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Abstract 

McNaughton, R., Infinite games played on finite graphs, Annals of Pure and Applied Logic 65 

(1993) 149-184. 

The concept of an infinite game played on a finite graph is perhaps novel in the context of an 

rather extensive recent literature in which infinite games are generally played on an infinite 

game tree. We claim two advantages for our model, which is admittedly more restrictive. First, 

our games have a more apparent resemblance to ordinary parlor games in spite of their infinite 

duration. Second, by distinguishing those nodes of the graph that determine the winning and 

losing of the game (winning-condition nodes), we are able to offer a complexity analysis that is 

useful in computer science applications. 

1. Introduction 

This paper’ investigates certain games of infinite duration that have only 

finitely many configurations. Before we begin to discuss these games, which are 

games of perfect information, let us review the well known finite-duration games 

of perfect information. The two players in any such game move in turn each with 

full knowledge of everything relevant to the game that has occurred previously; 

the play of the game and its outcome are determined completely by the moves of 

the players. There are many such games; tic-tuc-toe, checkers, chess and go are 

four examples. Excluded are all games of cards in which the players do not show 

their hands, all games in which opposing players move simultaneously (neither 

one knowing the other’s move until after both moves are completed) and all 

games in which the play is partly or wholly determined by chance events. 

Typically a game of perfect information is played on a board, where the players 

move by moving pieces about according to certain rules. It simplifies our thinking 

about these games to think of all of them as board games. For example, we can 
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think of tic-tuc-toe as played with tokens and a three-by-three board rather than 

with pencil and paper. 

For our purposes the concept of configuration is an important one in the study 

of a game. We must make it precise enough so that it includes all information 

about any situations of the game relevant to the way the game continues, 

including all strategic considerations. In particular, it must tell which of the two 

players is to make the next move. The concept of conjigurution in a board game is 

characterized completely by saying the following: configuration C, is different 

from configuration C2 if and only if either one player has the move in C, and the 

opponent has the move in CZ, or else there is at least one piece that is in one 

location in C, but in another location in C,. 

A board game has finitely many configurations, although any game worthy of 

serious devotion has a large enough number of configurations so that people 

cannot play the game with strategies based on exhaustive search. Thus tic-tat-toe 

is not worthy of serious devotion, but each of our other three examples is. Indeed 

in each of these games the number of configurations seems to be large enough so 

that present-day computers could not do an exhaustive search of the game tree in 

the normal course of computer usuage. 

But the number of configurations is always finite, which means that any board 

game can theoretically be converted to a finite directed graph, each node of which 

represents a configuration of the game. The result of this conversion we call a 

finite graph game. 

More precisely, a finite graph game has a finite bipartite directed graph whose 

set Q of nodes is partitioned into two sets: R, the set of nodes from which Red 

moves, and B, the set from which Black moves. The game has a placemarker 

which is moved from node to node along the directed edges to mark the progress 

of the play. When the placemarker is on a node of R, Red moves by moving the 

placemarker along one of the edges to a node of B, whereupon it is Black’s turn 

to move. Black moves in a similar way, always leaving the placemarker on a node 

of R. 

The graph has a starting node q. from which the play always starts and two 

disjoint sets of winning-condition nodes W, and W,. If the placemarker ever 

lands at a node of W, or W, then the game ends with a win for Red or Black, 

respectively. 

In many board games, and hence in many graph games, a play can end in a 

draw, e.g., whenever the placemarker reaches a node outside of W, U W, having 

no outgoing edges, or whenever the play gets into a recognizable loop. However, 

there do exist board games and graph games in which no play can end in a draw. 

It is not difficult to see that in any such graph game (and hence in any such board 

game) one of the two players has a winning strategy. We shall not prove this well 

known fact; but we shall prove a similar and slightly more difficult fact as 

Theorem 3.3 in Section 3. 

