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Abstract: We characterize Rabin
definability of properties of infinite
trees by means of fixed point definitions
composed from the basic operations of a
standard powerset algebra of trees and
involving the least and greatest fixed
point operators besides the finite union
operator and functional composition. Also,
a strict connection is established between
a hierarchy resulted from alternating the
least and greatest fixed point operators
and the  Thierarchy induced by Rabin
indicies of automata. The characterization
result is actually proved on a more
general level, namely for arbitrary
powerset algebra, where the concept of
Rabin automaton is replaced by a more
general concept of infinitary grammar.

Introduction
Several autors established recently
elementary upper bounds for decision

problems for a variety of propositional
modal logics of programs wia reduction to
emptiness problem of Rabin automata on
infinite trees (Streett [19]1Vardi &
Wolper ([22]1, Vardi & Stockmeyer [21],
Danecki [6)). In doing this, they followed
the earlier ideas of Biichi [3] and Rabin
[15] who had originally invented automata
on infinite objects in context of decision
problems in logic. The purpose of automata
is there to check validity of logical
formulae in the structures actually
presented as infinite words or trees. In
context of program logics this means that,
roughly speaking, once a computation of a

program is modelled Dby a (possibly
infinite) tree, Rabin automata are capable
of testing this tree for properties
expessible in these logics like
terminating, looping, repeating, fairness,
etc.

On the other hand, the inductive nature
of most of interesting properties of

programs follows that one can accurately
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characterize them by using the least and

the greatest fixed point operators, the
latter applied to capturing infinite
computations (Emerson & Clarke [7],Park
[13), Kozen [9].

Our aim here 1is to show a kind of
equivalence between these two modes of
expression of properties of infinite
computations: automata and fixed points.

We consider a powerset algebra of trees
whose basic operations are inherited from
the standard tree algebra in a usual way.A
fixed point definition is built from the
basic operations and projections by means
of the following operators: set-union,
functional composition, the least and the
greatest fixed point operators u and v. We

show that a set of trees is fixed point
definable iff it is definable by a Rabin
automaton. Also, a strict connection can
be drawn between a hierarchy of tree
languages resulted from increasing the
number of alternations between x and » and
the hierarchy induced by increasing the
index of automaton (I showed in [11] and
{12} that the both hierarchies are
infinite).

In fact, we proved the above-mentioned

characterization on a more general level,
namely for an arbitrary powerset algebra
(a8 considered. e.g. by Courcelle [5]).
This of course requires a generalization
of a Rabin automaton into a device which
could "run" over an arbitrary algebraic
structure; it proceeds in a natural way.
However in this new context, we prefer to
call the device 1in question a grammar
rather than an automaton and view its
action as generating rather than
"testing". (In terms of our general
considerations above, one can generate
models with certain property rather than
test all models for that property.)

A series of related previous papers
could be mentioned. going back to the
clasgical characterization of (finitary)

context—free languages by means of the
least solutions of equations in a powerset
algebra of finite words, due to Ginsburg &
Rice [8])] and Schtitzenberger ({18]. The



greatest fixed points as a mode of
representing non-terminating computations
appeared in Arnold & Nivat [1]) in context
of semantics of nondeterministic recursive
programs and in Park [13] in context of
semantics of fair parallelism. Park [14]
provides a complete characterization of
regular sets of finite/infinite words by
means of the both extremal fixed point
operators. A similar result for o—context-—
—free languages was shown in (10}.
Notably, in the both cases, the above
ment ioned hierarchy of alternations
between p and v turns out to coincide on
the »u-—-level. The analogous level of the
hierarchy in the powerset algebra of trees
has been shown to coincide with
definability by Biichi automata on infinite
trees (Takahashi [20}, Niwinski [11]).
Arnold & Niwiriski [2] proved that this
characterization continues to hold when
the intersection operator is incorporated;
the question if the hierarchy in that case
is infinite, remains open.

Vector notation. Throughout the paper we

shall often abbreviate a vector RN
by a , also in more complex terms So we
write, e.g. a € b instead of a‘sb‘ & L&

axb or even X £ Y for X< &...& X € ;
n n 1 1 m m

also sometimes G(x) for G(xi,...),... etc.

