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Abstract
We introduce bisimulation up to congruence as a technique 
for proving language equivalence of nondeterministic finite 
automata. Exploiting this technique, we devise an optimi-
zation of the classic algorithm by Hopcroft and Karp.13 We 
compare our approach to the recently introduced antichain 
algorithms and we give concrete examples where we expo-
nentially improve over antichains. Experimental results 
show significant improvements.

1. INTRODUCTION
Checking language equivalence of finite automata is a classic 
problem in computer science, with many applications in 
areas ranging from compilers to model checking.

Equivalence of deterministic finite automata (DFA) can 
be checked either via minimization12 or through Hopcroft 
and Karp’s algorithm,13 which exploits an instance of what 
is nowadays called a coinduction proof principle17, 20, 22: two 
states are equivalent if and only if there exists a bisimula-
tion relating them. In order to check the equivalence of 
two given states, Hopcroft and Karp’s algorithm creates 
a relation containing them and tries to build a bisimu-
lation by adding pairs of states to this relation: if it suc-
ceeds then the two states are equivalent, otherwise they 
are different.

On the one hand, minimization algorithms have the 
advantage of checking the equivalence of all the states at 
once, while Hopcroft and Karp’s algorithm only checks a 
given pair of states. On the other hand, they have the dis-
advantage of needing the whole automata from the begin-
ning, while Hopcroft and Karp’s algorithm can be executed 
“on-the-fly,”8 on a lazy DFA whose transitions are computed 
on demand.

This difference is essential for our work and for other 
recently introduced algorithms based on antichains.1, 7, 25 
Indeed, when starting from nondeterministic finite autom-
ata (NFA), determinization induces an exponential factor. In 
contrast, the algorithm we introduce in this work for check-
ing equivalence of NFA (as well as those using antichains) 
usually does not build the whole deterministic automaton, 
but just a small part of it. We write “usually” because in few 
cases, the algorithm can still explore an exponential num-
ber of states.

Our algorithm is grounded on a simple observation on 
DFA obtained by determinizing an NFA: for all sets X and Y 
of states of the original NFA, the union (written +) of the 
language recognized by X (written X) and the language rec-
ognized by Y (Y) is equal to the language recognized by the 
union of X and Y (X + Y). In symbols:

	 X + Y = X + Y� (1)

This fact leads us to introduce a sound and complete proof 
technique for language equivalence, namely bisimulation up 
to context, that exploits both induction (on the operator +) 
and coinduction: if a bisimulation R relates the set of states 
X1 with Y1 and X2 with Y2, then X1 = Y1 and X2 = Y2 and, 
by Equation (1), we can immediately conclude that X1  + 
X2 and Y1 + Y2 are language equivalent as well. Intuitively, 
bisimulations up to context are bisimulations which do not 
need to relate X1 + X2 with Y1 + Y2 when X1 is already related 
with Y1 and X2 with Y2.

To illustrate this idea, let us check the equivalence of 
states x and u in the following NFA. (Final states are over-
lined, labeled edges represent transitions.)

x

a

za

a

y
a

u
a

a

w
a

va

The determinized automaton is depicted below.

{x}
a

1

{y}
a

2

{z}
a

3

{x, y}
a

4

{y, z}
a

5

{x, y, z}

a
6

{u} a {v, w} a {u, w} a {u, v, w} a

Each state is a set of states of the NFA. Final states are over-
lined: they contain at least one final state of the NFA. The 
numbered lines show a relation which is a bisimulation 
containing x and u. Actually, this is the relation that is built 
by Hopcroft and Karp’s algorithm (the numbers express the 
order in which pairs are added).

The dashed lines (numbered by 1, 2, 3) form a smaller 
relation which is not a bisimulation, but a bisimulation 
up to context: the equivalence of {x, y} and {u, v, w}  
is deduced from the fact that {x} is related with {u} 
and {y} with {v, w}, without the need to further explore 
the automaton.

Bisimulations up-to, and in particular bisimulations 
up to context, have been introduced in the setting of con-
currency theory17, 21 as a proof technique for bisimilarity 
of CCS or p-calculus processes. As far as we know, they 
have never been used for proving language equivalence 
of NFA.

Among these techniques one should also mention 
bisimulation up to equivalence, which, as we show in this 
paper, is implicitly used in Hopcroft and Karp’s original 
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algorithm. This technique can be explained by noting 
that not all bisimulations are equivalence relations: it 
might be the case that a bisimulation relates X with Y and 
Y with Z, but not X with Z. However, since X = Y and 
Y = Z, we can immediately conclude that X and Z rec-
ognize the same language. Analogously to bisimulations 
up to context, a bisimulation up to equivalence does not 
need to relate X with Z when they are both related with 
some Y.

The techniques of up-to equivalence and up-to context 
can be combined, resulting in a powerful proof technique 
which we call bisimulation up to congruence. Our algo-
rithm is in fact just an extension of Hopcroft and Karp’s 
algorithm that attempts to build a bisimulation up to con-
gruence instead of a bisimulation up to equivalence. An 
important property when using up to congruence is that we 
do not need to build the whole deterministic automata. For 
instance, in the above NFA, the algorithm stops after relat-
ing z with u + w and does not build the remaining states. 
Despite their use of the up to equivalence, this is not the 
case with Hopcroft and Karp’s algorithm, where all acces-
sible subsets of the deterministic automata have to be vis-
ited at least once.

The ability of visiting only a small portion of the deter-
minized automaton is also the key feature of the antichain 
algorithm25 and its optimization exploiting similarity.1, 7 
The two algorithms are designed to check language inclu-
sion rather than equivalence and, for this reason, they 
do not exploit equational reasoning. As a consequence, 
the antichain algorithm usually needs to explore more 
states than ours. Moreover, we show how to integrate the 
optimization proposed in Abdulla et al.1 and Doyen and 
Raskin7 in our setting, resulting in an even more efficient 
algorithm.