All graphs in this paper are finite. The word ‘finite’ in the term ‘finite graph 
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game’ does not refer to the finiteness of the graph, but to the fact that any play of 

the game that is not a draw is of finite duration. This paper will study infinite 

graph games, that is, games of infinite duration played on finite graphs. Winning 

and losing in these games will depend on the permset of the infinite play, i.e., the 

set of nodes visited infinitely often by the placemarker. Technical definitions will 

be given in the next section. 

Playing to infinity is certainly a mathematical fiction. The real phenomena we 

have in mind are game-like situations that go on for an indefinite period of time. 

Instead of an outcome that occurs once at some termination point, there are 

certain desirable and undesirable things that happen continually. If certain 

combinations of things happen predominantly over a period of time then one 

player wins, whereas other combinations make the opponent the winner. The 

notion of infinite duration is simply a mathematical idealization of what in our 

ordinary thinking is an indefinite duration. 

An example is the running of a business, where the objective is to remain in 

business and maintain a profit. Ordinarily there is no point at which the business 

manager wins and often there is no point at which there is a decisive loss. We 

might depict this enterprise as an infinite game, which the business manager 

(playing against the world) wins if and only if there are infinitely many periods 

when the business shows a substantial profit and only finitely many periods when 

it shows a substantial loss. 

The study of infinite games has application to Computer Science, which at this 

date seems to be its main reason for existence. Most theories of computation have 

been concerned with computation as an act that produces a result upon 

termination of the computation itself; all computations that do not terminate are 

put into the same category, namely, failure. This conception is justified when user 

programs are the object of study, since in most computational situations users are 

willing to leave the scene when they get their answers. 

But the operating system of a multi-user computer needs another kind of 

theory of computation. When one user is satisfied there are generally several 

other programs still running, and more that are about to start. For such an 

operating system, computation is an on-going process, ideally without termina- 

tion, like the running of a business. Generally speaking, the application of infinite 

games to theoretical computer science is to process-oriented theory rather than to 

problem-oriented theory. 

The paper [lo] proposes that programmers writing concurrent programs think 

of themselves as playing games with a computer. Because the action of the 

computer is nondeterministic (or appears so to the programmer), it should be 

regarded as a ‘devilish opponent trying its level best to execute the program in 

such a way that the program specification is violated’. Since programmers write 

for runs that are unpredictably long, it is appropriate for the games that describe 

this process to be of infinite duration. 

At present we have nothing more to say, beyond these mere suggestions, about 
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possible applications of infinite games. We admit that these two suggestions are 

superficial in that neither the running of a business nor the work of a computer 

operating system is wholly a game of perfect information. 

We shall define the concept of infinite graph game precisely in Section 2, prove 

some preliminary theorems in Section 3 and then state and prove our main 

theorem in Section 4, to the effect that in any infinite graph game one player has 

a winning strategy of a certain kind. The proof of the main theorem is 

constructive, giving us an algorithm that determines the winner and the winning 

strategy. Section 5 discusses the computational complexity of that algorithm. 

Section 6 focuses on an interesting subclass of the class of strategies and gives 

sufficient condition on a game for it to have a winning strategy in the subclass. 

Between Section 2 and Section 6 the notion of infinite duration is never 

questioned, but in Section 7 a partial answer is given to the important question of 

how a winner in an infinite graph game might be declared after a finite amount of 

time. 

Finally, in Sections 8 and 9 we relate our work to other papers in the literature. 

In Section 8 we compare our work to what we call abstract infinite games, as 

introduced in 1953 by Gale and Stewart [4]. In Section 9 we trace the history of 

our notion of infinite graph game; briefly, it originated as a question about formal 

logic in a 1960 paper by Buchi [l], was developed by Landweber [7,8], and was 

put forth in a fully and overtly published form in a 1969 paper [2] by both 

authors, with a proof of something like our main theorem. Our theorem and its 

proof are based on a 1982 paper by Gurevich and Harrington [6], aided by a 1990 

follow-up paper by Yakhnis and Yakhnis [12]. 

2. The concept 

In most of the remainder of this paper (namely, through Section 7) the word 

‘game’ when it occurs without a modifier will mean an infinite graph game. 

