
Learning Ordered Binary Decision Diagrams*

Ricard Gavalds and David Guijarro

Department of Software (LSI)
Unlversitat Polit~cnica de Cataltmya

Pau Gargallo 5
08028 Barcelona, Spain

{gavalda ,guij arro}@lsi, upc. es

Abst ract . This note studies the learnability of ordered binary decision dia-
grams (obdds). We give a polynomial-time algorithm using membership and
equivalence queries that finds the minimum obdd for the target respecting a
given ordering. We also prove that both types of queries and the restriction
to a given ordering are necessary if we want minimallty in the output, unless
P=NP. If learnlng has to occur with respect to the optimal variable ordering,
polynomlal-time learnabillty implies the approxlmability of two NP-hard op-
tlmlzation problems: the problem of finding the optimal variable ordering for
a given obdd and the Optimal Linear Arrangement problem on graphs.

1 Introduction

The representation of boolean functions as ordered binary decision diagrams (obdds)
has received great attention recently. This representation has nice computational
properties for fixed variable ordering, such as the existence of a minimum canonical
form and efficient algorithms for elementary boolean operations, satisfiability, equiv-
alence testing, and minimization. See [5] for some of the algorithms and a survey of
the uses of obdd in fields such as digital system design, combinatorial optimization,
and mathematical logic.

A major problem of the obdd representation is that the size of the obdd for a
function varies greatly with the variable ordering chosen. The problem of finding an
ordering that minimizes the size is usually approached with heuristics. This practice
has been often supported by claims that the problem is NP-hard, although a formal
proof has been given only very recently ([4], see also [11]).

This note studies the learnability of boolean functions in terms of obdds using
membership and equivalence queries. We present an algorithm that, given an or-
dering, outputs the minimum obdd with that ordering in time polynomial in the
size of this obdd (call it r~) and the number of variables (call it m). For simplicity,
this result is first obtained via a reduction to the problem of learning determinis-
tic finite automata. Using Schapire's algorithm for dfa [10], this yields an algorithm

* This research was supported in part by the ESPKIT Working Group NeuroCOLT
(nr. 8556), by the ESPRIT Project ALCOM II (hr. 7141), and by DGICYT (project
hr. PB92-0709).

229

making n m equivalence queries and O(u2tr~ 2) membership queries. Then we special-
ize our algorithm to obdds and reduce these bounds to ~ and O(u2m + t, mlog m),
respectively.

Furthermore, we show that we need both types of queries for polynomial-time
_ learning at all, and learning the minimum obdd with respect to the best order-

ing is not possible unless P=NP. This is a consequence of the NP-hardness result
in [4] for the problem of computing an optimal ordering for a given obdd. How-
ever, it is still open whether this optimization problem admits any polynomial-time
approximation algorithm. We observe that learnability of obdds implies that there
is some algorithm that finds solutions for this problem within a polynomial of the
optimum. The same result holds for the Optimal Linear Arrangement problem [7],
whose (non)approximability remains as an important question.

A related result on learnability of restricted branching programs is given by
Raghavan and Wilkins in [9]. They show that minimum read-once branching pro-
grams are learnable in polynomial time with membership and equivalence queries.
But in their context, "read-once" means that each variable is tested once in the
whole branching program, while the "read-once" restriction in obdds means once
along each path. Hence our results are incomparable. Learning obdds with respect
to the best ordering looks like the smallest natural generalization of both their result
and our result.

2 D e f i n i t i o n s

All our strings are defined over the boolean alphabet {0, 1}. By Izl we mean the
length of string z. The symbol A denotes the empty string. To simplify our exposition,
lowercase letters late in the alphabet (typically, w, z, y, and z) are used to denote
strings, and those early in the alphabet (a, b, and c) to denote bits.