Outline
Section 2 recalls Hopcroft and Karp’s algorithm for DFA, 
showing that it implicitly exploits bisimulation up to equiv-
alence. Section 3 describes the novel algorithm, based on 
bisimulations up to congruence. We compare this algo-
rithm with the antichain one in Section 4.

2. DETERMINISTIC AUTOMATA
A deterministic finite automaton (DFA) over the alphabet 
A is a triple (S, o, t), where S is a finite set of states, o: S ® 2 
is the output function, which determines if a state x Î S is 
final (o(x) = 1) or not (o(x) = 0), and t: S ® SA is the transi-
tion function which returns, for each state x and for each 
letter a Î A, the next state ta(x). Any DFA induces a function 
· mapping states to formal languages (P(A*) ), defined 
by x(ε) = o(x) for the empty word, and x(aw)  = ta(x) 
(w) otherwise. For a state x, x is called the language 
accepted by x.

Throughout this paper, we consider a fixed automaton 
(S,  o, t) and study the following problem: given two states 
x1,  x2 in S, is it the case that they are language equivalent, 
that is, x1 = x2? This problem generalizes the familiar 
problem of checking whether two automata accept the same 
language: just take the union of the two automata as the 

automaton (S, o, t), and determine whether their respective 
starting states are language equivalent.

2.1. Language equivalence via coinduction
We first define bisimulation. We make explicit the underly-
ing notion of progression, which we need in the sequel.

Definition 1 (Progression, bisimulation). Given two 
relations R, R′ ⊆ S2 on states, R progresses to R′, denoted 
R  R′, if whenever x R y then

1.  o(x) = o( y) and
2.  for all a Î A, ta(x) R′ ta( y).

A bisimulation is a relation R such that R  R.
As expected, bisimulation is a sound and complete proof 

technique for checking language equivalence of DFA:

Proposition 1 (Coinduction). Two states are language 
equivalent iff there exists a bisimulation that relates them.

2.2. Naive algorithm
Figure 1 shows a naive version of Hopcroft and Karp’s algo-
rithm for checking language equivalence of the states x and y of 
a deterministic finite automaton (S, o, t). Starting from x and y, 
the algorithm builds a relation R that, in case of success, is 
a bisimulation.

Proposition 2. For all x, y Î S, x ~ y iff Naive(x, y).

Proof. We first observe that if Naive(x, y) returns true then 
the relation R that is built before arriving to step 4 is a bisim-
ulation. Indeed, the following proposition is an invariant for 
the loop corresponding to step 3:

R  R ∪ todo

Since todo is empty at step 4, we have R  R, that is, R is a 
bisimulation. By Proposition 1, x ~ y. On the other hand, 
Naive(x, y) returns false as soon as it finds a word which is 
accepted by one state and not the other.� 

For example, consider the DFA with input alphabet 
A  =  {a} in the left-hand side of Figure 2, and suppose we 
want to check that x and u are language equivalent.

Figure 1. Naive algorithm for checking the equivalence of states x and y 
of a DFA (S, o, t). The code of HK(x, y) is obtained by replacing the test 
in step 3.2 with (x ¢, y ¢) ∈ e(R).

(1) R is empty; todo is empty;
(2) insert (x, y) in todo;
(3) while todo is not empty do
(3.1) extract (x ′, y ′)from todo;
(3.2) if (x ′, y ′) ∈ R  then continue;
(3.3) if o(x ′)≠ o(y ′) then return false;
(3.4) for all a ∈ A,

insert (ta(x ′), ta(y ′)) in todo;
(3.5) insert (x ′, y ′) in R;

(4) return true;

Naive(x, y)
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During the initialization, (x, u) is inserted in todo. At the 
first iteration, since o(x) = 0 = o(u), (x, u) is inserted in R and 
( y, v) in todo. At the second iteration, since o(y) = 1 = o(v), ( y, v) 
is inserted in R and (z, w) in todo. At the third iteration, since 
o(z) = 0 = o(w), (z, w) is inserted in R and ( y, v) in todo. At the 
fourth iteration, since ( y, v) is already in R, the algorithm does 
nothing. Since there are no more pairs to check in todo, the 
relation R is a bisimulation and the algorithm terminates 
returning true.

These iterations are concisely described by the numbered 
dashed lines in Figure 2. The line i means that the connected 
pair is inserted in R at iteration i. (In the sequel, when enu-
merating iterations, we ignore those where a pair from todo 
is already in R so that there is nothing to do.)

In the previous example, todo always contains at most one 
pair of states but, in general, it may contain several of them. 
We do not specify here how to choose the pair to extract in 
step 3.1; we discuss this point in Section 3.2.

2.3. Hopcroft and Karp’s algorithm
The naive algorithm is quadratic: a new pair is added to 
R at each nontrivial iteration, and there are only n2 such 
pairs, where n = |S| is the number of states of the DFA. To 
make this algorithm (almost) linear, Hopcroft and Karp 
actually record a set of equivalence classes rather than a 
set of visited pairs. As a consequence, their algorithm 
may stop earlier it encounters a pair of states that is not 
already in R but belongs to its reflexive, symmetric, and 
transitive closure. For instance, in the right-hand side 
example from Figure 2, we can stop when we encounter 
the dotted pair (y, w) since these two states already belong 
to the same equivalence class according to the four previ-
ous pairs.

With this optimization, the produced relation R con-
tains at most n pairs. Formally, ignoring the concrete 
data structure used to store equivalence classes, Hopcroft 
and  Karp’s algorithm consists in replacing step 3.2 in 
Figure 1 with

(3.2)  if (x′, y′) Î e(R) then continue;

where e: P(S2) ® P(S2) is the function mapping each relation 
R ⊆ S2 into its symmetric, reflexive, and transitive closure. 
We refer to this algorithm as HK.