Formally, a game ‘3 is an ordered sextuple (Q, R, B, E, W, Sz), where Q is the set 

of nodes of a bipartite directed graph, R and B are the subsets from which Red 

and Black, respectively, may move, E is the set of directed edges of the graph, 

W G Q is the subset of winning-condition nodes and CJ the set of winning subsets 

of W (in a sense to be described). We stipulate that 

1. RUB=Q#0andRflB=@, 

2. for each e E E there exist r E R and b E B such that either e = (r, b) or 

e = (b, r), 
3. for each p E Q there is at least one q E Q such that (p, q) E E, 

4. WcQ, and 

5. QGCW. 

At any time of a play of the game the placemarker for the game is on a node; if 

that node is in R then it is Red’s turn to move; if in B then it is Black’s turn. The 
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player moves by moving the placemarker along one of the edges in the indicated 

direction from that node to another node, where it is then the other player’s turn 

by Condition 2. By Condition 3, each player always has at least one possible 

move to make. The players move in turn forever. 

We follow the usual practice in the game theory literature of reserving the word 

‘game’ to mean the rules of the game; for our purposes a game is completely 

specified when Q, R, B, E, W and n are specified. A play of a game is a 

particular infinite history in which the two players move according to the rules of 

that game. 

We define the permset of any play of the game to be the subset of the nodes of 

W that are visited by the placemarker infinitely often during the play. If, for any 

play of the game, the permset of that play is a member of Sz then Black wins that 

play; if not then Red wins. (Note that a game with W = 0 is trivial: if 52 = {O}, 

Black always wins, regardless of the play; if D = 0, Red always wins.) 

We make several remarks about this definition: First, we do not include 

mention of the node where the placemarker is placed to begin the game. Thus 

one of our games might be thought of as a set of games as games are usually 

conceived, since any node could be designated as the initial node for play. 

Second, we could have omitted Condition (2) from the definition. Had we done 

so, we would have had to make only trivial modifications in our theory. Some 

examples could then have been simplified. But, on the whole, our present 

concept seems better in that it is in accord with our ordinary notion of game, in 

which the players move in turn. 

Third, the players Black and Red are symmetrical; any game can be 

transformed into a game in which the roles of the two players are interchanged by 

(1) changing R to B, (2) changing B to R, and (3) replacing Sz by 2w - G?. 

The fourth and final remark about our definition is that we could have excluded 

the subset W as a constituent part of the concept of game. This simplification 

would have been made possible by stipulating 52 to be a subset of 2”. We chose 

not to do this because of our interest in the complexity of computing the winning 

strategies of our games. Our results show that the time of computation is roughly 

exponential in the size of the set W and polynomial in the size of the set Q. It is 

therefore important not only to distinguish W from Q but also to make W as small 

as possible. 

As an example, consider the game whose graph is shown in Fig. 1. In this 

game, B = {b,, b2, &I, R = { rl, r2, r3}, E is as shown, W = {r,, 6,) and !Z= 

{W, 0}. (In the figures the nodes of W have double circles). Thus Black wins if 

and only if either r, and b, are visited only finitely often or else they are each 

visited infinitely often; Red wins if and only if one of these two nodes is visited 

infinitely often and the other finitely often. 

Black has a winning strategy for this game, wherever the placemarker is 

placed initially. The strategy is as follows: from b 3, move to r2 if b, has never been 

visited or if r, has been visited since the last time b, was visited; in all other 
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Fig. 1. Example of a game. 

circumstances move to r, . If Black plays this strategy then Red can cause b, and 

ri to be visited only finitely often (e.g., by always moving from r, or r, to b2) or he 

can cause them both to be visited infinitely often (e.g., by always moving to 6,). 

But, in playing against Black’s strategy, Red cannot play so that one node of W is 

visited infinitely often while the other is visited only finitely often. So he cannot 

win. 

Black’s winning strategy for this game calls upon her to make her move at any 

time in consideration of the latest node of W that was visited. Thus her strategy 

directs her to move in consideration of the latest visifation record (LVR). The 

definition of this concept is as follows: For a game 3 = (Q, R, B, E, W, Q) we 

stipulate that the null sequence is the LVR for the first moment of time. 

