q = qnor

n, qerr , ρ, η

if q = qlast

next() −/− −/−

(a) next() Commands

m

n

�

m, q, ρ, η

n, qrewind0 , ρ, η

n, qrewind1 , ρ[end �→ 0], η

n, qnext , ρ[end �→ 0], η

init()

−/−
�/L

�/R

−/R

(b) init() Commands

Fig. 5. Construction of Aτ∗
G

Aτ∗
G starts by storing its first input value in the reserved variable fst and moving

to the normal operation mode qnor . To initialize the iterator, Aτ∗
G moves its read head

and stores the first input value of BoundedReducerG on τ|�|(�) in the reserved vari-
able cur. Retrieving the next input value of BoundedReducerG on τ|�|(�) is slightly
different. If there are more input values, Aτ∗

G moves its read head to the right and up-
dates cur accordingly. Otherwise, the first input value of Aτ∗

G is the last input value of
BoundedReducerG on τ|�|(�). A

τ∗
G sets cur to the value of fst and enters qlast .

More concretely, Aτ∗
G transits to the control state qnext if it is in the normal operation

mode qnor for a next() command. It enters the error state qerr when the last input value
of BoundedReducerG on τ|�|(�) has been read (Figure 5a). For an init() command,
Aτ∗

G moves its read head to the second input value of Aτ∗
G . Since the second input value

of Aτ∗
G is the first input value of BoundedReducerG on τ|�|(�), A

τ∗
G sets end to 0 and

enters the control state qnext to update the reserved variable cur (Figure 5b).

n, q0, ρ, η

n, qinit , ρ, η

n, qnor , ρ[fst �→ a], η

�/R

a/−

(a) Initialization

n, qnext , ρ, η

n, qnor , ρ[cur �→ a], η

n, qlast , ρ[cur �→ ρ(fst), end �→ 1], η

a/R, a �= �
�/−

(b) Next input Value

Fig. 6. Construction of Aτ∗
G (continued)
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Figure 6a shows the initialization step. Aτ∗
G simply stores its first input value in the

reserved variable fst and transits to the normal operation model qnor . The auxiliary
control state qnext retrieves the next input value of BoundedReducerG on τ|�|(�) (Fig-
ure 6b). If there are more input values of Aτ∗

G , Aτ∗
G updates cur, moves its read head to

the right, and transits to the normal operation mode qnor . If Aτ∗
G reaches the end of its

input values, the first input value of Aτ∗
G is the last input value of BoundedReducerG

on τ|�|(�). A
τ∗
G hence updates cur to the value of fst, sets end to 1, and transits to qlast .

Lemma 4. Let BoundedReducerG be a bounded integer reducer for a CFG G =
〈N,E, cmd, ns, ne〉, m > 0, and l1, l2, . . . , lm, r ∈ Zd. Then

L(Aτ∗
G ) = {�l1l2 · · · lm � r : BoundedReducerG(τm([l1; l2; · · · ; lm])) = r}.

Lemma 5. LetBoundedReducerG be a bounded integer reducer for a CFGG= 〈N,E,
cmd, ns, ne〉. The languages L(AG) = L(Aτ∗

G ) if and only if BoundedReducerG(�) =
BoundedReducerG(τ|�|(�)) for every non-empty list � of values in Zd.

By Proposition 1, Lemma 3 and 5, we have the following theorem:

Theorem 7. Let BoundedReducerG be a bounded integer reducer for a CFG G =
〈N,E, cmd, ns, ne〉. L(AG) = L(Aτ2

G ) = L(Aτ∗
G ) if and only if BoundedReducerG(�)

= BoundedReducerG(σ(�)) for every non-empty list � of values in Zd and σ ∈ S|�|.

The next result follows from decidability of 2DFA language equivalence problem.

Theorem 8. The commutativity problem for bounded integer reducers is decidable.

7 Experiments

The reduction in Sec. 4.2 allows us to use any off-the-shelf program analyzer to check
commutativity of reducers. Given a reducer, we construct a program by the reduction
and verify its assertions by program analyzers. This section evaluates the performance
of state-of-the-art program analyzers for checking commutativity.

We compare CBMC [3], KLEE [2], CPACHECKER [1], and our prototype tool,
SYMRED. Two configurations of CPACHECKER are used: predicate abstraction au-
tomated with interpolation and abstract interpretation using octagon domain. CBMC
is a bounded model checker for C programs over bounded machine integers. The tools
KLEE and SYMRED implement symbolic execution techniques: KLEE symbolically ex-
ecutes one path at-a-time while SYMRED constructs multi-path reducer summaries us-
ing symbolic execution and precise data-flow merging [18]. The tool KLEE uses STP [8]
while SYMRED uses Z3 [5] as the underlying solver.

