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Abstract

In this paper, we propose a new algorithm that exactly learns ordered binary decision diagrams (OB-
DDs) with a given variable ordering via equivalence and membership queries. Our algorithm uses at most
n equivalence queries and at most 2n(�log2 m� + 3n) membership queries, where n is the number of nodes
in the target-reduced OBDD and m is the number of variables. The upper bound on the number of mem-
bership queries is smaller by a factor of O(m) compared with that for the previous best known algorithm
proposed by R. Gavaldà and D. Guijarro [Learning Ordered Binary Decision Diagrams, Proceedings of the
6th International Workshop on Algorithmic Learning Theory, 1995, pp. 228–238].
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

An ordered binary decision diagram (OBDD) is known to be a useful representation of a boolean
function because of its easiness for performing boolean manipulations [2]. OBDDs are now being
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extensively studied in several fields, including digital-system design [11], combinatorial optimiza-
tion [9], mathematical logic [6], and artificial intelligence [12]. There have also been many studies
on OBDDs in the field of learning theory: query learnability of �-branching programs [15], que-
ry learnability of OBDDs with a given variable ordering [8], PAC learnability of bounded-width
branchingprograms [7,5], andquery learnability of bounded-widthbranchingprograms [3,13].Here,
we consider query learnability of OBDDs with a given ordering, which was studied byGavaldà and
Guijarro [8].
The algorithm proposed by Gavaldá and Guijarro learns OBDDs with a given ordering via

equivalence and membership queries. Their algorithm is derived from a well-known algorithm for
learning deterministic finite automata (DFAs) proposed by Angluin [1] and its improved version
developed by Rivest and Schapire [14]. However, the DFA representation of an OBDD requires
many states needed to skip irrelevant bits. The algorithm proposed by Gavaldá and Guijarro saves
equivalence queries needed to find those states but still identifies all of those states, and because
of this uses a number of membership queries that depends linearly on the number of variables in
the worst case (see Section 4.1). In this paper, we propose an algorithm that does not identify any
of those states explicitly. Our algorithm learns an arbitrary OBDD with a given variable ordering
using at most n equivalence queries and at most O(n(logm + n))membership queries, where n is the
number of nodes in the target-reduced OBDD and m is the number of variables. The upper bound
on the number of membership queries for our algorithm is smaller by a factor of m than that for
Gavaldà and Guijarro’s algorithm, O(mn(logm + n)).
Our algorithm can be regarded as an extension of the algorithm Learn-Automaton [10], which

learns DFAs using classification trees instead of observation tables [1,14]. Our classification trees,
however, have special internal nodes called twin-test nodes and a special leaf node labeled �, which
are necessary for testing that a given string reaches one of the states needed to skip irrelevant bits
in the DFA representation of a target OBDD without revealing which state it is.
There is an interesting application studied by Birkendorf and Simon [4], where our algorithm

may be useful. They proposed a technique of using query learning algorithms in a heuristic strategy
for a class of NP-hard combinatorial optimization problems. Their technique can be applied to the
problem of minimizing an OBDD relative to a given domain. Our algorithm provides an efficient
implementation of their technique for this minimization problem.
The rest of this paper is organized as follows. First, we describe the definitions of OBDDs and

the query learning model in Section 2. In Section 3, the algorithm Learn-Automaton, which learns
DFAs and basically uses the same data structure as that used by our algorithm for OBDDs, is
described. In Section 4, it is first shown that a direct adaptation of the modified Learn-Automaton
for OBDDs needs at least mn2/32 membership queries in the worst case, and then the data struc-
ture of our algorithm is explained. The new learning algorithm is presented in Section 5. A proof
of its correctness and an analysis of its worst-case query complexity are given in Section 6. Some
experimental results are presented in Section 7. This paper is concluded in Section 8.

2. Preliminaries

A binary decision diagram (BDD), also called a branching program, is a directed acyclic graph
with one root node and two sink nodes, one labeled 0 and the other labeled 1. Each internal node
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is labeled with a boolean variable and has two outgoing edges, one labeled 0 and the other labeled
1. By an ‘ordered’ BDD (OBDD), it is meant that labeled variable sequences for any paths from
the root to one of the sink nodes must be consistent with a certain variable ordering �. An OBDD
represents a boolean function according to the following interpretation: the value for a given as-
signment x1 = a1, . . ., xm = am is obtained by starting from its root node, selecting the ai-labeled
outgoing edge at a node labeled xi and regarding the label of the sink node reached finally as the
value of the function. It is well known that every boolean function can be uniquely represented by
an OBDD in the reduced (minimum) form for a given variable ordering [2].
The learning model we employ is the query learning model proposed by Angluin [1]. The goal

of a learning algorithm in this model is to identify a target function f using equivalence queries
and membership queries. An equivalence query asks if the unknown target function f is equivalent
to a hypothesis h; if so, ‘YES’ is returned as a reply, and if not, a counterexample e (f(e) /= h(e))
is returned as a reply. A membership query asks for the value f(a) of the target function f for an
assignment a.

3. Kearns and Vazirani’s Algorithm for DFAs

The basic structure of our algorithm is the same as that of the DFA-learning algorithm Learn-
Automaton [10]. Learn-Automaton makes use of a classification tree instead of an observation table
used by Angluin’s algorithm [1]. A classification tree is preferable to an observation table from the
viewpoint that using a classification tree a state reached by a string is determined only by going
along a path depending on the answers for a set of membership queries while searching the row
of the same values is necessary for an observation table. In this paper, an efficient OBDD-learning
algorithm that uses extended classification trees is presented. In this section, the algorithm Learn-
Automaton and its modifications needed for efficiency are explained to help the reader understand
our algorithm, which is based on the modified version of Learn-Automaton.
For any state of any DFA, there is a string that leads to that state starting from the initial state.