We represent boolean functions by means of Binary Decision. Diagrams, in short
bdds and also called branching programs. A bdd is a directed acyclie graph with a
single root and two sinks. The two sinks are labelled ace and rej, and each non-
sink node is labelled with a variable vi. Also, every non-sink node has exactly two
outgoing edges, labelled 0 and i. If D is the bdd and q one of its nodes, by 6D (q, a)
we mean the endpolnt of the edge leaving q and labelled with a.

k bdd on variables vl, v2, . . . vm computes a boolean function {0, 1} m --+ {0, 1}
in the natural way: For a string ala2. . "am, start at the root and, whenever in a
node labelled vi, follow the edge labelled by bit ai. The value of the function is 1 if
and only if this path ends in the ace node. More often, we view a bdd as accepting
a language (a subset of {0, 1}m); for a bdd D, this language is denoted by L(D).

The number of nodes of a bdd D is written as [D[and called its size.
Let 7r be an ordering o f { l , . . . , m}, that is, a one-to-one function from {1 , . . . , m}

to itself. For a string z = ala2. . , am E {0, 1} m, ~r(z) is the string a,~(1)a,r(2).., a~(m).
This definition is extended to a language L _C {0, 1} m by *r(L) = { a'(z) [z E L }.
The identity ordering is denoted by id.

For an ordering 7r and a bdd D, we say that D is a 1r-ordered bdd, or *r-obdd, if
the labels of the nodes along any path in D are consistent with the ordering ~r. That
is, if vl precedes vs- in a path of D, then ~r-l(i) < a--t(j) . Note that this definition

230

prevents any path from checking a variable more than once. An ordered bdd, or obdd,
is one that is a a ' -obdd for s o m e a', that is one that is consistent w i t h some ordering.

Our definition of deterministic finite automaton (dfa) is standard. Just to fix
notation, we specify an acceptor dfa M by a tuple (Q, {0, 1}, qo, 5, F), where Q, qo,
~, and F are the set of states, the initial state, the transition function, and the set
of final states, respectively.

Our results are proved in Angluin's model of exact learning [1, 2]. We assume
that a teacher has a target boolean function, or equivalently, a target language
L* C {0, 1} '~. The goal of the learning algorithm is to produce an obdd accepting
exactly L* by asking queries about L* to the teacher; it win be crucial whether this
obdd must respect a predefined variable ordering or not, and we will make it clear

every time.
The learning algorithm can ask the teacher two types of queries:

- Membership queries: Given a bit vector z E {0, 1} m the teacher answers YES if
C L* and NO otherwise.

- Equivalence queries: Given an obdd D, the teacher answers YES if L(D) = L*
and a pair (NO,x) where z is the counterezample, a string of length m in the
symmetric difference of L* and L(D).

The running time of the algorithm is taken with respect to the worst-case choice
of counterexamples, and is measured as a function of two parameters: m and the
size of the smallest obdd accepting L* (possibly, the smallest respecting some given
ordering 7r if so specified). The second parameter is usually denoted by u. We say
that a learning task is achievable in polynomial time meaning that some learning
algorithm completes it in time polynomial in these two parameters for any target
boolean function. We also say that we have min-learnability if the algorithm outputs
the minimum size obdd.

We assume without loss of generality that learning algorithms know m in advance;
otherwise, they ask an initial equivalence query with the empty set and define m to
be the length of the counterexample received. Parameter n is initially unknown.

3 L e a r n i n g O b d d s w i t h a G i v e n O r d e r i n g

In this section we show that it is possible to learn the minimum ~'-obdd computing
the target function when the ordering ~- is given.

We do this by reducing this learning problem to the well-studied problem of
learning dfa. In fact, we take an arbitrary algorithm to learn dfa and show that,
with an adequate interface to a teacher for ~--obdds, it can be used to learn the

minimum 7r-obdd.
To do this, note that there are two differences between obdds and dfa accepting

a subset of {0, 1}m: one, that the dfa must check the bits of the input string in
sequential order while an obdd can use another ordering (though the same in every
path); two, the dfa must look at all bits while the obdd can "skip" some if they
are not relevant for the result. The following definitions and lemmas deal with both

problems.

231

Def in i t ion 1. Let D be any obdd using any ordering. Then z'(D) is the obdd ob-
tained by replacing, in each node, a label vl with the label v,(o.

Fact 2. [~r(D)l = [DI and L0r(D)) = ~r(L(D)).