1 Trees

denotes the set of
finite words over X including the empty
word A. We write < () for the (proper)
initial segment relation. A subset (1,...,
n} of the set of natural numbers w is
abbreviated [n].

Given a set £, a Z-valued tree 1is a
mapping t Dom t== ¥ , where Dom t is

For a set X, x*

*»*
a non-empty subset of w closed under
initial segments. For a node w in Dom ¢t,

the subtree tv of t is a tree with Dom tv
= { v wv € Dom t } defined by tv(v) =

t(wv). If w and wi are in Dom t (iew), wi
is called a childe of w. Nodes without
children are called leaves. A path is an
infinite sequence P:wo,w’,... such that

child of w In this
+1 ™

context we also set:

each w, is a

Inf(P) = (aex t(g )=a for infinitely
many n }.

Let Sig be a finite signature, viz. a

gset of function symbols, each f in Sig

given with an arity ar(f)=20. A syntactic
tree over Sig is a Sig-valued tree t such
that for any w in Dom t, if the arity of
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t(w) is k then the children of w are

exactly wl,...,wk. Note that the only
leaves of a syntactic tree are the nodes
labelled by constant symbols. Let
Tree(Stg) denote the set of syntactic
trees over Stig.

2 Powerset algebras

Suppose A is an algebra over Stg,

A=< R . fesig>,
where ' & . A*® = A  is an
interpretation of f. By the powerset

algebra of A, we mean a system
PA = <¥(R); fPA f € Sig >,

is the powerset of A and
say ar(f) =

whose universe
the interpretation of f € Sig,
k, is defined by

PA A
ARS8 = (e u8) o sE S

k
is completely ordered by

and the Dbasic
PA

operations f are monotonic in all
variables. We mention a few examples which
will be revisited in the sequel.

2.1.Example. Let
TSig = < Tree(Sig);: f

Note that *(A)

the <

subset relation

TSS | ¢ e Sig >,

say ar(f)=k,
. TSig
RERETES Tree(Stg), f (t‘.....tk)

is the only tree t such that t(A) = ¥ and
the subtree of t induced by the node <i>,
t, - 1is djust t ., for i € [k]. We call

A
the system PTSig algebra of

trees (over Sig) .0
Let £ =

where, for each f in Sig, and

t . .t in

a powerset

2.2.Example. {o;,...,am) be a

finite alphabet and let =% - 2‘9 £° where
w

z is the set of all w-words over Z.
Consider an algebra

CFE =< =%, ",0,...,0 A >

1 m
where is the operation of concatenation
which is extended to £ by setting, for an
infinite u = u u ... ,
o 1

u'v = u , for any v,

Wo...W U =W ...Wuu..
Let

RE =<3%, o,...,0 ", A >
1 m

be a system obtained from the previous one
by restricting the, concatenation to the
left multiplication by single letters.



The corresponding powerset algebras may
be viewed as two variants of a powerset
algebra of finite/infinite words (the
denotations comming from context-free and
regular respectively).D

3 u~Terms and their semantics

We fix an infinite 1list of wvariables
Var, its elements will be usually denoted
L1 TETRRRET A etc. The set of u—terms

over Sig, u-Term Sig, is defined by the
following clauses:

—-the variables are in u-Term Sig,

-if f € Sig, say ar(f)=k, t‘.....ck €

u-Term Sig then fC t!. ey tk)e u-7Term Sig

-if t‘, t, e u—-Term Sig then (t’_u tz) €
p-Term Sig,

~-if ¢ € u-Term Sig and x is a variable
then ux.t, vx.t € u—-Term Sig

In writing ¢t = thl“..,xk) (or tCx> for

short) , we indicate that the free
variables of ¢t (viz. not bound by u or v)
are from among XyoennsX, We denote by

o
Ve e
t[t‘ x’.. ,tk/xk], or tltrsx]

the result of simultaneous substituting

the wu-terms t‘,...,tk for all free

occurrences of the variables Xooee X in

t respectively and assume that before the
substitution allbound variables of t which
occur in the ti's are renamed in Ssome

for short,

pProper way.