Kearns and Vazirani called such a string an access string. For any pair of access strings s and s′
of two distinct states, there is a string d such that sd reaches an accepting state and s′d reaches a
rejecting state, or vice versa. Kearns andVazirani called such a string a distinguishing string for s and
s′. A classification tree has internal nodes labeled with a distinguishing string and leaf nodes labeled
with an access string of a distinct state. Each internal node has two outgoing edges, one labeled 0
(representing “reject”) and the other labeled 1 (representing “accept”). Using this tree, any string
s can be classified into one of the states as follows. Start from the root node, ask a membership
query for the string sd at the current internal node labeled d , and follow the edge labeled with the
answer for that membership query, that is, follow the 0-labeled edge if the answer is reject, and
follow the 1-labeled edge otherwise. Repeat the same procedure until one of the leaf nodes, whose
label s′ is an access string of a state, is reached. This means that, starting from the initial state, s
finally reaches a state with the access string s′ in the DFA represented by the classification tree.
Using a classification tree, the DFA represented by the tree can be constructed as follows. Create
one state for each leaf node of the tree. For each state s, classify s0 and s1 into s0 and s1, respectively,
by the tree using membership queries, and add directed edges (s, s0) labeled 0 and (s, s1) labeled 1,
which represent a transition function. Note that we abuse notation and use access strings as states
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they reach. Learn-Automaton updates a classification tree by repeating the following procedure:
construct a hypothesis DFA, obtain a counterexample by asking an equivalence query for it, find
an access string of a new state and update the classification tree.

3.1. A few modifications for efficiency

For efficiency, the following modifications are necessary for Learn-Automaton:

(1) Maintain the current hypothesis and update it instead of constructing every time from the
beginning.

(2) Apply the binary searchmethod of Rivest and Schapire to finding an access string of new state
from a counterexample.

Since the states are represented by their access strings, it is natural that the states of the maintained
hypothesis DFA should be labeled with their access strings. We call such a DFA DFA with access
strings.
The modified version of Learn-Automaton works as follows. Assume that the counterexam-

ple 011 is returned to the equivalence query for the hypothesis represented by the first DFA
in Fig. 1. The algorithm becomes aware that the string 01 reaches a new state instead of the
state labeled 1 and that the distinguishing string 1 separates the two states. Then, the algorithm
replaces the leaf node labeled 1 in the first classification tree in Fig. 1 with an internal node
labeled 1 having two child nodes, one labeled 1 and the other labeled 01. The node labeled 01
is added to the first DFA with access strings in Fig. 1. Membership queries for the new dis-

Fig. 1. DFAs with access strings and classification trees maintained by the modified version of Learn-Automaton: the
underlined strings in the DFAs are access strings that serve as the unique IDs of each state and are used as leaf labels in
the corresponding classification tree.
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tinguishing string 1 are asked for all edges directed to the state 1 and the answer determines
whether the edge direction should be changed to the state 01 or not. The directions of two
outgoing edges from the state 01 are decided by the classification tree and the answers for the
membership queries asked at its internal nodes.
It can be easily shown that in the worst case the modified version of Learn-Automaton needs

n equivalence queries and at most O(n(logm + n)) membership queries, where n is the number of
states in the target DFA and m is the length of the longest counterexample the algorithm received.
These numbers are the same as those needed byRivest and Schapire’s improved version ofAngluin’s
algorithm [14].

4. Data structure for OBDDs

An OBDD represents a function f from {0, 1}m to {0, 1}, as explained in Section 2, where m is the
number of variables. This can be seen as an accepter of the language {a1. . .am : f(a1, . . ., am) = 1}.
Since there is a straightforward conversion from an OBDD with an ordering � to a DFA that
accepts the same language, the language class accepted by OBDDs with an ordering � is a subclass
of the class of the regular sets. Thus, any learning algorithms for DFAs can be used to learn the
language class representable by OBDDs. However, there are many functions whose DFA repre-
sentation must have redundancy compared to the OBDD representation: a function representable
by an OBDD having n nodes may need mn nodes even in its most compact DFA representation.
Gavaldá and Guijarro considered that this redundancy comes from the states needed to skip ir-
relevant input bits and tried to cut down the cost needed for learning those states from Rivest
and Schapire’s algorithm. Although their modification of the algorithm succeeded in reducing the
number of equivalence queries, it is still a kind of direct adaptations of DFA-learning algorithms,
which identify all of the states needed to skip irrelevant input bits. In this section, after showing a
barrier that direct adaptations cannot break through, a data structure used to break through the
barrier is described.

4.1. Direct adaptations

From the fact that the number of states is at most mn, the number of membership que-
ries needed by Rivest and Schapire’s algorithm and modified Learn-Automaton is O(m2n2).
Using the fact that the answers are 0 for all of the membership queries for strings whose
length is not m, the upper bound on the number of membership queries can be reduced to
O(mn(logm + n)) [8]. However, obtaining an upper bound less than linear dependency on m

appears to be difficult if methods that identify all of the states needed to skip irrelevant input
bits are used.

Theorem 1. For any positive multiple n of 4, there exists a natural numberm0 such that for any number
m � m0 of variables, there exists an OBDD with n nodes that requires at least mn2/32 different mem-
bership queries in the worst case in order to be identified by the modified version of Learn-Automaton
presented in Section 3.