Def in i t ion 3.
an i&obdd D,
{0, 1> "~, M(L)
respectively.

For a dfa M, D(M) is the minimum id-obdd accepting L(M). For
M(D) is the minimum dfa accepting L(D). For any language L C__
and D(L) are the minimum dfa and minimum i&obdd accepting L,

L e m m a 4. (i) I lL(M) C_ {0, 1} m, then ID(M)I < IMI; (i t)IM(D)I_ 2(m-2).iDI.

Proof . For (i), note that the dfa can be turned into an equivalent id-obdd just
labelling every node at distance i from the initial state with variable vi+l; no conflicts
can appear in this labelling provided that M really accepts a subset of {0, 1} m.

For (it), the only problem is that in an id-obdd D there may be edges linking a
node labelled with vi to a node labelled with vj, with j > i + 1. To transform D into
a dfa, it is enough to add a chain of j - i - 1 states that simply skip over j - i - 1
bits of input. There are at most 2[D[edges, and each edge requires at most m - 2
intermediate new states. The rej and ace nodes become the unique sink and final
states of the dfa. []

(In fact, a finer count that m . [D[is enough in (it); see the evaluation of the
number of membership queries in Theorem 14.)

Fac t 5. M(D) and D(M) can be computed in polynomial time.

With this notation and facts we can describe the reduction of obdd learning to
dfa learning.

T h e o r e m 6. Assume that there is an algorithm that learns dfa in polynomial time,
using #equ(n,m) equivalence queries and #mere(n, m) membership queries. Then
there is an algorithm that receives an ordering ~ as input and learns the minimum
7r-obdd for the target function in polynomial time, using ~equ(2mn, m) equivalence
queries a~d #mem(2mn, m) memberslzip queries.

Proof . Let L* C {0, 1} m be the target language and A be the claimed algorithm
for learning dfa. The learning algorithm for z ' -obdds simulates A learning z '-x(L *)
by answering queries as follows:

- Membership query "~ E ~r-l(L*)? " is replaced with "Tr(z) C L'~?";
- Equivalence query "L(M) -- ~r-l(L*)? '' is replaced with "L(~r(D(M))) = L*?"

(i.e., transform M into an equivalent i&obdd, then permute its node labels
following ~r and ask the resulting obdd as an equivalence query.) By Fact 2, both
queries are equivalent. If a eounterexample w is obtained, give eounterexample
~- l (w) to A.

Note thaL aIt the time needed for these replacements is a small polynomial of the
size of their arguments.

When A terminates giving some dfa M, minimize ~r(D(M)) and output it.

232

The correctness of the algorithm is clear using again Fact 2. Let us evaluate,
for example, the number of equivalence queries made by this algorithm. Similar
arguments work for the number of membership queries and the time complexity.

We simulate A on 7r-l(L*), so we make at most ~equ(IM(~r-t(L*))], m) equiv-
alence queries. Let D* be the minimum ~r-obdd accepting L*. By Lemma 4, we
have that IM(Tr-I(L*)) I < 2(m-2) -17r - t (D*) l < 2 (m - 2) . I/9"1, hence the claimed
bound. []

Several algorithms for exact learning of dfa are known. A first algorithm by An-
gluin [1] was improved by Schapire [10]. Schapire's algorithm uses at most n equiv-
alence queries and O(n 2 + nlog m) membership queries to learn u-state dfa if the
length of the longest counterexample does not exceed m. Plugging this algorithm
into Theorem 6 we obtain:

Coro l l a ry 7. There is an algorithm ~ha$, given an ordering ~r, ouSpu~s the minimum
7r-obdd for ~he ~arget function in polynomial time, using 2nm equivalence queries
and O(n2m 2) membership queries, where u is ~he size of Sha~ 7r-obdd.

4 R e d u c i n g t h e N u m b e r o f Q u e r i e s

In this section we present a modification of Schapire's algorithm that substantially
decreases the number of queries used to learn an obdd. In particular, the number of
equivalence queries of the new algorithm is bounded above by the lr-obdd-size of
the target concept, and independent of the number of variables. This is especially
important as in many situations equivalence queries are expensive to answer. For
example, in the standard transformation of an equivalence-query learner into a PAC-
learner [1, 2], the sample size used by the latter is quadratic in the number of queries

of the former.
We describe the algorithm assuming that the required order 7r is the identity.