All experiments were conducted on a Xeon 3.07GHz Linux Ubuntu workstation with
16GB memory (Table 1). The symbol (TO) denotes timeout (5 minutes). The symbol
(F) denotes that an incorrect result is reported. We found that KLEE cannot handle
programs with division on some benchmarks; such cases are shown with the symbol -.

Our benchmarks consist of a set of 5 reducer programs in C, parameterized over the
length of the input list (from 5 to 100). All the benchmark reducers but rangesum
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are commutative. The first three sets of benchmarks compute respectively the sum,
average, and max value of the list. The benchmark sep computes the difference of
the occurrences of even and odd numbers in the list. The example dis computes the

Table 1. Experimental Results

CBMC CPA-Pred. CPA-Oct. SYMRED KLEE

sum5.c 43 64 3(F) 0.2 0.02
sum10.c TO TO 3(F) 0.4 0.02
sum20.c TO TO 3(F) 1 0.03
sum40.c TO TO 3(F) 1 0.04
sum60.c TO TO 4(F) 2 0.1
avg5.c TO TO 3(F) 0.3 -
avg10.c TO TO 3(F) 0.4 -
avg20.c TO TO 3(F) 0.8 -
avg40.c TO TO 3(F) 1 -
avg60.c TO TO 3(F) 2 -
max5.c 3 TO 3(F) 0.5 6
max10.c 215 TO 5(F) 7 102
max20.c TO TO 6(F) 103 TO
max40.c TO TO 7(F) 288 TO
max60.c TO TO 9(F) TO TO
sep5.c 0.2 21 4(F) 0.5 0.1
sep10.c 0.3 TO 8(F) 2 5
sep20.c 2 TO 202(F) 22 TO
sep40.c 26 TO TO 21 TO
sep60.c TO TO TO 22 TO
dis5.c TO 3 4(F) 1 -
dis10.c TO TO 5(F) 3 -
dis20.c TO TO 9(F) TO -
dis40.c TO TO 24(F) TO -
dis60.c TO TO 67(F) TO -

rangesum5.c 0.1 5 3 0.3 -
rangesum10.c 0.1 8 3 0.5 -
rangesum20.c 2 18 3 0.9 -
rangesum40.c 4 25 4 2 -
rangesum60.c 5 TO 4 2 -

average of input values greater than
100000. The example rangesum com-
putes the average of input values
of index greater than a half of the
list length. We model input lists as
bounded arrays and the iteration as a
while loop with an index variable.

CPACHECKER with predicate ab-
straction generates predicates by inter-
polating incorrect error traces to sep-
arate reachable states and bad states.
Benchmark sets such as sum and avg

contain no branch conditions and has
only one symbolic trace. Here, it suf-
fices to check the satisfiability and
compute interpolant of the single trace
formula. Still, the verifier cannot scale
to large input lists for these examples.

CPACHECKER with abstract inter-
pretation over octagon domain fin-
ishes in seconds on all benchmarks but
reports false positives on all commu-
tative ones. We observe that a suitable
abstract domain for checking commu-
tativity should simultaneously support
(a) permutations of the input list (b)
numerical properties such as the sum of the input list, and (c) equivalence between nu-
merical values. Although individual domains for numerical properties of lists [9] and
program equivalence [14] exist, we are not aware of any domain combining both simul-
taneously.

Reducers with addition and division operations in general are difficult for CBMC.
The avg and div benchmarks use divisions and the tool cannot handle cases with input
lists of length more than 5. The sep benchmark does not use divisions. CBMC scales
better on this benchmark. For rangesum, CBMC catches the bug in seconds.

The two symbolic execution based approaches, KLEE and SYMRED, seem to be
more effective for commutativity checking. SYMRED performs better than KLEE on
sep and max, both containing branches. We believe this is because SYMRED avoids
KLEE-like path enumeration using precise symbolic merges with ite (if-then-else) ex-
pressions at join locations. Loop iterations produce nested ite expressions. Although
simplification of such expressions reduces the actual solver time on most benchmarks, it
fails to curb the blowup for the dis benchmark. Therefore, better heuristics are needed
to check reducer commutativity for unbounded input sizes.
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8 Conclusions

We present tractability results on the commutativity problem for reducers by analyzing
a syntactically restricted class of integer reducers. We show that deciding commutativity
of single-pass reducer over exact integers is undecidable via a reduction from solving
Diophantine equation. Undecidability holds even if reducers receive only a bounded
number of input values. We further show that the problem is decidable for reducers
over unbounded input list over bounded integers via a reduction to language equiva-
lence checking of 2DFA. A practical solution to commutativity checking is provided
via a reduction to assertion checking using group-theoretic reduction. We evaluate the
performance of multiple program analyzers on parameterized problem instances. In fu-
ture, we plan to investigate better heuristics and exploit more structural properties of
real-world reducers for solving the problem for unbounded inputs over exact integers.
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