Proof. See Appendix Appendix B. �
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Remark 2.Rivest and Schapire’s algorithm also needs mn2/32 membership queries in the case con-
sidered in the proof of Theorem 1 (Appendix Appendix B) because the entries in the observation
table corresponding to T ′

k for k = n/2, n/2+ 1, . . .,m − n/2 must be filled. Note that the order of
finding the states by their algorithm is almost the same as the order of finding the states by the
modified Learn-Automaton, and closedness checks of an observation table can find only one state
with access string 1m.

4.2. Data structure used in our Algorithm

To break through the barrier of linear dependency on the number of variables with respect to
the number of membership queries, we introduce special internal nodes called twin-test nodes and
a special leaf node labeled � into classification trees. Using these nodes, we can test that a given
string reaches one of the states needed to skip irrelevant bits in the DFA representation of a target
OBDD without revealing which state it is. Thus, it is not necessary to identify all of those states,
and as a result the number of membership queries is reduced.
In this section, the data structure used in our algorithm,OBDDswith access strings and amodified

version of classification trees, is explained.
Assume that a variable ordering is �: x1 < x2 < · · · < xm. AnOBDD with access strings, hereafter

abbreviated as OBDDAS, is different from a normal OBDD in the following points:

• Its root node is always a node labeled x1, which may be a dummy node having only one outgoing
edge.

• The Label of an edge is a binary string. Its length is |i − j| for the edge between nodes labeled xi
and xj , and m + 1− i for an edge that goes out from the node labeled xi to a sink node. The first
bits of two edges going out from the same node must be different.

• Each node has an access string, which is a concatenation of the label strings of the edges on one
selected path from the root node to that node.

An example of an OBDDAS is shown in the leftmost part of Fig. 2. The root node of this OBD-
DAS is a dummy, and the access string of each node is the underlined string written beside the

Fig. 2. From the left, an OBDDAS S , the OBDD D(S) and classification trees T4 and T6: T4 has one twin-test node and
one single-test node, and T6 has two twin-test nodes.
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node. Here, � denotes a null string. From an OBDDAS S , we can obtain a normal OBDD, which
is denoted by D(S), by the following operations:

• Remove the dummy root node and its outgoing edge.
• Remove the access strings of all nodes.
• Remove all bits except the first bit from the label strings of all edges.

The OBDD D(S) transformed from the OBDDAS S by the above operations is shown in the
middle part of Fig. 2.
A classification tree decides which node in an OBDDAS a given string will reach based on the

answers for the membership queries asked at each node of the tree. The OBDD version is different
from the DFA version in the following respects.

• There is one classification tree Ti for each different string length i for 1 � i � m.
• The trees Ti may have one leaf node labeled �, which means that a given string does not reach
an node at length i.

• The trees have two types of internal nodes: single-test nodes and twin-test nodes. (The trees for
DFAs have single-test nodes only.)

The difference between single-test nodes and twin-test nodes is as follows: at the node labeled r,
only an experiment for r is conducted at single-test nodes, but an experiment for ṙ, ṙ being the string
obtained by flipping the first bit of r, is also conducted at twin-test nodes.
Here, for a given string s, an experiment for rmeans asking amembershipquery for the assignment

that corresponds to string sr, the concatenation of string s and r.
The three differences stated above are briefly explained here. Since strings of different lengths

cannot reach the same node in an OBDDAS, a classification tree can be decomposed into trees for
each length. In aDFAwith access strings, every string reaches one of the states, but in anOBDDAS,
some strings do not reach any node. Thus, a leaf node is needed for such a case. Twin-test nodes
play an important role in deciding whether reachable nodes exist or not in an OBDDAS.
A precise definition of classification trees for OBDDs is given here. Let S be an OBDDAS and

S-nodesi(S) be the set of access strings possessed by the non-dummy nodes in S whose length is i.
Let S-nodes(S) = ⋃m

i=0 S-nodesi(S). We define a classification tree Ti as follows. For 1 � i < m, the
tree Ti is composed of single-test and twin-test internal nodes and of |S-nodesi(S)| + 1 leaf nodes.
The leaf nodes are labeled with different strings in S-nodesi(S) ∪ {�}. Each internal node is labeled
with a string of length m − i and has two child nodes connected by an edge labeled 0 and an edge
labeled 1. As for Tm, the tree can be composed of a single-test node and two leaf nodes labeled with
different strings in S-nodesm(S). By this Ti, a string a ∈ {0, 1}i is classified into one of its leaf labels,
which is denoted by Ti(a), as follows. Start from the root node of Ti . If a has reached a twin-test
node labeled r ∈ {0, 1}m−i, select the outgoing edge labeled 1 if2 D(ar) = 1 and D(aṙ) = 0, where D
denotes a target OBDD. Otherwise, select the outgoing edge labeled 0. If a has reached a single-test

2 We abuse notation and use representations as the functions they represent. For an OBDDAS S , S is also used as the
function that D(S) represents.
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node labeled r ∈ {0, 1}m−i, select the outgoing edge labeledD(ar). Classify a into the label of the leaf
reached finally. For example, T4 in Fig. 2 is the classification tree for S-nodes4(S) of the leftmost
OBDDAS S . Its root node is a twin-test node and the other internal node is a single-test node.
Beginning with a simple hypothesis, our algorithm obtains a counterexample by an equivalence

query, updates its current hypothesis while satisfying certain conditions, and repeats this process
until ‘YES’ is returned for an equivalence query. Before describing the conditions, the notation used
will be explained. Let D denote a target OBDD. The set nodes(D) is the set of strings a1a2 · · · ak
such that k = m or the assignment with x1 = a1, . . ., xk = ak leads to a node labeled xk+1 in D. If D
is reduced, v ∈ nodes(D) if and only if |v| = m or there exists a string r of length m − |v| such that
D(vr) /= D(vṙ). For v1, v2 ∈ nodes(D), an equivalence relation ‘D=’ is defined as follows:

v1
D= v2

def⇔ v1 and v2 lead to the same node in D.