Other orders are handled by bit permutations as explained in the proof of Theorem 6.
We need some definitions and facts from Schapire's algorithm, and assume some

familiarity with it. We repeat them here but we direct the reader to [1, 10] for full

details.

Def in i t ion 8. An observation table consistent with L* _C {0, 1}* is a triple (S, E, T)
where S, E C {0, 1}* and T is a function {0, 1}* x {0, 1}* ~-* {0, 1}, such that for
every z e S . (A + 0 + 1) and every e E E, T(z ,e) = 1 i f fze �9 L*.

For every string z, we define a function row(z) with domain E by row(z)(e) = 1
if ze �9 L*, 0 otherwise. We win use row(z) mostly (but not only) for z �9 S.

An observation table is closed if for every w �9 S{0, 1} there is some u �9 S such
that row(w) = row(u).

Schapire's algorithm maintains an observation table (S, E, T) consistent with the
target language. Whenever the table is closed, a dfa M(T) is built out of the table
and asked as an equivalence query. Each element in S is used as a representative of
the state it reaches in the target dfa.

233

F a c t 9. The observation table maintained by Schapire's algorithm satisfies the fol-
lowing:

I. /or eve different w and w' in S, row(w) # row(w').
2. z E S implies [z[_< m.

The difference in size between the minimum dfa and the minimum obdd for the
target is in the number of states that are introduced just to skip irrelevant input
bits. Inside the observation table, these states translate into blind rows.

D e f i n i t i o n 10. Given an observation table (S, E, T), we say that a function row(w)
(w e S) is blind if row(wO) = row(w1).

F a e t l l . Suppose that Schapire's algorithm has at some moment an observation
table 0 = (S, E, T) and that at a later moment it has table O' = (S' , E', T') . Let
row and row ~ be the respective row functions. Then:

1. for every z, y E S, row(z) :fl row(y) implies row ' (z) # row'(y) (distinct rows
never become equal again).

2. for every z E S i / row(z) is non-blind then rowt(z) is also non-blind.

This follows immediately from the fact that Schapire's algorithm never deletes any
entry from its observation table.

The reduction in the number of equivalence queries is based on checking the
following property, that we call self-consistency. The intuitive meaning of this prop-
erty is the following. Suppose that a string w E S leads to a non-blind state row(w)
in M(T) . If we append more and more bits to the end of w, we may visit some
blind states row(z1), row(z2), . . . of M(T) until another non-blind state row(w') is
reached again. In principle, w and every zi may be completely different, but we are
guessing that after appending i bits to the end of w we really end up in the same
state of the target dfa as zi. Self-consistency states that this guess is not obviously
wrong: it is not disproves by just trying a string of i zeros and the current set of
experiments E.

D e f i n l t i o n l 2 . Let O = (S, E, T) be a closed observation table. We say that O is
self-consistent if the following occurs for every w E S with a non-bllnd row and
every a E {0, 1}: Assume that in the obdd obtained from O we have 6(w, a) = w',
with w' a non-blind row in T. Note that all states between row(w) and row(w') are
blind. Then, for every i with 1 < i < Iw'l- Iw@

1. let z be the state where the evaluations of strings waOiO and wa0i l end; then
r~ = row(waOil) = row(z), and

2. for every Vb, b' {0, ,'ow(w O'bb') = row(zb').

L e m m a 13. I f a closed observation table 0 is consistent with target concept L* but
not self-consistent, then we can find a counterezample.

Proof ' . If self-consistency fails then there is an i such that at least one of the following
two cases is true:

234

1. row(waOib) # row(z) for some b e {0, 1}: waOib and ~ reach the same state in
the dfa associated to the observation table, but there is some e E E such that

�9 exactly one of waOibe and ze is in L*. Hence, waOibe is a counterexample.
2. row(waOib) ~ row(z) for some b E {0, 1}: by the same argument, waOib is a

eounterexample for the current obdd.
3. row(waOibb ') # row(zb') for some b,b ~ e {0, 1}: then, again with the same

argument, waOibb ~ is a counterexample.