2.4. Bisimulations up-to
We now show that the optimization used by Hopcroft and 
Karp corresponds to exploiting an “up-to technique.”

Definition 2 (Bisimulation up-to). Let f: P(S2) ® P(S2) be a 
function on relations. A relation R is a bisimulation up to f if 
R  f(R), i.e., if x R y, then

1.	 o(x) = o( y) and
2.	 for all a Î A, ta(x) f (R) ta( y).

With this definition, Hopcroft and Karp’s algorithm just 
consists in trying to build a bisimulation up to e. To prove 
the correctness of the algorithm, it suffices to show that any 
bisimulation up to e is contained in a bisimulation. To this 
end, we have the notion of compatible function19, 21:

Definition 3 (Compatible function). A function f: P(S2) ® 
P(S2) is compatible if it is monotone and it preserves progres-
sions: for all R, R′ ⊆ S2,

R  R′ entails f(R)  f (R′).

Proposition 3. Let f be a compatible function. Any bisimula-
tion up to f is contained in a bisimulation.

We could prove directly that e is a compatible function; 
we, however, take a detour to ease our correctness proof for 
the algorithm we propose in Section 3.

Lemma 1. The following functions are compatible:
id:	 the identity function;

f  g:	 the composition of compatible functions f and g;
∪ F:	� the pointwise union of an arbitrary family F of compatible 

functions: ∪ F(R) = ∪fÎF f (R);
f w:	� the (omega) iteration of a compatible function f, defined 

by f w = ∪i f i, with f 0 = id and f i+1 = f  f i;
r:	 the constant reflexive function: r(_) = {(x, x) | x Î S};
s:	 the converse function: s(R) = {(y, x) | x R y};
t:	 the squaring function: t(R) = {(x, z) | ∃y, x R y R z}.

Intuitively, given a relation R, (s ∪ id)(R) is the symmetric 
closure of R, (r ∪ s ∪ id)(R) is its reflexive and symmetric clo-
sure, and (r ∪ s ∪ t ∪ id)w(R) is its symmetric, reflexive, and 
transitive closure: e = (r ∪ s ∪ t ∪ id)w. Another way to under-
stand this decomposition of e is to recall that e(R) can be 
defined inductively by the following rules:

Theorem 1. Any bisimulation up to e is contained in a 
bisimulation.

Corollary 1. For all x, y Î S, x ~ y iff HK(x, y).

Proof. Same proof as for Proposition 2, by using the invariant 
R  e(R) ∪ todo. We deduce that R is a bisimulation up to e after 
the loop. We conclude with Theorem 1 and Proposition 1.� 

Returning to the right-hand side example from Figure 2, 
Hopcroft and Karp’s algorithm constructs the relation

R
HK

 = {(x, u), ( y, v), (z, w), (z, v)}

x
a

1

y
a

2

z
a

3

u a v
a

w
a

x
a, b

1

y
a, b

2 5

z a, b

3

4

v
a, b

w
a, bu a

b

Figure 2. Checking for DFA equivalence.
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which is not a bisimulation, but a bisimulation up to e: it 
contains the pair (x, u), whose b-transitions lead to (y, w), 
which is not in R

HK
 but in its equivalence closure, e(R

HK
).

3. NONDETERMINISTIC AUTOMATA
We now move from DFA to nondeterministic automata 
(NFA). An NFA over the alphabet A is a triple (S, o, t), 
where S is a finite set of states, o: S ® 2 is the output 
function, and t: S ® P(S)A is the transition relation: it 
assigns to each state x Î S and letter a Î A a set of possible 
successors.

The powerset construction transforms any NFA (S, o, t) into 
the DFA (P(S), o, t) where o: P(S) ® 2 and t: P(S) ® P(S)A are 
defined for all X Î P(S) and a Î A as follows:

(Here we use the symbol “+” to denote both set-theoretic 
union and Boolean or; similarly, we use 0 to denote both the 
empty set and the Boolean “false.”) Observe that in (P(S), 
o,  t), the states form a semilattice (P(S), +, 0), and o and 
t are, by definition, semilattices homomorphisms. These 
properties are fundamental for the up-to technique we are 
going to introduce. In order to stress the difference with 
generic DFA, which usually do not carry this structure, we 
use the following definition.

Definition 4. A determinized NFA is a DFA (P(S), o, t) 
obtained via the powerset construction of some NFA (S, o, t).

Hereafter, we use a new notation for representing 
states of determinized NFA: in place of the singleton 
{x}, we just write x and, in place of {x1,…, xn}, we write 
x1 + … + xn. Consider for instance the NFA (S, o, t) depicted 
below (left) and part of the determinized NFA (P(S), o, t) 
(right).

x

a

a

y
a

z
a

x
a a

y + z x + y
a

x + y + z

a

In the determinized NFA, x makes one single a-transition 
into y + z. This state is final: o(y + z) = o(y) + o(z) = o(y) + o(z) = 
1 + 0 = 1; it makes an a-transition into  = 
ta(y) + ta(z) = x + y.

Algorithms for NFA can be obtained by computing 
the determinized NFA on-the-fly8: starting from the algo-
rithms for DFA (Figure 1), it suffices to work with sets 
of states, and to inline the powerset construction. The 
corresponding code is given in Figure 3. The naive algo-
rithm (Naive) does not use any up to technique, Hopcroft 
and  Karp’s algorithm (HK) reasons up to equivalence in 
step 3.2.

3.1. Bisimulation up to congruence
The semilattice structure (P(S), +, 0) carried by determinized 
NFA makes it possible to introduce a new up-to technique, 
which is not available with plain DFA: up to congruence. This 
technique relies on the following function.