Note that for any classification tree Ti,

P1. ∀v1,∀v2 ∈ nodes(D) with |v1| = |v2| = i [v1 D= v2 ⇒ Ti(v1) = Ti(v2)]
holds. For an OBDDAS S , S-edges(S) is the set of edges (u, v) in S , where u and v are the access
strings of the end nodes of an edge. For an edge (u, v), l(u, v) is the label of the edge. For a string a,
pre(a, i) is the prefix string of a with length i.
The conditions which all the intermediate OBDDASs and classification trees of our algorithm

satisfy are C1, C2, and C3 given in the following lemma.

Lemma 3. For a reduced OBDD D, assume that an OBDDAS S and classification trees Ti for all
i = 1, . . .,m satisfy the following conditions C1, C2, and C3.

C1. (1)S-nodes(S) ⊆ nodes(D),
(2)∀v ∈ S-nodesm(S)[S(v) = D(v)], and

(3)∀v1,∀v2 ∈ S-nodes(S)[v1 /= v2 ⇒ v1
D
/= v2].

C2. (1)∀v ∈ S-nodes(S)[T|v|(v) = v], and
(2)∀i ∈ {1, . . .,m},∀a ∈ {0, 1}i[a �∈ nodes(D) ⇒ Ti(a) = �].

C3. For all (u, v) ∈ S-edges(S),
(1)T|v|(u · l(u, v)) = v, and
(2)|u| < ∀j < |v|, Tj(u · pre(l(u, v), j − |u|)) = �.

Then, D(S) = D if the cardinality of S-nodes(S) is exactly the number of nodes in D.

Proof.For v ∈ S-nodes(S), letN(v) denote the node inD to which the assignment made by assigning
the ith bit of string v to xi leads. Mapping N from S-nodes(S) to the set of nodes inD is well-defined
by C1(1), one-to-one by C1(3), and onto by the assumption that |S-nodes(S)| is equal to the number
of nodes in D. The label of v in S and the label of N(v) in D are x|v|+1 if |v| /= m, and they also
coincide even when |v| = m by C1(2). Hence, to showD(S) = D, we only have to prove that for any
v1, v2 ∈ S-nodes(S), if there exists an edge (N(v1),N(v2)) labeled b in D, (v1, v2) ∈ S-edges(S) and the
first bit of l(v1, v2) is b.
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Assume that there exists an edge (N(v1),N(v2)) labeled b inD for arbitrary v1, v2 ∈ S-edges(S). Let
(v1, v)be the edge inSwhichgoesout fromnode v1 and is labeledbya stringwith thefirst bitb.Assume
that |v| < |v2|. Since v1 · l(v1, v) �∈ nodes(D), T|v|(v1 · l(v1, v)) = � by C2(2), so (v1, v)�∈S-edges(S) by
C3(1), which is a contradiction. Hence, |v| � |v2|. Assume that |v| > |v2|. Since v1 · pre(l(v1, v), |v2| −
|v1|) D= v2, T|v2|(v1 · pre(l(v1, v), |v2| − |v1|)) = v2 by C2(1) and P1, which contradicts C3(2). There-

fore, |v| = |v2|. Since v1 · l(v1, v) D= v2, T|v2|(v1 · l(v1, v)) = v2 by C2(1) and P1. On the other hand,
T|v2|(v1 · l(v1, v)) = v by C3(1). Hence, v = v2. �

5. Algorithm

In this section,wewill explainour algorithmQLearn-�-OBDD,whichalwaysoutputs the reduced
OBDDofany target functionwith theordering� using equivalencequeries andmembershipqueries.
The algorithm is shown in Fig. 3. First, QLearn-�-OBDD asks equivalence queries (EQs) for

two trivial OBDDs, denoted by 1 and 0, the OBDDs being composed of only one sink node. If
‘YES’ is returned to one of these two queries, then the algorithm outputs the hypothesis used by
the query and stops. Otherwise, the algorithm makes an initial OBDDAS and classification trees
by the procedure Initial-Hypothesis from the two counterexamples e0 and e1 with D(e0) = 0 and
D(e1) = 1, where D is a target function.
The procedure Initial-Hypothesis works as follows. Let cro(e0, e1, i) denote a string of length

m constructed by concatenating pre(e0,m − i) and suf(e1, i), where pre(e0,m − i) is the prefix of
e0 with length m − i and suf(e1, i) is the suffix of e1 with length i. Since e0 = cro(e0, e1, 0) and e1 =
cro(e0, e1,m), there exists iwith 0 < i � m such thatD(cro(e0, e1, i − 1)) = 0 andD(cro(e0, e1, i)) = 1,
and such an i can be found by a binary search using �log2m�membership queries. In the procedure,
an initial OBDDAS S0 and initial classification trees T 0j for j = 1, . . .,m as shown in Fig. 4 are
constructed. Note that S0 and {T 01 , . . ., T 0m} satisfy the conditions C1, C2, and C3 in Lemma 3.

Fig. 3. Learning algorithm of OBDDs with the ordering �.



A. Nakamura / Information and Computation 201 (2005) 178–198 187

Fig. 4. Initial OBDDAS S0 and initial classification trees T 0j for j = 1, . . .,m: T 0m−i has one twin-test node, T
0
m has one

single-test node, and the other T 0j s are composed of only one leaf node labeled �.