[]

We modify Schapire's algorithm filtering unnecessary equivalence queries. More
precisely, whenever Schapire's algorithm poses an equivalence query, we test whether
the observation table is self-consistent. If this is not the case, by Lemma 13 we can
find a counterexample using a membership query instead. This way we keep the
number of equivalence queries bounded above by obdd-size. The new bound on
membership queries follows from the fact that obdds accept fixed-length languages,
and hence a large fraction of membership queries can be answered NO right away.

T h e o r e m 14. There is an algorithm that, given the ordering ~r, outputs ~he mini-
mum lr-obdd for the target function in polynomial time, using n equivalence queries
and O(n2m+ nmlog m) membership queries, where n is the size of that ~-obdd and
m is the number of variables.

Proof . Run Schapire's algorithm. Membership queries are passed to the teacher if
their length is m, others are answered NO.

Whenever Schapire's algorithm asks an equivalence query with a dfa that accepts
a string not in {0, 1} m, we supply a NO answer with that string as a counterexample.
So we let pass only the equivalence queries accepting subsets of {0, 1} m. Note that
dfa accepting these languages are dag's where all paths from the root to a given
state have the same length (except for the sink); we call this length the level of the
state.

To solve these equivalence queries, we first check self-consistency of the hypoth-
esis. If self-consistency fails, we get a counterexample by Lemma 13 and skip the
equivalence query. Otherwise, the equivalence query is passed to the teacher.

Correctness of this algorithm is clear since Schapire's algorithm is correct. Let
us bound first the number of equivalence queries it makes.

Consider two consecutive equivalence queries that we pass to the teacher. Let O
and O ~ be their respective observation tables and let nr and nr ~ be the corresponding
number of non-blind rows. We argue first that nr < ~r~; then, using that Schapire's
algorithm never surpasses the minimum number of states, the number of equivalence
queries is bounded by the number of non-blind states that of the minimum target
dfa, which, in turn, coincides with the number of states of the minimum lr -obdd.

Suppose for the sake of contradiction that nr > nr ' , using Fact 11 we know that
7zr > nr t is impossible (a non-blind row remains non-blind forever). This leaves

nr = nr ~ as the only case.
The only possibility now is that, since the obdds associated to O and O t will

have the same number of states, the transition function changes. Let u, ut and zua
be the strings involved in one of these transition function changes, i.e., w, u, and

235

u' are in S, row(w), row(u) and row(u ') are non-blind, row(u) # row(u') , and wa
leads to u in O but to u r in O r.

There are three eases:

1. lul > lu'l. For i = lu'l - Iwal, se l f -cons ls tency o f O' impl ies tha t r o w ' (w a 0 ') =
row'(u') and this implies that row(waO i) = row(u ') , but i < lu l - Iwal, so self-
consistency implies that row(waOiO) = row(wa0i l) . But if row(u ') is non-blind
then lu'l = ,~ and lul > '~ which contradic ts Fact 9.

2. lul = lu'l. A similar argumentat ion yields row(u) = row(u ') which is a contra-
diction with the assumption that u and u r were involved in a transition function
change.

3. lul < lu'l. For i = lul - Iw~l, se l f -cons is tency o f O together w i th the fact that
row(u) is non-blind, implies that row(waO~O) ~ row(waO i 1). But this eontradiets
self-consistency in O', namely that rowr(wa0i0) = rowr(waOil).

Now we have proved nr < nr r for any consecutive closed and self-consistent
observation tables O and O r, and hence that the number of equivalence queries does
not exceed r~.

For the membership queries: Schapire's algorithm makes membership queries at
two moments: after a counterexample is found (either with an equivalenee query
or the use of Lemma 13), in order to find an experiment that distinguishes two
previously equal rows; and all other membership queries, used to fill new entries Crows
or columns) of the observation table. Additionally, we make membership queries to
test self-consisteney.

In our ease, the number of the first type of queries is O(n ra logm) , because
our target dfa has at most 2m e states, and finding the right experiment for the
counterexample costs only log m membership queries, as described in [10].