Definition 5 (Congruence closure). Let u: P(P(S)2) ® 
P(P(S)2) be the function on relations on sets of states defined for 
all R ⊆ P(S)2 as:

u(R) = {(X1 + X2, Y1 + Y2) | X1 R Y1 and X2 R Y2}

The function c = (r ∪ s ∪ t ∪ u ∪ id)w is called the congruence 
closure function.

Intuitively, c(R) is the smallest equivalence relation which 
is closed with respect to + and which includes R. It could 
alternatively be defined inductively using the rules r, s, t, and 
id from the previous section, and the following one:

Definition 6 (Bisimulation up to congruence). A 
bisimulation up to congruence for an NFA (S, o, t) is a relation 
R ⊆ P(S)2, such that whenever X R Y then

1.	 o(X) = o(Y) and
2.	 for all a Î A, 

Lemma 2. The function u is compatible.

Theorem 2. Any bisimulation up to congruence is contained in 
a bisimulation.

We already gave in the Introduction section an example 
of bisimulation up to context, which is a particular case of 
bisimulation up to congruence (up to context means up to 
(r ∪ u ∪ id)w, without closing under s and t).

Figure 4 shows a more involved example illustrat-
ing the use of all ingredients of the congruence closure 
function (c). The relation R expressed by the dashed 
numbered lines (formally R = {(x, u), (y + z, u)}) is 

Figure 3. On-the-fly naive algorithm, for checking the equivalence 
of sets of states X and Y of an NFA (S, o, t). HK(X, Y) is obtained by 
replacing the test in step 3.2 with (X¢, Y¢) ∈ e(R), and HKC(X, Y) is 
obtained by replacing it with (X¢, Y¢) ∈ c(R ∪ todo).

Naive (X, Y)

(1) R is empty; todo is empty;
(2) insert (X, Y) in todo;
(3) while todo is not empty do
(3.1) extract (X′, Y′)from todo;
(3.2) if (X′, Y′) ∈ R  then continue;

(3.3) if o# (X′) ≠ o# (Y′) then return false;
(3.4) for all a ∈ A,

insert (t#a (X′), t#a (Y′)) in todo;
(3.5) insert (X′, Y′)in R;

(4) return true;



 

FEBRUARY 2015  |   VOL.  58  |   NO.  2  |   COMMUNICATIONS OF THE ACM     91

neither a bisimulation nor a bisimulation up to e since 
 but (x + y, u) ∉ e(R). However, 

R  is a bisimulation up to congruence. Indeed, we have 
(x + y, u) Î c(R):

	 x + y c(R) u + y	 ((x, u) Î R) 
	      c(R) y + z + y	 (( y + z, u) Î R) 
	        = y + z 
	      c(R) u	 ((y + z, u) Î R)

In contrast, we need four pairs to get a bisimulation up to 
equivalence containing (x, u): this is the relation depicted 
with both dashed and dotted lines in Figure 4.

Note that we can deduce many other equations from R; in 
fact, c(R) defines the following partition of sets of states: {0}, 
{y}, {z}, {x, u, x + y, x + z, and the 9 remaining subsets}.

3.2. Optimized algorithm for NFA
The optimized algorithm, called HKC in the sequel, relies on 
up to congruence: step 3.2 from Figure 3 becomes

(3.2)  if (X′ , Y′) Î c(R ∪ todo) then continue;

Observe that we use c(R ∪ todo) rather than c(R): this allows 
us to skip more pairs, and this is safe since all pairs in todo 
will eventually be processed.

Corollary 2. For all X, Y Î P(S), X ~ Y iff HKC(X, Y).

Proof. Same proof as for Proposition 2, by using the invari-
ant R  c(R ∪ todo) for the loop. We deduce that R is a bisim-
ulation up to congruence after the loop. We conclude with 
Theorem 2 and Proposition 1.� 

The most important point about these three algorithms 
is that they compute the states of the determinized NFA 
lazily. This means that only accessible states need to be 
computed, which is of practical importance since the 
determinized NFA can be exponentially large. In case of 
a negative answer, the three algorithms stop even before 
all accessible states have been explored; otherwise, if a 
bisimulation (possibly up-to) is found, it depends on the 
algorithm:

•	 With Naive, all accessible states need to be visited, by 
definition of bisimulation.

•	 With HK, the only case where some accessible states 
can be avoided is when a pair (X, X) is encountered: 

the algorithm skips this pair so that the successors of 
X are not necessarily computed (this situation never 
happens when starting with disjoint automata). In 
the other cases where a pair (X, Y) is skipped, X and Y 
are necessarily already related with some other states 
in R, so that their successors will eventually be 
explored.

•	 With HKC, accessible states are often skipped. For a 
simple example, let us execute HKC on the NFA from 
Figure 4. After two iterations, R = {(x, u), (y + z, u)}. 
Since x + y c(R) u, the algorithm stops without build-
ing the states x + y and x + y + z. Similarly, in the exam-
ple from the Introduction section, HKC does not 
construct the four states corresponding to pairs 4, 5, 
and 6.

This ability of HKC to ignore parts of the determinized 
NFA can bring an exponential speedup. For an example, 
consider the family of NFA in Figure 5, where n is an arbi-
trary natural number. Taken together, the states x and y are 
equivalent to z: they recognize the language (a + b)*(a + b)n+1. 
Alone, x recognizes the language (a + b)*a(a + b)n, which is 
known for having a minimal DFA with 2n states.