Fig. 5. Procedure for updating a current hypothesis using a counter example.

Assume that the algorithm has a current OBDDAS S and current classification trees Ti for
i = 1, . . .,m. The algorithm asks an equivalence query for current hypothesis OBDD D(S) and if a
counterexample e is returned, it executes the procedure Update-Hypothesis shown in Fig. 5. This
process is repeated until ‘YES’ is returned to the equivalence query.
Each execution of the procedureUpdate-Hypothesis finds one node of the target-reducedOBDD

and updates the current hypothesis. Consider the path in S made by a given counterexample e. As-
sume that there are k nodes on the path and let pi be the access string of the ith node on the path
from the root node. Note that we abuse notation and let pi denote a node itself as well as an access
string. Since e is a counterexample for S , the leaf node pk reached by the path is not correct, that
is, D(pk) /= D(e). Let ei = suf(e,m − |pi|). Since pk = pkek and e = p1e1, there must exist i such that
1 � i < k andD(piei) = D(e) /= D(pi+1ei+1). Such i is calculated at Step 2 usingmembership queries.
For this i, let q denote the label of the edge (pi, pi+1), that is, q = l(pi, pi+1). There are two cases de-
pending on the value ofD(piqei+1). WhenD(piqei+1) = D(e) /= D(pi+1ei+1), piq and pi+1 must reach
different nodes, and this case is dealt with in the procedure NodeSplit (Fig. 6), where one single-test
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Fig. 6. Procedure for the case in which a node of a current OBDDAS is split.

node is added to one of the classification trees. When D(piqei+1) = D(pi+1ei+1) /= D(e), there must
exist a node between pi and pi+1 from which the path for piei and the path for piqei+1 branch, and
this case is dealt with in the procedure NewBranchingNode (Fig. 7), where one twin-test node is
added to one of the classification trees. Both procedures add a new node v to the current OBDDAS
(Step 2 in Fig. 6, Step 5 in Fig. 7), update T|v| (Step 4 in Fig. 6, Step 13 in Fig. 7), change all edges
that must enter v (Step 5 in Fig. 6, Step 14 in Fig. 7) and add edges going out from v (Step 7 in Fig.
6, Step 15 in Fig. 7).
Some examples are given here for a better understanding of the above two cases. Let D in Fig. 8

be the target OBDD to learn. Note that the solid lines represent 1-labeled edges and the broken lines
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Fig. 7. Procedure for the case in which a new node is added on an edge.

represent 0-labeled edges. Assume that our algorithm constructs OBDDAS S1 in Fig. 8 after receiv-
ing several counterexamples.3 Consider the case that the counterexample 00000011 is returned to
the equivalence query forD(S1). In this case, the nodes in S1 on the pathmade by the counterexample

3 Actually, the following sequence of four counterexamples makes the algorithm construct S1:
01101111, 10100110, 10001011, 01101001.
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Fig. 8. Examples of the cases dealt with in the procedures NodeSplit and NewBranchingNode.

are p1 = �, p2 = 1010 and p3 = 10100111. In the procedure Update-Hypothesis, this case is dealt with
in the procedure NewBranchingNode because D(p1e1) /= D(p2e2) and D(p1qe2) = D(p2e2). In the
procedure NewBranchingNode, S1 is updated to S2 in Fig. 8. Next, consider the case that the coun-
terexample 01111001 is returned to the equivalence query forD(S2). In this case, the nodes on the path
made by the counterexample in S2 are p1 = �, p2 = 01, p3 = 1010 and p4 = 10101111. In the procedure
Update-Hypothesis, this case is dealt with in the procedure NodeSplit because D(p2e2) /= D(p3e3)

and D(p2qe3) /= D(p3e3). In the procedure NodeSplit, S2 is updated to S3 in Fig. 8.

6. Correctness and efficiency

Lemma 4.For a target OBDDD, assume that an OBDDAS S and classification trees Ti for i = 1, . . .,m
satisfy C1, C2, and C3 in Lemma 3 and that S has two sink nodes. Let e be a counterexample of D for
D(S). Let (S ′, T ′

1 , . . ., T
′
m) denote the output of the procedure Update-Hypothesis for (S , T1, . . ., Tm, e).

Then, (S ′, T ′
1 , . . ., T

′
m) satisfies C1, C2, and C3, and |S-nodes(S ′)| = |S-nodes(S)| + 1.

Proof.
(1) When Update-Hypothesis executes the procedure Node-Split.
In this case, one new internal node v is added to S at Step 2, so |S-nodes(S ′)| = |S-nodes(S)| + 1.
First, we show that S ′ satisfies condition C1. T|v|(v) = T|v|(pi · l(pi, pi+1)) = pi+1 by C3(1), and this

fact implies v ∈ nodes(D)byC2(2). Thus, S ′ satisfiesC1(1). Let us show S ′ satisfiesC1(3). Assume that
v

D= u ∈ S-nodes|pi+1|(S) − {pi+1}. Then, T|pi+1|(v) = T|pi+1|(u) = u byC2(1), which contradicts the fact
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implied by C3(1) that T|pi+1|(v) = T|pi+1|(pi · l(pi, pi+1)) = pi+1. Thus, v �∈ S-nodes|pi+1|(S) − {pi+1}. It
also holds that v

D
/= pi+1 becauseD(vei+1) /= D(pi+1ei+1). Therefore, S ′ satisfies C1(3). By the assump-

tion that S already has two sink nodes, v can not be a sink node if S ′ satisfies C1(1) and C1(3). Then,
S-nodesm(S ′) = S-nodesm(S), so C1(2) is satisfied.
Next, we prove that (S ′, T ′