Let A be an algebra over Sig. An
interpretation of a u—term t(x‘, e ,xn) in
the powerset algebra PA , under a

valuation of x by S.‘, SLS A for i € (n],

in symbols tPA

PA

[x;:S’,...,x“:Sn] or

t [S‘,...,Sn] for
defined inductively as follows:

short, is

x" (8] = s ,
v 1

PA PA

F LN R 5 BN el Chtel 5 DI

PA PA

PA
(2"\. tz) [S] = 2‘ {s] v tz [s].,

My .t Fa {S] , resp. vy.t" {S], is the

least, resp. the greatest, solution of
the equation

xntPA[y:u,x:S]

The correctness of the above definition is
based on the following

Knaster-Tarski Fixed point theorem A
monotonic mapping f:L = L of a complete
lattice <L, ® has the least fixed point

fCW € ud

px. fCOxd = nd uel

and its dual, the greatest one
vx. fFOO =UCuel: u=x fCw > .0

3.1.Example. Let T = (0,1} and consider
the powerset algebra PRE of Example 2.2.
One can verify

*
(ux. (0°x u 1)F = 0"1,

(vx.01x )PRZ = 010101...,

»»
Coy. px. COx L 1x U 01yFR¥= cco,1>™01>®

From now on we assume that, wunless
otherwise stated, we work with a fixed
signature and therefore we shall omit the
suffix Sig in notation concerning u-terms
etc.

For a set M € u-Term, let uM be the
least set of u—terms such that

-M < uM

- if t,t1,...,tk € uM then t(t/x] e uM,

- if t € uM then ux.t € uM .
Let vM be defined analogously, with u
replaced by v.

The following variant of the well-known

Bekic Principle will be useful in the
sequel.
3.2.Lemma.Suppose thxi,... LR ,zm3,

...,tka.z) e M & u-Term. Then there exist

s1Cz),...,skCz) in uM such that itn any

powerset algebra PA and for any R‘,. .. ’Rm

[z:R].....skPA
is the least solution of the system of
eguations

- , PA A
E’ c’ [x:¢, z:tRl],

€ A, the tuple s"" {z:R]

D N A A R I I S A I A IS

A

£.= ak" [x:&, z:Rl

The similar for v and the greatest

solution. O

4 Fixed point hierarchy

Let u—Tetmo be the set of wu—terms

without any occurrences of u# ,» . The set
of all u-terms may be naturally organized
into a hierarchy of classes yTermb.vTermb,

Rather than to
arithmetical

vyTermo , vaetmo etc.

follow the notation of



hierarchy (as I actually did in (11]), we

prefer now a '"zigzag'" denotation of these
classes:
Nu = uTerm , Mu = vTerm .,
o °o o o
Nun“ = up Nun. Mu"ﬂ= vut Mun

Intuitively, in Nun (Hun) n refers to the

"essential v—-depth (m~depth)" of a u—-term.
Note that, by definition, Muh (W] Nu" <

Hun@tq Nun+1
U

nw

for n < « and U Nu =
n<w n

Mun = p~Term .

Given a powerset algebra PA and a closed
x—term t, the interpretation P (.
t™ for short, is a subset of A. For a set
M < u-Term let
M(PA) = (77,

say

t is a closed u~term in M }

4.1.Example. Park [14] shows that for the

algebra PR of Example 2.2
U NuCPRD) = vu Term (PR
n<w n o

For the algebra PCFZX,

U, M CPCFD) = iwTerm CPCFE) N

vuTerm C(PCFD). 0]

I prove [12]

4.2 .Example. Let, for ndw, Sign-{ao. - ,an}

be a signature where each a is of arity
2. Consider a sequence of u—terms

t =

vx .a (x ,x D,
o o o "o’"o

t =

pux . vx . Ca (x ,x 0 Yalx ,xD,
1 1 o o "o’ "o F O )

Lz= vxz.pxi.vxo.Cao(xo,xo) ) QOCx‘.x‘) ]
Valx,xD J,
2 2”2

and let a sequence s, be defined dually,
with # and » interchanged. Let

M =t P'l'swgn N =s P'l‘si.gn

n n n
(c.f. Example 2.1).

In [11] (and in more details in ([12]) I
showed that

M2n € HunC PTSLan) - Nu.nc PTS Lan) »

M e Nu CPTSig. D - NuC(PTSig. )
2n+4 n+t 2n+1 n 2n+1

and the Nn‘s satisfy the dual conditions.