For the other kind of membership queries: Define Si and Ei to be the subsets
of of the final S and E containing only strings of length i. Note that a string is
introduced in Em- i only to distinguish two rows indexed by strings of length i that
looked equal before; therefore I~m-il < Isil. Only strings of length ra are queried,
and for every w E S there are rows indexed by w, w0, and wl . So the number of
queries used to fill the table is at most

3 . ~ lSil . lEm_il <_ 3 . ~-~ [Sil 2.
i----0 i = 0

To bound ISih observe that there are two types of states in level i of the target
dfa: some non-blind states corresponding to nodes in the target obdd, and some
blind states corresponding to edges that cross level i. Let a and b be the number of
each. Now, to have a nodes at level i there must be at least a - 1 distinct nodes in
previous levels; for b edges to cross this level, there must be at least b distinct nodes
in previous levels. Therefore a 4 - m a x { a - 1, b} _< n, which implies Isil -- a 4- b < n.

Hence, the number of membership queries used to fill the observation table ~s at
m 2 m o s t 3 . E~__0 Jsil _< 3 (m + 1), , 2.

Finally, to bound the number of queries used to check self-consistency, let Ri be
the set of non-blind rows at level i of the final hypothesis. For each w E Ri, we make

236

at most 4mlEm_il queries, so the number of queries for this purpose is

IR+I-4mlE~-+l _< 4m E IRil" IS+l _< 4 m . n . I~1 = 4n2m.
i = 0 i = 0 i = 0

This concludes the proof. []

5 Negative Results

Using adversary arguments, one can show that both types of queries, membership
and equivalence, are necessary for learning at all.

T h e o r e m 15. Obdds are not learnable with membership queries alone or with equiv-
alence queries alone, even with respect to any fized ordering.

Proo f . For membership queries alone, the standard adversary argument using the
class of all singleton sets shows that exponentially many membership queries are
needed.

For equivalence queries alone, we observe that a learning algorithm for obdds
and any fixed ordering yields an algorithm that learns dfa accepting fixed-length
languages, and recall that no such algorithm exists as shown by Angluin [3]. Strictly
speaking, it is not enough to appeal to the proof in [3]: we should show that the class
of witness dfa provided by Anglnin is still hard to learn under any permutation of
input bits.

Instead, we reduce the problem as follows: to learn a target L* C_ {0, 1}" run the
learner for 7r-obdds over w-l(L) , and transform its output first into an id - obcld
(by renaming variables), then into a dfa. This yields the minimum dfa in polynomial
time. U

Furthermore, if no order is given to the learner and we want it to find the best
ordering, learning is computationally hard.

T h e o r e m 16. There is no polynomial-time algorithm that learns minimum-size ob-
dds with membership and equivalence queries, unless P = N P.

Proof . Assume that there is such a learning algorithm. Then, given an obdd, we
can find in polynomial time the variable ordering that minimizes its size by running
the learning algorithm; the theorem follows as this problem is NP-eomplete [4].

The process is as follows: given an obdd O, run the learning algorithm; member-
ship queries are solved by evaluating them over O; equivalence queries are be solved
in polynomial time using the algorithm of Fortune, Hoperoft, and Schmidt [6], which
works even if the two obdds use different variable orderings. []

With the same argument we can show: suppose we have a polynomial-time learn-
ing algorithm that does not necessarily output the optimum obdd, but is guaran-
teed to output a polynomial approximation to it (this is the standard definition of
learning). Then, we can use it to build an approximation algorithm for the obdd
minimization problem whose performance ratio is polynomial.

237

Actually, the implication is true for another NP-hard optimization problem called
Optimal Linear Arrangement or OLA. This result is essentially the observation that
the reduction from OLA to obdd-minimization in [4] is approximation-preserving.

D e f i n l t i o n l T . [7] The Optimal Linear Arrangement problem (OLA) is defined as
follows:

INSTANCE: Undirected graph G ----- (V, E), positive integer K.
QUESTION: Is there a one-to-one function f : V ~ {1, 2 , . . . , IVI} (a linear

arrangement) such that costa(f) = ~-~(u,~)EE if(u) -- f(v)l <_ K?