1 , . . ., T
′
m) satisfies condition C2. Since T

′
h = Th for all h ∈ {1, . . .,m} −

{|v|}, we only have to check T ′|v|. For u ∈ S-nodes|v|(S) − {pi+1}, T ′|v|(u) = u because T|v|(u) = u and
T ′|v| is made from T|v| by replacing the pi+1-labeled leaf with the tree T

ei+1
|v| , which is composed

of one single-test internal node labeled ei+1, the leaf labeled v and the leaf labeled pi+1. T|v|(v) =
T|v|(pi+1) = pi+1 by C3(1) and C2(1), so both v and pi+1 reach the root node of T ei+1

|v| in T ′|v|. Thus,
T ′(v) = T

ei+1
|v| (v) = v and T ′|v|(pi+1) = T

ei+1
|v| (pi+1) = pi+1 by the definition of T ei+1

|v| . For all a ∈ {0, 1}|v|
s.t. a �∈ nodes(D), T|v|(a) = � by C2(2), so T ′|v|(a) = � because a reaches the �-labeled leaf in T|v|,
which is not modified in T ′|v|.
Finally, we show that (S ′, T ′

1 , . . ., T
′
m) satisfies condition C3. First, consider the edge (pi, v) added

at Step 2. This edge satisfies C3(1) because T ′|v|(pi · l(pi, v)) = T ′|v|(v) = v by C2(1). This edge also
satisfies C3(2) because for j with |pi| < j < |v|,

T ′
j (pi · pre(l(pi, v), j − |pi|)) = Tj(pi · pre(l(pi, pi+1), j − |pi|)) = �.

Next, consider the edges (v1, v) added at Step 5. T|v|(v1 · l(v1, pi+1)) = pi+1 byC3(1), so v1 · l(v1, pi+1)
reaches the root of T ei+1

|v| in T ′|v|. Since T
ei+1
|v| (v1 · l(v1, pi+1)) = v, T ′|v|(v1 · l(v1, v)) = v. Thus, the edges

(v1, v) satisfy C3(1). These edges also satisfy C3(2) because for all j with |v1| < j < |v|,
T ′
j (v1 · pre(l(v1, v), j − |v1|)) = Tj(v1 · pre(l(v1, pi+1), j − |v1|)) = �.

The edges added at Step 7 are made so as to satisfy C3.
The edges in S-edges(S) ∩ S-edges(S ′) is shown to satisfy C3 as follows. Since T ′|a|(a) = T|a|(a)

for all a satisfying T|a|(a) /= pi+1, C3(2) is trivially satisfied by them for T ′
1 , . . ., T

′
m and the edg-

es (v1, v2) in S that do not satisfy C3(1) for T ′
1 , . . ., T

′
m are only those for which v2 = pi+1 and

T ′|v|(v1 · l(v1, pi+1)) = T
ei+1
|v| (v1 · l(v1, pi+1)) = v. However, all such edges (v1, v2) are removed at Step

2 and Step 5, so C3(1) is also satisfied by all of the edges in S-edges(S) ∩ S-edges(S ′).

(2) When Update-Hypothesis executes the procedure NewBranchingNode
In this case, one new internal node v is added to S at Step 5, so |S-nodes(S ′)| = |S-nodes(S)| + 1.
First,we showthatS ′ satisfies conditionC1. Since v is not a sinknode, S-nodesm(S ′) = S-nodesm(S).

Thus, C1(2) is satisfied by S ′. SinceD(vr) = D(pi · cro(q, f , j) · ei+1) /= D(pi · cro(q, f , j − 1) · ei+1) =
D(vṙ), v ∈ nodes(D), which means that S ′ satisfies C1(1). To show that S ′ satisfies C1(3), we as-
sume that ∃u ∈ S-nodes(S)[u D= v]. Then, u D= v implies T|v|(v) = T|v|(u), and furthermore T|v|(v) =
u by C2(1). However, T|v|(v) = T|v|(pi · pre(l(pi, pi+1), |v| − |pi|)) = � by C3(2), which contradicts
T|v|(v) = u.
Next, we prove that (S ′, T ′

1 , . . ., T
′
m) satisfies condition C2. Since T

′
h = Th for all h ∈ {1, . . .,m} −

{|v|}, we only have to check T ′|v|. For u ∈ S-nodes(S) with |u| = |v|, T ′|v|(u) = u because T|v|(u) = u

and T ′|v| is made from T|v| by replacing the �-labeled leaf with the tree T s|v|, which is composed of
one twin-test internal node labeled s, the v-labeled leaf and the �-labeled leaf. For the new node
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v, T|v|(v) = � by C3(2), so v reaches the root node of T s|v| in T ′|v|. Since T s|v|(v) = v, T ′|v|(v) = v. For
all a ∈ {0, 1}|v| s.t. a �∈ nodes(D), T|v|(a) = � by C2(2), so a also reaches the root node of T s|v| in T ′|v|.
Since D(as) = D(aṡ), a reaches the �-labeled leaf, that is, T ′|v|(a) = �.
Finally,we show that (S ′, T ′

1 , . . ., T
′
m) satisfies conditionC3.First, consider the edges (pi, v), (v, pi+1)

added at Step 5. These two edges satisfy C3(1) because T ′|v|(pi · l(pi, v)) = T ′|v|(v) = v and T ′|pi+1|(v ·
l(v, pi+1)) = T|pi+1|(pi · l(pi, pi+1)) = pi+1. When |pi| < j1 < |v| < j2 < |pi+1|,

T ′
j1
(pi · pre(l(pi, v), j1 − |pi|)) = Tj1(pi · pre(l(pi, pi+1), j1 − |pi|)) = �

and

T ′
j2
(v · pre(l(v, pi+1), j2 − |v|)) = Tj2(pi · pre(l(pi, pi+1), j2 − |pi|)) = �.