Therefore, checking x + y ~ z via minimization (as in 
Hopcroft12) requires exponential time, and the same holds 
for Naive and HK since all accessible states must be visited. 
This is not the case with HKC, which requires only polyno-
mial time in this example. Indeed, HKC(x + y, z) builds the 
relation

	 R′ = {(x + y, z)}
	 ∪ {(x + Yi + yi + 1, Zi + 1) | i < n}
	 ∪ {(x + Yi +xi + 1, Zi + 1) | i < n},

where Yi = y + y1 + … + yi and Zi = z + z1 + … +zi. R′ only con-
tains 2n + 1 pairs and is a bisimulation up to congruence. To 
see this, consider the pair (x + y + x1 + y2, Z2) obtained from 
(x + y, z) after reading the word ba. Although this pair does 
not belong to R′, it belongs to its congruence closure:

x + y + x1 + y2 c(R′) Z1 + y2	 (x + y + x1 R′ Z1)
	 c(R′) x + y + y1 + y2	 (x + y + y1 R′ Z1)
	 c(R′) Z2	 (x + y + y1 + y2 R′ Z2)

Remark 1. In the above derivation, the use of transitivity is 
crucial: R′ is a bisimulation up to congruence, but not a bisimu-
lation up to context. In fact, there exists no bisimulation up to 
context of linear size proving x + y ~ z.

x

a

a

y
a

z
a

u

a

x
a

1

y + z
a

2

x + y
a

3

x + y + z

a

4

u

a

Figure 4. A bisimulation up to congruence.

x
a

a, b x1
a, b

· · ·
a, b

xn

y
b

a, b y1
a, b

· · ·
a, b

yn

z
a, b

a, b z1
a, b

· · ·
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Figure 5. Family of examples where HKC exponentially improves over 
AC and HK; we have x + y ~ z.
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(assuming we count the number of operations on sets: 
unions and inclusion tests).

Note that many algorithms were proposed in the litera-
ture to compute the congruence closure of a relation (see, 
e.g., Nelson and Oppen,18 Shostak,23 and Bachmair et al.2). 
However, they usually consider uninterpreted symbols or 
associative and commutative symbols, but not associative, 
commutative, and idempotent symbols, which is what we 
need here.

3.4. Using HKC for checking language inclusion
For NFA, language inclusion can be reduced to language 
equivalence: the semantics function − is a semilattice 
homomorphism, so that for all sets of states X, Y, X + Y = Y 
iff X + Y = Y iff X ⊆ Y. Therefore, it suffices to run 
HKC(X + Y, Y) to check the inclusion X ⊆ Y.

In such a situation, all pairs that are eventually manipu-
lated by HKC have the shape (X′ + Y′, Y′) for some sets X′, Y′. 
Step 3.2 of HKC can thus be simplified. First, the pairs in the 
current relation only have to be used to rewrite from right 
to left. Second, the following lemma shows that we do not 
necessarily need to compute normal forms:

Lemma 4. For all sets X, Y and for all relations R, we have X + Y 
c(R) Y iff X ⊆ Y↓R.

At this point, the reader might wonder whether checking 
the two inclusions separately is more convenient than check-
ing the equivalence directly. This is not the case: checking the 
equivalence directly actually allows one to skip some pairs that 
cannot be skipped when reasoning by double inclusion. As an 
example, consider the DFA on the right of Figure 2. The rela-
tion computed by HKC(x, u) contains only four pairs (because 
the fifth one follows from transitivity). Instead, the relations 
built by HKC(x, x + u) and HKC(u + x, u) would both contain five 
pairs: transitivity cannot be used since our relations are now 
oriented (from y ≤ v, z ≤ v, and z ≤ w, we cannot deduce y ≤ w). 
Figure 5 shows another example, where we get an exponential 
factor by checking the equivalence directly rather than through 
the two inclusions: transitivity, which is crucial to keep the 
relation computed by HKC(x + y, z) small (see Remark 1), can-
not be used when checking the two inclusions separately.

In a sense, the behavior of the coinduction proof method 
here is similar to that of standard proofs by induction, where 
one often has to strengthen the induction predicate to get a 
(nicer) proof.

3.5. Exploiting similarity
Looking at the example in Figure 5, a natural idea would be 
to first quotient the automaton by graph isomorphism. By 
doing so, one would merge the states xi, yi, zi, and one would 
obtain the following automaton, for which checking x + y ~ z 
is much easier.

x
a

a, b

y
b

a, b m1
a, b

· · ·
a, b

mn

z
a, b

a, b

We now discuss the exploration strategy, that is, how 
to choose the pair to extract from the set todo in step 3.1. 
When looking for a counterexample, such a strategy has 
a large influence: a good heuristic can help in reaching it 
directly, while a bad one might lead to explore exponen-
tially many pairs first. In contrast, the strategy does not 
impact much looking for an equivalence proof (when the 
algorithm eventually returns true). Actually, one can prove 
that the number of steps performed by Naive and HK in 
such a case does not depend on the strategy. This is not the 
case with HKC: the strategy can induce some differences. 
However, we experimentally observed that breadth-first 
and depth-first strategies usually behave similarly on ran-
dom automata. This behavior is due to the fact that we 
check congruence w.r.t. R  ∪ todo rather than just R (step 
3.2): with this optimization, the example above is handled 
in polynomial time whatever the chosen strategy. In con-
trast, without this small optimization, it requires exponen-
tial time with a depth-first strategy.

3.3. Computing the congruence closure
For the optimized algorithm to be effective, we need a 
way to check whether some pairs belong to the congru-
ence closure of a given relation (step 3.2). We present a 
simple solution based on set rewriting; the key idea is to 
look at each pair (X, Y) in a relation R as a pair of rewrit-
ing rules:

X ® X + Y      Y ® X + Y,

which can be used to compute normal forms for sets of 
states. Indeed, by idempotence, X R Y entails X c(R) X + Y.

Definition 7. Let R ⊆ P(S)2 be a relation on sets of states. We 
define R ⊆ P(S)2 as the smallest irreflexive relation that satis-
fies the following rules:

Lemma 3. For all relations R, R is confluent and normalizing.