Also, all the family can be encoded over a
single alphabet, e.g. Sig’, proving that
the hierarchy of classes Hun. Nun in

PTSig‘ is strict.
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The above sets have an interesting

meaning: for ndw, Mh is the set of all

trees in TSig possessing the following
property:

—for any path P, if a € Inf(P) and i
is odd then there exists j > i, j even,

such that ct‘i e Inf (P)

In particular, F& is the set of all binary
labelled by {e .a}
each path there is only finitely many a,
The

characterization.O

trees such that on

family Nn has a gsimilar

5 Grammars

A grammar over a signature Sig is a
tuple
G =<V, VvV, x, Tr, Acc > ,
T [+ ]

where V¥V is a finite set of variables, VTSV
are terminal or free vartiables of G, x, €
v - Vr is the start symbol, Tr is a set of

an acceptance
Each « in 7r

transitions and Acc is
condition. Set VN =V - V-r

has one of the following forms:
(1) « x = ny’,... ,yk).

where x € VN,yi,.. ey, € vV, f € Sig,

2 a: x

where x VN.

(D a: 2=

where z
To a transition «, we asssociate
concepts of the arity of o, ar(aed, the
input—variable of a, in—-var(cd, and, for i
€ [ar(a)]l, the i-th ocutput-variable of a,
it-out-var(o®, defined as follows.
In the case (1)

=k,
in~var{od =

ar (a)
X,

i-out-varCod =y ;
L

in the case (2)
-1’

tn-varCod =

ar (a)
X,

1-out-varCed =y ;
in the case (3)

ar(a) = 0,



in-var(oed = 2 .
We shall denote by Tr(x> the set of
transitions whose input variable is x
The acceptance condition has the form
< U ,LD,...,c¥,L>>,
1 1 n n
where U.‘.L,‘ < VN for i € [n}. The number n

i called the index of 6 and denoted
ind (G)

A derivation in G is any 7Ir-valued tree
d satisfying the following conditions

(a) in—varld(Ad> = X
(b For any w € Dom 4, if the arity of
d(w) is k then w has exactly k children

wl,...,wk and in~var C(d(widd =
= {-out-varCd(w)), for i € [k]

(¢) Suppose P: W W is an infinite
path in d and let

Inf Var (P) a € Inf(P) }.
Then there exists j € [n] such that

Inf Var(P) m Uj # ¢ and

Inf Var(P) ni. = ¢ .
3

= {{n-varCod

Now let A be an algebra over Sig.Suppose

V'r = (21""’2-“) and S‘,...,Sm < A. A

realization of a transition a € Tr in PA

under a valuation z:S8.,...,2 :5 , is a
1 1 m m

sequent of the form (3: a #* v, where a € A,

w € A‘, length(w) = ar(a) and

- if a : x-'f(xi,....xkb then
s : a-'a‘...ak , where
A
a =f(a‘,...,ak) H

-if a : x

$ . a

= y then
- a

H

—-if o : 2, d then

$#: b=x

A realization of a derivation d of G,in
PA, under a valuation z:S is a tree

r : Domr — A

with Dom r = Dom d, such that,
Dom r, if w has exactly k children
wl,...wk then

r(w) = r(wl) r(wk)

realization of d(w) in PA under z:S.

, where b € SAL

for any w €
(k=0)

is a
For an element a € A, an expansion of a
by 6 under a valuation z:S is a pair (d,r)
where d and r are as above and moreover
r(A) = a.
As for terms, we shall write G= GCz‘,.. »

zm) to indicate that the free variables of
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the grammar G are from among z .The
interpretation of 6(z> in PA under a
valuation z:S is defined by

PA

G [z¢S] = {a « A there exists an

expansion of a by G in PA

under the valuation z:S }
5.1.Example. Let Z = (at...',al> be an
alphabet and let TZ be the set of all

trees t [2]* -+ ¥ . A Rabin automaton
[17) over £ is a tuple # = (Q.qo.é,l\cc).