Thus, these two edges also satisfy C3(2).
Next, consider the edges (v1, v) added at Step 14. T|v|(v1 · pre(l(v1, v2), |v| − |v1|)) = � byC3(2) and

the �-labeled leaf is replaced with T s|v| in T ′|v|, so T ′|v|(v1 · l(v1, v)) = T s|v|(v1 · pre(l(v1, v2), |v| − |v1|)) =
v. Furthermore, for |v1| < j < |v|,

T ′
j (v1 · pre(l(v1, v), j − |v1|)) = Tj(v1 · pre(l(v1, v2), j − |v1|)) = �.

Thus, all of the edges (v1, v) satisfy C3.
The edge added at Step 15 is made so as to satisfy C3.
The edges in S-edges(S) ∩ S-edges(S ′) is shown to satisfy C3 as follows. Since T ′|a|(a) = T|a|(a)

for all a satisfying T|a|(a) /= � or |a| /= |v|, C3(1) is trivially satisfied by them for T ′
1 , . . ., T

′
m and the

edges (v1, v2) in S that do not satisfy C3(2) for T ′
1 , . . ., T

′
m are only those for which |v1| < |v| < |v2|

and T ′|v|(v1 · pre(l(v1, v2), |v| − |v1|)) = v. However, all such edges (v1, v2) are removed at Step 5 and
Step 14, so C3(2) is also satisfied by all of the edges in S-edges(S) ∩ S-edges(S ′). �
Theorem 5. For an arbitrary target OBDD D in reduced form with ordering �, algorithm QLearn-�-
OBDDexactly learnsD using atmost n equivalence queries and atmost 2n(�log2m� + 3n)membership
queries, where m(� 1) is the number of variables and n is the number of nodes in D.

Proof.We assume that D has two sink nodes because the case with one sink node is trivial. First,
we prove that QLearn-�-OBDD outputs D with at most n equivalence queries. It is trivial that
S0 and T 01 , . . ., T

0
m satisfy the conditions C1, C2, and C3 in Lemma 3. By Lemma 4, the number

of non-dummy nodes of the OBDDAS S maintained by the algorithm increases by one for every
execution of the procedure Update-Hypothesis, which updates S and classification trees T1, . . ., Tm
while satisfying C1, C2, and C3. Thus, |S-nodes(S)| reaches just the number of nodes in D after ex-
ecuting the procedure Update-Hypothesis n − 3 times. Then, Lemma 3 guarantees that D(S) = D.
Therefore, the nth equivalence query by QLearn-�-OBDD is answered with ‘YES’ because three
equivalence queries are asked before the first execution of Update-Hypothesis and one equivalence
query is asked after each execution of Update-Hypothesis.
Next, we consider the number of membership queries. To construct S0 and T 01 , . . ., T

0
m, the algo-

rithm uses �log2m�membership queries. Let us consider how many membership queries are asked
in one execution of Update-Hypothesis.
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(1) When Update-Hypothesis executes the procedure NodeSplit
At Step 2 of Update-Hypothesis, at most �log2m�membership queries are asked. At Step 5 of
NodeSplit, at most n membership queries are asked because at most one membership query
is asked for each node in S . In each execution of Step 7 of NodeSplit, at most 4nmembership
queries are asked because at most two membership queries are asked for each internal node
of T1, . . ., Tm and the number of internal nodes is at most n. In this case, the algorithm asks at
most �log2m� + 5n membership queries in total.

(2) When Update-Hypothesis executes the procedure NewBranchingNode.
At Step 2 of Update-Hypothesis and Step 2 of NewBranchingNode, at most 2�log2m� mem-
bership queries are asked by using a binary search. At Step 14 of NewBranchingNode, at most
4nmembership queries are asked because at most two membership queries are asked for each
edge in S . At step 15 of NewBranchingNode, at most 2nmembership queries are asked for the
reason described above. In this case, the algorithm asks at most 2�log2m� + 6n membership
queries in total.

Thus, QLearn-�-OBDD asks at most 2n(�log2m� + 3n) membership queries. �
Assuming that all of the operations on strings of length m need at most O(m) steps, it can be

easily shown that the running time is at most O(nm(logm + n)), that is, a factor of O(m) larger than
the number of queries.

7. Experiments

From the results obtained byworst-case analysis in Sections 4.1 and 6, the number ofmembership
queries asked by our algorithm is dependent on the number of variables at most logarithmically,
while the number of those asked by a direct adaptation of the modified Learn-Automaton is de-
pendent on the number of variables at least linearly. In this section, we show experimental results
which indicate that a similar performance difference between two algorithms appears to exist even
for target OBDDs generated at random according to a certain natural distribution.
For afixednand for variousms, some reducedOBDDswithnnodes each labeledwithonevariable

selected fromm variableswere generated by theOBDDgenerationprocedure described inAppendix
A, and the number of membership queries asked by the algorithms was experimentally investigated.
In the first experiment, n was fixed to 100 and m was set to 100, 200, . . . , 900 or 1000. For each

m, 10 OBDDs were generated and each algorithm was executed 5 times for each OBDD. Then the
results were obtained by averaging the number ofmembership queries over these 50 runs for eachm.
Note that the number of queries asked by the algorithms possibly varies even for the same OBDD
because of the introduction of randomness to the selection of counterexamples.
We ran two algorithms, QLearn-�-OBDD and a direct adaptation of the modified Learn-Au-

tomaton, which we call DFALearn-�-OBDD here. Note that DFALearn-�-OBDD used the fact
that the value of a target function is 0 for all strings of which length is not m to reduce the number
of membership queries.
The results are shown in Fig. 9. The difference in the performance of the two algorithms is clear,

but with respect to the number of queries as a function of the number of variables, the increasing
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Fig. 9. Average number of membership queries asked by QLearn-�-OBDD and DFALearn-�-OBDD.