T h e o r e m 18. If boolean functions are learnable in terms of obdds (with respect to
the best ordering, but not necessarily in minimal form) then OLA can be approzi-
mated wi$hin a polynomial.

P r o o f . We show that the reduction from OLA to finding optimal variable orderings
in obdds is approximation-preserving up to a polynomial.

Given an undirected graph G = (V, E), let n and m be IV[and [El respectively.
We deal w.l.o.g, with the case where the graph is connected and hence m > u - 1.

The reduction in [4] produces from G an obdd o with the following properties:

1. o has more than n variables, but the opt imum ordering always belongs to a set of
easily described orderings with n! elements, called "blockwise orderings" in [4].

2. For every variable ordering that is not blockwise we can easily find a blockwise
one that gives equal or smaller size.

3. There is a bijection between the set of possible arrangements of G and blockwise
orderings of the variables in o. Hence, every possible arrangement f : V
{1, 2 , . . . , IVI} of G gives an obdd of equivalent to o.

4. Given G and f , it is easy to compute ol and vice-versa.
5. There is a constant c such that, for every f , the following is satisfied:

Ioyl : cr~2m 2 -k cosgG(f).

6. Therefore, if f* is the cheapest arrangement for G and o* the smallest obdd
equivalent to o, we have

Now assume that there is an algorithm that minimizes obdds up to some poly-
nomial p. Run this algorithm on the input graph G and obtain an obdd o ~. By
property 2 we can assume that o ~ is blockwise-ordered, that is, it is of, for an ar-
rangement fl . Compute f l and output it as an approximation to the optimal linear
arrangement.

Indeed, using properties 5 and 6 we have

c o s t a (/ ') = Io'1 - c ~ m ~ < p (I o * l) - c ~ - ~ ~ = p (c o s t a (f *) + c , , ~ , ~) - ~ , , ~ m ~ .

Since any linear arrangement has cost at least m > ~ z - 1, this is within some
polynomial of costa(f*). []

238

Acknowledgments

We thank Christoph Meinel for pointing us to the work [4], Ingo Wegener for pro-
viding us with a copy, Hans Ulrich Simon and an anonymous referee for very helpful
comments, and Josep Dfaz for posing the question of learning obdds.

References

1. D. Angluin: "Learning regular sets from queries and counterexamples". Information
and Computation 75 (1987), 87-106.

2. D. Angluin: "Queries and concept learning". Machine Learning 2 (1988), 319-342.
3. D. Angluln: "Negative results for equivalence queries ~ Machine Learning 5 (1990),

121-150.
4. B. Bolllg and I. Wegener: Improving the variable ordering of OBDDn is NP-complete.

Technical Report ~ 542, Unlversit~t Dortmund (1994).
5. R.E. Bryant: "Symbolic boolean manipulation with ordered binary decision diagrams".

A CM Computing Surveys 24 (1992), 293-318.
6. S. Fortune, J. Hopcroft, and E. Schmldt: "The complexity of equivalence and con-

talnment for free single variable program schemes". Proc. 5th Intl. Colloquium on Au-
tomataj Languages, and Programming. Sprlnger-Verlag Lecture Notes in Computer
Science 62 (1978), 227-240.

7. M. Garey and D. Johnson: Computers and intractability: a guide to the theory of NP-
completeness. Freeman 1979.

8. J. Gergov and C. Meinel: "On the complexity of analysis and manipulation of Boolean
functions in terms of decision graphs". Information Processing Letters 50 (1994), 317-
322.

9. V. l~aghavan and D. Wilklns: "Learning p-branchlng programs with queries". Proe. 6th
COLT (1993), 27-36.

10. R.E. Schapire: The Design and Analysis of Efficient Learning Algorithms. MIT Press,
1992.

11. S. Tani, K. Hamaguchi, and S. Yajlma: "The complexity of the optimal variable
ordering problems for shared binary decision diagrams". Proe. $th Intl. Symposium
ISAAC'93. Springer Verlag Lecture Notes in Computer Science 762 (1993), 389-398.