In the sequel, we denote by X↓R the normal form of a set 
X w.r.t. R. Intuitively, the normal form of a set is the larg-
est set of its equivalence class. Recalling the example from 
Figure 4, the common normal form of x + y and u can be 
computed as follows (R is the relation {(x, u), (y + z, u)}):

x + y u

x + y + u x + u

x + y + z + u

Theorem 3. For all relations R, and for all X, Y Î P(S), we have 
X↓R = Y↓R iff (X, Y) Î c(R).

We actually have X↓R = Y↓R iff X ⊆ Y↓R and Y ⊆ X↓R, so that 
the normal forms of X and Y do not necessarily need to be 
fully computed in practice. Still, the worst-case complexity 
of this subalgorithm is quadratic in the size of the relation R 
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As shown in Abdulla et al.1 and Doyen and Raskin7 for 
antichain algorithms, one can do better, by exploiting any 
preorder contained in language inclusion. Hereafter, we 
show how this idea can be embedded in HKC, resulting in an 
even stronger algorithm.

For the sake of clarity, we fix the preorder to be similar-
ity,17 which can be computed in quadratic time.10

Definition 8 (Similarity). Similarity is the largest relation on 
states  ⊆  S2 such that x  y entails:

1.	 o(x) ≤ o( y) and
2.	 for all a Î A, x′ Î S such that , there exists some y′ 

such that  and x′  y′.

To exploit similarity pairs in HKC, it suffices to notice that 
for any similarity pair x  y, we have x + y ~ y. Let  denote 
the relation {(x + y, y) | x  y}, let r′ denote the constant-to-   
function, and let c′ = (r′ ∪ s ∪ t ∪ u ∪ id)w. Accordingly, we 
call HKC’ the algorithm obtained from HKC (Figure 3) by 
replacing (X, Y) Î c(R ∪ todo) with (X, Y) Î c′(R ∪ todo) in step 
3.2. The latter test can be reduced to rewriting thanks to 
Theorem 3 and the following lemma.

Lemma 5. For all relations R, c′(R) = c(R ∪ ).

Theorem 4. Any bisimulation up to c′ is contained in a 
bisimulation.

Corollary 3. For all sets X, Y, X ~ Y iff HKC ’(X, Y).

4. ANTICHAIN ALGORITHMS
Even though the problem of deciding NFA equivalence is 
PSPACE-complete,16 neither HKC nor HKC’ are in PSPACE: 
both of them keep track of the states they explored in the 
determinized NFA, and there can be exponentially many 
such states. This also holds for HK and for the more recent 
antichain algorithm25 (called AC in the following) and its 
optimization (AC’) exploiting similarity.1, 7

The latter algorithms can be explained in terms of coin-
ductive proof techniques: we establish in Bonchi and Pous4 
that they actually construct bisimulations up to context, that 
is, bisimulations up to congruence for which one does not 
exploit symmetry and transitivity.

Theoretical comparison. We compared the various algo-
rithms in details in Bonchi and Pous.4 Their relationship is 
summarized in Figure 6, where an arrow X ® Y means that 

(a) Y can explore exponentially fewer states than X and (b) Y 
can mimic X, that is, the coinductive proof technique under-
lying Y is at least as powerful as the one of X.

In the general case, AC needs to explore much more 
states than HKC: the use of transitivity, which is missing 
in AC, allows HKC to drastically prune the exploration. For 
instance, to check x + y ~ z in Figure 5, HKC only needs a 
linear number of states (see Remark 1), while AC needs 
exponentially many states. In contrast, in the special case 
where one checks for the inclusion of disjoint automata, 
HKC and AC exhibit the same behavior. Indeed, HKC cannot 
make use of transitivity in such a situation, as explained in 
Section 3.4. Things change when comparing HKC’ and AC’: 
even for checking inclusion of disjoint automata, AC’ can-
not always mimic HKC’: the use of similarity tends to virtu-
ally merge states, so that HKC’ can use the up-to transitivity 
technique which AC’ lack.

Experimental comparison. The theoretical relationships 
drawn in Figure 6 are substantially confirmed by an empiri-
cal evaluation of the performance of the algorithms. Here, 
we only give a brief overview; see Bonchi and Pous4 for a 
complete description of those experiments.

We compared our OCaml implementation4 for HK, 
HKC, and HKC’, and the libvata C++ library14 for AC and 
AC’. We use a breadth-first exploration strategy: we 
represent the set todo from Figure 3 as a FIFO queue. 
As mentioned at the end of Section 3.2, considering a 
depth-first strategy here does not alter the behavior of 
HKC in a noticeable way.

We performed experiments using both random autom-
ata and a set of automata arising from model-checking 
problems.

•	 Random automata. We used Tabakov and Vardi’s 
model24 to generate 1000 random NFA with two letters 
and a given number of states. We executed all algo-
rithms on these NFA, and we measured the number of 
processed pairs, that is, the number of required itera-
tions (like HKC, AC is a loop inside which pairs are pro-
cessed). We observe that HKC improves over AC by one 
order of magnitude, and AC improves over HK by two 
orders of magnitude. Using up-to similarity (HKC’ and 
AC’) does not improve much; in fact, similarity is almost 
the identity relation on such random automata. The 
corresponding distributions for HK, HKC, and AC are 
plotted in Figure 7, for automata with 100 states. Note 
that while HKC only improves by one order of magni-
tude over AC when considering the average case, it 
improves by several orders of magnitude when consid-
ering the worst cases.

•	 Model-checking automata. Abdulla et al.1, 7 used 
automata sequences arising from regular model-
checking experiments5 to compare their algorithm 
(AC’) against AC. We reused these sequences to test 
HKC’ against AC’ in a concrete scenario. For all those 
sequences, we checked the inclusions of all consecu-
tive pairs, in both directions. The timings are given 
in Table 1, where we report the median values (50%), 
the last deciles (90%), the last percentiles (99%), and 

General case Disjoint inclusion case

HKC’

HKC AC’

HK AC

Naive

HKC’

AC’

HKC AC

HK Naive

Figure 6. Relationships among the algorithms.
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propose very general frameworks into which our up to con-
gruence technique fits as a very special case. However, to our 
knowledge, bisimulation up to congruence has never been 
proposed before as a technique for proving language equiva-
lence of NFA.