Fig. 10. Average number of membership queries requested by QLearn-�-OBDD.

rate is too small to estimate the order of magnitude for QLearn-�-OBDD. Another experiment in
which m was set to 50, 100, 200, . . ., 6400 or 12800 while n was fixed to 100 was therefore carried out.
The results are shown in Fig. 10, where a log scale is used on the axis of the number of vari-

ables. According to the results of these experiments, the number of membership queries asked by
QLearn-�-OBDD appears to increase at most logarithmically, while the number of membership
queries asked by DFALearn-�-OBDD appears to increase at least linearly.
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8. Conclusions

We proposed a new algorithm for query learning of OBDDs with a given variable ordering,
proved its correctness and analyzed its query complexity. Compared to the previous best known
algorithm proposed by Gavaldà and Guijarro, our algorithm has the same upper bound on the
number of equivalence queries and an upper bound on the number of membership queries that
is smaller by a factor of O(m), where m is the number of variables. Our algorithm makes use of
classification trees as the DFA learning algorithm proposed by Kearns and Vazirani does, but our
classification trees have special internal nodes called twin-test nodes and special leaf nodes labeled
�. Through introduction of these nodes, our algorithm can identify a target OBDD without iden-
tifying any of the states needed to skip irrelevant bits in its DFA-representation. As far as such
algorithms that identify all of those states are considered, the barrier of linear dependency on m for
the number of membership queries appears not to be broken through from the results presented
in Section 4.1. In our experiments, a similar performance difference was observed even for target
OBDDs generated at random according to a certain natural distribution.
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Appendix A. OBDD generation procedure

Input:
m: number of variables
n: number of nodes

Output:
D: an OBDD having n nodes with a variable ordering x1 < · · · < xm

(1) For each one of n − 2 internal nodes, select a label variable from {x1, . . ., xm} at random. Re-
order nodes so that that the labels xi1 , . . ., xin−2 of nodes v1, . . ., vn−2, respectively, satisfy that
i1 � . . . � in−2. Let vn−1 and vn denote the two sink nodes.

(2) For j = 1 to n − 2, do the following procedure.
(a) If j > 1 and vj has no incoming nodes, redo from the beginning.
(b) Set k to 0 or 1 at random.
(c) Add a k-labeled outgoing edge from vj as follows.
Let h0 = min{h > j : ih > ij} and h1 = max{h � h0 : ih = ih0}. For h0 � h � h1, if there is
a node vh that does not have an incoming edge yet, then select one such h at random.
Otherwise, select h from {h0, . . ., n} at random. Add an edge (vj ,vh).

(d) Add the other outgoing edge from vj similarly, but reselect h when the same h is
selected.
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(3) Decide the labels of the two sink nodes at random.
(4) Transform the current OBDD into the unique OBDD D in the reduced form.
(5) If the number of nodes in D is smaller than n, redo from the beginning.

Appendix B. Proof of Theorem 1

Consider an OBDD shown in the left part of Fig. B.1. The right part in Fig. B.1 is its minimum
DFA representation. For identifying this DFA with m � 2n, the modified Learn-Automaton asks
at least mn2/32 different membership queries, which is shown as follows.
Consider the case in which the algorithm receives counterexamples 1m(= e0), 12m+1 and ei for

i = 1, 2, . . ., n/2− 1 in this order, where ei is 0i1m−n/20n/2−i when i is an even number and ei is
0i10m−n/2−210n/2−i when i is an odd number. Here, ai for any character a denotes a length-i string
that is composed of character a only. Note that Learn-Automaton does not always create a hy-
pothesis DFA consistent with given counterexamples, and it is assumed that in such cases the same
counterexample is returned for those equivalence queries. Then, the classification tree T shown
in Fig. B.2 is constructed, where pre(ei, k) and suf(ei, k) are the prefix and suffix of ei with length
k , respectively. Considering the fact that the length of a string must be m for being accepted, the
classification tree for strings with length k = 1, . . .,m − 1 can be seen as T ′

k shown in Fig. B.2. Define
A as set {(i, j, k) : 0 � i, j � n/2− 1, n/2 � k � m − n/2, i − j is odd}. Then for (i0, j0, k0), (i1, j1, k1)
∈ A, Pi0,k0Sj0k0 /= Pi1,k1Sj1k1 when (i0, j0, k0) /= (i1, j1, k1). To construct the part of T corresponding
to T ′

k for each k = n/2, n/2+ 1, . . .,m − n/2, at least n2/16 membership queries are needed because
�(i + 1)/2� + 1 membership queries for strings PikSjk (j � i + 1, (i, j, k) ∈ A) are needed for each leaf
with access string Pi,k for i = 0, 1, . . ., n/2− 2. Thus, totally, at least (m − n + 1) × (n2/16) � mn2/32
different membership queries are asked by the modified Learn-Automaton. �

Fig. B.1. An OBDD that requires many membership queries to be identified by the modified Learn-Automaton.
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Fig. B.2. Classification tree constructed by Learn-Automaton.
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