where Q is a finite set of states, q, € Q.
S:QRE = P(QRQ), and Acc = <(U.L).,....
(Un,L")>. The number n is the index of the

automaton. A run of & on a tree t is a
Q-valued tree r with Dom r = Dom t such
that r(A) = q, and (r(wl) ,r(w2)) € &(r(w))

for w € Dom r # accepts t if there is a
run such that, for each path P:wo,w‘,... ,

there is i € [n), such that Inf(P) N Ui -
¢ and Inf(P) "L = ¢ . Let T(#) Dbe the

gset of trees accepted by #.
Now consider £ as a signature, where
each e, ig of arity 2. Given an automaton

s as above, let GA be a grammar over I
defined by V¥ = Q, V_ = ¢, x =qa ., Tr =
{q=a(q'.a") (q'.q9") € 6(q,a) 1},

Acc It is easy to check that if (d,r) is
an expansion of t by GA in PTZ then a tree

Acc =

r' with Dom r'= Dom r = [2]*, defined by
r'(w) = in-varCd(wl>> is an accepting run
of # on t (note that r(w) = tv for w e

Dom r) .

On the other hand, it follows easily
from the Rabin tree theorem that a tree
language definable by a grammar is also
definable by a Rabin automaton; with some
care, one can choose an automaton with the
same index.D

5.2.Example. For the algebra PCFZ of
Example 2.2, one can show that our
grammars may be (with some care)
transformed into the x-context-free

grammars as considered by Cohen & Gold (4]
and Niwinnski [10] and wvice wersa. The
similar for PRE and «-regular grammars.O

6 Characterization result

We say that a grammar G(zt,...,zm) is

equivalent to a u~term tCz‘,... ,zm) if for

any powerset algebra PA and S‘ ..... sms A,

tPA (ztS] = G A =1 S]



6.1.Theorem. 1 For any pH—-term
tCz‘. ‘e .zm) , there exists a
grammar GCzl, . ,zm) ,equivalent to t.
Moreover,

if t is in Nun then G may be
chosen with index n .

CII> For any grammor GCz‘,... ,zm), there
is a u-term c(z1,. ..
if ind(G) = n ,
in Nu .

n

»2 D, eguivalent to G.
m

Moreover, then t may be

chosen

Sketch of proof. Part I has been shown in

[11] for the case where the notion of

equivalence was restricted to PTSig. The
proof for the general case is similar, it
is contained in (12) and will be available
in the full version of the paper. In the
sequel we sketch the argument for Part II.

The following operations on
will be needed. Let G be as above.
freelL

(1) Suppose L < VN, x, ® L Then G

grammars

is a grammar obtained from G by “giving
freedom" to variables in L:
GIP“L =<V’', V., x *, Tr’, Acc’® >,
T o
where
v =V ,
V'r = VT VL,
x = x_,
o [
Tr’= CTr - {y = ¢t yel u
YUy =»: yel >
Acc’= <CU L *D>,...,CU *,L ">
1 1 n n
where U ’'=U-L, L ’=L -L for i € (n}
L L T v .
(2) Suppose x e V_. The G g

obtained from G as follows

startx

G = V", V., x ", Tr',dcc” >,
T o

where xo" is a new variable, V"=V U <x°">.
Acc™ = Acc and

Ir” =Tr U (xo“ - ¢ Cx = tD € Tr >

Now the proof proceeds by induction on
the index of 6. If ind(G) = 0 then no
infinite paths in derivations in G are
allowed. Then the set Tr may be viewed as
a system of equations and it is standard

to prove that the least solution of this
system corresponds to a tuple of sets
finitary generated by the grammar (c.f.

Courcelle ([5]1).
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Now suppose the thesis holds for all
grammars with the index < n. The proof
proceeds in two steps.

Step 1. We consider a grammar G =

X, Tr, Acc> with the acceptance condition

<V,V1_.

in the form

Ace = <V ,LD,...,QU,LD, (U,dD)
1 1 n n

We may assume U & ¢ . say

U =

xoﬁU.

(xo.. .. .xk) Consider the grammar

GlraoU and,

startx,
i

for i € (k], the grammar

(G y***Y  Note that the indices of
these grammars are < n (the pair (¢.¢)

may be deleted from the acceptance
condition) and then, by the induction
hypothesis, we have the corresponding

u—-terms in Nu“ » say tlx,zd, t‘Cx.z).....
t,Cx, 2> V={z}).
system of equations

(where Now consider a

By Lemma 3.2, there is a vector of u-terms
vNu ,
n
represents the greatest solution of this
gystem in any powerset algebra. We claim:

(1) 6™, ig equivalent to s, i e [kl;

in s‘Cz). Ce e ,skCz), which

(2) G is equivalent to t[s‘/x‘,....s

|3
The clause (2> follows easily from (1).