We conclude with directions for future work.
Complexity. The presented algorithms, as well as 

those based on antichains, have exponential complexity 
in the worst case while they behave rather well in prac-
tice. For instance, in Figure 7, one can notice that over a 
thousand random automata, very few require to explore 
a large amount of pairs. This suggests that an accurate 
analysis of the average complexity might be promising. An 
inherent problem comes from the difficulty to character-
ize the average shape of determinized NFA.24 To avoid this 
problem, with HKC, we could try to focus on the properties 
of congruence relations. For instance, given a number 
of states, how long can be a sequence of (incrementally 
independent) pairs of sets of states whose congruence 
closure collapses into the full relation? (This number is 
an upper-bound for the size of the relations produced by 
HKC.) One can find ad hoc examples where this number 
is exponential, but we suspect it to be rather small in 
average.

Model checking. The experiments summarized in 
Table 1 show the efficiency of our approach for regular 
model checking using automata on finite words. As in 
the case of antichains, our approach extends to automata 
on finite trees. We plan to implement such a generaliza-
tion and link it with tools performing regular tree model-
checking.

In order to face other model-checking problems, it would 
be useful to extend up-to techniques to automata on infinite 
words, or trees. Unfortunately, the determinization of these 
automata (the so-called Safra’s construction) does not seem 
suitable for exploiting neither antichains nor up to congru-
ence. However, for some problems like LTL realizability9 
that can be solved without prior determinization (the so-
called Safraless approaches), antichains have been crucial 
in obtaining efficient procedures. We leave as future work 
to explore whether up-to techniques could further improve 
such procedures.
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the maximum values (100%). We distinguish between 
the experiments for which a counterexample was 
found, and those for which the inclusion did hold. 
For HKC’ and AC’, we display the time required to 
compute similarity on a separate line: this prelimi-
nary step is shared by the two algorithms. As 
expected, HKC and AC roughly behave the same: we 
test inclusions of disjoint automata. HKC’ is however 
quite faster than AC’: up-to transitivity can be 
exploited, thanks to similarity pairs. Also note that 
over the 546 positive answers, 368 are obtained 
immediately by similarity.

5. CONCLUSION
Our implementation of HKC is available online,4 together 
with proofs mechanized in the Coq proof assistant and an 
interactive applet making it possible to test the presented 
algorithms online, on user-provided examples.

Several notions analogous to bisimulations up to con-
gruence can be found in the literature. For instance, self-
bisimulations6, 11 have been used to obtain decidability and 
complexity results about context-free processes. The main 
difference with bisimulation up to congruence is that self-
bisimulations are proof techniques for bisimilarity rather 
than language equivalence. Other approaches that are inde-
pendent from the equivalence (like bisimilarity or language) 
are shown in Lenisa,15 Bartels,3 and Pous.19 These papers 

Table 1. Timings, in seconds, for language inclusion of disjoint NFA generated from model checking.

Algorithm

Inclusions (546 pairs) Counterexamples (518 pairs)

50% 90% 99% 100% 50% 90% 99% 100%

AC 0.036 0.860 4.981 5.084 0.009 0.094 1.412 2.887
HKC 0.049 0.798 6.494 6.762 0.000 0.014 0.916 2.685
sim_time 0.039 0.185 0.574 0.618 0.038 0.193 0.577 0.593
AC’—sim_time 0.013 0.167 1.326 1.480 0.012 0.107 1.047 1.134
HKC’—sim_time 0.000 0.034 0.224 0.345 0.001 0.005 0.025 0.383

Figure 7. Distributions of the number of processed pairs, for 1000 
experiments with random NFA.

1

10

100

1 10 100 1000 10000 100000

N
um

be
r 

of
 c

he
ck

ed
 N

FA

Number of processed pairs

HK
AC

HKC



 

FEBRUARY 2015  |   VOL.  58  |   NO.  2  |   COMMUNICATIONS OF THE ACM     95

	15.	 Lenisa, M. From set-theoretic 
coinduction to coalgebraic 
coinduction: Some results, 
some problems. ENTCS 19 
(1999), 2–22.

	16.	 Meyer, A. and Stockmeyer, L.J. Word 
problems requiring exponential time. 
In STOC. ACM, 1973, 1–9.

	17.	 Milner, R. Communication and 
Concurrency. Prentice Hall, 1989.

	18.	 Nelson, G. and Oppen, D.C. Fast 
decision procedures based on 
congruence closure. J. ACM 27, 2 
(1980), 356–364.

	19.	 Pous, D. Complete lattices and up-to 
techniques. In APLAS, Z. Shao, ed. 
Volume 4807 of Lecture Notes in 
Computer Science (2007). Springer, 
351–366.

	20.	 Rutten, J. Automata and coinduction 
(an exercise in coalgebra). In 
CONCUR, D. Sangiorgi and R. de 
Simone, eds. Volume 1466 of Lecture 

Notes in Computer Science (1998). 
Springer, 194–218.

	21.	 Sangiorgi, D. On the bisimulation 
proof method. Math. Struct. Comp. 
Sci. 8 (1998), 447–479.

	22.	 Sangiorgi, D. Introduction to 
Bisimulation and Coinduction. 
Cambridge University Press, 2011.

	23.	 Shostak, R.E. Deciding combinations 
of theories. J. ACM 31, 1 (1984), 1–12.

	24.	 Tabakov, D. and Vardi, M. Experimental 
evaluation of classical automata 
constructions. In LPAR, G. Sutcliffe 
and A. Voronkov, eds. Volume 3835 of 
Lecture Notes in Computer Science 
(2005). Springer, 396–411.

	25.	 Wulf, M.D., Doyen, L., Henzinger, T.A., 
and Raskin, J.F. Antichains: A new 
algorithm for checking universality 
of finite automata. In CAV, T. Ball 
and R.B. Jones, eds. Volume 4144 of 
Lecture Notes in Computer Science 
(2006). Springer, 17–30.

References
	 1.	 Abdulla, P.A., Chen, Y.F., Holík, L.,  

Mayr, R., and Vojnar, T. When 
simulation meets antichains. In 
TACAS, J. Esparza and R. Majumdar, 
eds. Volume 6015 of Lecture Notes in 
Computer Science (2010). Springer, 
158–174.

	 2.	 Bachmair, L., Ramakrishnan, I.V.,  
Tiwari, A., and Vigneron, L. 
Congruence closure modulo 
associativity and commutativity. In 
FroCoS, H. Kirchner and C. Ringeissen, 
eds. Volume 1794 of Lecture Notes in 
Computer Science (2000). Springer, 
245–259.

	 3.	 Bartels, F. Generalised coinduction. 
Math. Struct. Comp. Sci. 13, 2 (2003), 
321–348.

	 4.	 Bonchi, F. and Pous, D. Extended 
version of this abstract, with omitted 
proofs, and web appendix for this 
work. http://hal.inria.fr/hal-00639716/ 
and http://perso.ens-lyon.fr/damien.
pous/hknt, 2012.

	 5.	 Bouajjani, A., Habermehl, P., and 
Vojnar, T. Abstract regular model 
checking. In CAV, R. Alur and 
D. Peled, eds. Volume 3114 of Lecture 
Notes in Computer Science (2004). 
Springer.

	 6.	 Caucal, D. Graphes canoniques de 
graphes algébriques. ITA 24 (1990), 
339–352.

	 7.	 Doyen, L. and Raskin, J.F. Antichain 
algorithms for finite automata. In 
TACAS, J. Esparza and R. Majumdar, 
eds. Volume 6015 of Lecture Notes in 
Computer Science (2010). Springer.

	 8.	 Fernandez, J.C., Mounier, L., Jard, C., 

and Jéron, T. On-the-fly verification of 
finite transition systems. Formal Meth. 
Syst. Design 1, 2/3 (1992), 251–273.

	 9.	 Filiot, E., Jin, N., and Raskin, J.F. 
An antichain algorithm for LTL 
realizability. In CAV, A. Bouajjani and 
O. Maler, eds. Volume 5643 of Lecture 
Notes in Computer Science (2009). 
Springer, 263–277.

	10.	 Henzinger, M.R., Henzinger, T.A., 
and Kopke, P.W. Computing 
simulations on finite and infinite 
graphs. In Proceedings of 36th 
Annual Symposium on Foundations 
of Computer Science (Milwaukee, 
WI, October 23–25, 1995). IEEE 
Computer Society Press.

	11.	 Hirshfeld, Y., Jerrum, M., and Moller, F.  
A polynomial algorithm for deciding 
bisimilarity of normed context-free 
processes. TCS 158, 1&2 (1996), 
143–159.

	12.	 Hopcroft, J.E. An n log n algorithm for 
minimizing in a finite automaton. In 
International Symposium of Theory 
of Machines and Computations. 
Academic Press, 1971, 189–196.

	13.	 Hopcroft, J.E. and Karp, R.M. A linear 
algorithm for testing equivalence of 
finite automata. Technical Report 114. 
Cornell University, December 1971.

	14.	 Lengál, O., Simácek, J., and Vojnar, T.  
Vata: A library for efficient 
manipulation of non-deterministic 
tree automata. In TACAS, 
C. Flanagan and B. König, eds. 
Volume 7214 of Lecture Notes in 
Computer Science (2012). Springer, 
79–94.

Filippo Bonchi and Damien Pous 
({filippo.bonchi, damien.pous}@ens-lyon.fr),  
CNRS, ENS Lyon, LIP, Université de Lyon, 
UMR 5668, France.

© 2015 ACM 0001-0782/15/02 $15.00

ACM Transactions 
on Interactive 

Intelligent Systems

ACM Transactions on Interactive 
Intelligent Systems (TIIS). This 
quarterly journal publishes papers 
on research encompassing the 
design, realization, or evaluation of 
interactive systems incorporating 
some form of machine intelligence. 

World-Renowned Journals from ACM
 ACM publishes over 50 magazines and journals that cover an array of established as well as emerging areas of the computing field. 

IT professionals worldwide depend on ACM's publications to keep them abreast of the latest technological developments and industry 
news in a timely, comprehensive manner of the highest quality and integrity.  For a complete listing of ACM's leading magazines & journals, 

including our renowned Transaction Series, please visit the ACM publications homepage: www.acm.org/pubs.

 PLEASE CONTACT ACM MEMBER 
SERVICES TO PLACE AN ORDER
Phone: 1.800.342.6626 (U.S. and Canada)
 +1.212.626.0500 (Global)
Fax: +1.212.944.1318
 (Hours: 8:30am–4:30pm, Eastern Time)
Email: acmhelp@acm.org
Mail: ACM Member Services
 General Post Offi  ce
 PO Box 30777
 New York, NY 10087-0777 USA

ACM Transactions on Computation 
Theory (ToCT). This quarterly peer-
reviewed journal has an emphasis 
on computational complexity, foun-
dations of cryptography and other 
computation-based topics in theo-
retical computer science.

ACM Transactions 
on Computation 

Theory

www.acm.org/pubs

PUBS_halfpage_Ad.indd   1 6/7/12   11:38 AM

Watch the authors discuss 
this work in this exclusive 
Communications video.