/. .
ka

To prove (1) consider a powerset algebra
PA and let Ss‘ v ,Sm < A. Let us
abbreviate Gty by 6 By

i
Knaster-Tarski theorem, it is enough to

show two facts:

(i) VM : M < t™[M K] implies M € G™A(K]:

(ii) 62 (k] € t™[ 6™ (K], K ]

A

Ad(i>. Suppose a € M‘.'I'hen a € t_t' {M,K]

. £
and, by choice of t , a € (GLotxy) freeV

[M,K}. Consider an expansion of a, say (d,
r). For each leaf wof d such
that we have r(w) e€

in—varCd(wl)) = xj N

M_,' . Then again, there is an expansion of.

startx , freeU

this r(w) by (6 i) and so on.
By combining the expansions produced
recursively in that way, we eventually

obtain a desired expansion of a by G.l



AdCtid. Suppose a € Qf‘ [K] and let (d.r)
be an expansion of a. Let

E = in-var(d(wd) € U and,

for v < w, in~varCdCvdd> f U >

The restriction of (d,r) to the set
E'= {(ve Domd: there is no w € E
such that w < v }

{w € Dom d:

can be viewed, after an obvious
modification as an expansion
of a by (6™*™)™*Y  under the
valuation x : 6* [K], z : K, proving that
aeet™ 6™ Kl, K]

Step 2. Consider a grammar G = <V, VT,

Xo o Tr, Acc> with the acceptance condition
Acc = <CU,LD,...,QU ,LD,CU ,L DO>.
1 1 n n n+d n+1
Let L = Ly v L , say L =
1 n+e

{xl,...,xp), x, ® L. Let, for i € [n+1],

Gi' - Glrool.‘,' ,
and, for x € L,
startx, freel.
G't,x = (G ) i
Note that these grammars have the
acceptance conditions in the form
considered already in Step 1. Therefore,

there exist corresponding u—terms in vNu".

say t.’, ¢t. Let
1 1,X
= » 0
t tiv (¥ tm-g
(t'=t*C>x ,...,x ,2)),
1 P

t = ¢ U...ut
x

14,% ned,x
Consider a system of equations

x =t ,
1 ®
1
x =t .
P ®
P
By Lemma 3.2, there are some u-terms in
e (Ned) = Nu 8AY S 5...,8 , which
n n+d 1 P
represent the least solution of this
system. We claim:
(1) 6™ is equivalent to s, 1 e [pl;
(2) G is equivalent to t’ls /x,..,s /x 1.
EU ¢ PP
CNote that the last term is in N"wu)' The
clause (2) follows easily from (1). To

prove (1), consider a powerset algebra A
and let S‘,....Sm < A. Let us abbreviate

¢, by ¢ and e taikiat By Knaster-—
i

Tarski theorem,

two facts:

by 6.
v

L
it is enough to show
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(i) ¥ M "M, X] € M implies 6*[K] € M ;

PA

(ii) t™ 6™ x), x] € 6™ (x].

We give the idea of an argument for (i):;
the proof of (ii) is similar as in the
previous step. Suppose a € G:‘[K] and let

(d,r) be an expansion of a. Define a
sequence of subsets EL € Dom d4 and a

sequence of
E, = (A},
q, =1

integers qe€ [n+l] as follows:

Now suppose that El. q are defined. For

let
Dv = {v € Dom d
L,

N
tn—varCd(v’d) & Lq >

1

!
each w € El

w < v, Tn-varCdl(vd) e

and for any v', w < v' < v,

Set
El.u = uweEl Dv ’
9, = 9+ 1 if ql< n+l,
= 1 otherwise.
Set
E=U . B
It follows from definition of derivation
that E contains no infinite chains. We
claim that for any w € E, if in-var(dCwdd=

then r(w) e Mj , in
= r()

inductively from well-foundness of E and
the fact that if all successors in E of
some node w € E have the desired property
then w has also this property.

This remark completes the proof .0

=xj particular a =

€ Mi as required. This follows
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