Therefore, if the placemaker is on a node not in W then the LVR for that 

moment is the same as it was for the preceding moment. But if the placemarker is 

at node W, E W and the LVR for the preceding moment is wj,, . . . , wjk then we 

stipulate: (1) If wi has never been visited before in that play then wj,, . . . , wjk, wj 

is the LVR for the new moment. (2) If w, has been visited before and w, = wj,, 

then 

wj,, . . ’ J wjj,_l, wj,l+lj . . . 1 wjk, wj,, 

is the LVR for that moment. (The concept of LVR is taken from [6], where it is 

called LAR.) 

Note that if w, occurs after w, in the LVR then w, was last visited after w, was 

last visited. And any node of W that does not occur in the LVR has not yet been 

visited. 

An LVR strategy for a player in a game is a rule that specifies the edge to move 

the placemarker along, given the node on which the placemarker is currently 

placed and the LVR for that time. Thus an LVR strategy in any of our games is a 

function over a finite domain. In practice, we do not define this function over all 

nodes in the graph that the player can play from, but only over those nodes that 

could be reached given that the player has already played according to the 

strategy, the opponent having played freely. 
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The winning strategy for Black described above in the game of Fig. 1 is an 

LVR strategy. The interesting thing about that game is that Black has no winning 

strategy that specifies moves without regard to the past. For example, if from b3 

Black always moves to r, (to r2) then Red can win by always moving from r, to b2 

(from r, to 6,). 

We shall prove in Section 4 that, in every game and for every node q E Q, one 

of the players has a winning LVR strategy given that the play begins at q. Thus, 

although a player who has a winning strategy must remember something about 

what has happened in the past, that player need not remember everything that 

has happened. A player with an unlimited memory capacity would have no 

advantage. In [6] this feature of a winning strategy is called ‘forgetful 

determinacy’. 

Generally, the set of nodes from which Black can win and the set from which 

Red can win are both nonempty, although the game of Fig. 1 is an exception. 

More typical is the game of Fig. 2, in which R = {r,, r,, r3}, B = {b,, b2, b,, b4}, 

W = {r2, r3} and Q = { W, @}. As in Fig. 1, Red wins if and only if one of the 

nodes of W is visited finitely often and the other infinitely often. Black has a 

winning strategy if play begins at b, , r, , or b,: she always moves from b I to r, and 

from b, to r,. On the other hand, Red has a winning strategy if play begins at r,, 

b3, r,, or b4: he always moves from r, to 6, and from r3 to b4. 

Incidentally, an interesting fact about the game of Fig. 2 is that neither of the 

two winning strategies need refer to the latest visitation record; for any node p 

that a player visits more than once in forcing a winning play, that player can make 

the same move from p every time. We call such strategies no-memory winning 

strategies, since the winning player can move without remembering anything 

about the history of the placemarker. We shall regard no-memory strategies as 

degenerate LVR strategies. It is significant that if a player has a winning strategy 

in the kind of finite-duration game discussed in Section 1 then that player has a 

winning no-memory strategy. 

We note that a finite-duration game can be regarded as a special case of a game 

of infinite duration. The same can be said of games that have both infinite 

winning plays and finite winning plays. For example, it might be that whenever a 

certain node is visited play terminates with one of the two players, say Black, 

declared the winner. Such a node could simply be converted to an inescapable 

loop of two nodes, adding one of them to the set W, and adding the unit set of 

Fig. 2. Another game 
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that node to n. By successively carrying through this type of operation, any game 

that has plays of finite duration can be converted to an equivalent game all of 

whose plays are of infinite duration. Thus the concept of a game with both 

finite-duration winning conditions and infinite-duration winning conditions is a 

trivia1 generalization of our concept. 

We say that f is a winning strategy from a set A s Q for a player of a game iffis 

a winning strategy for that player given that the placemarker is placed initially at 

any node of A. Note that when we say, e.g., that Red has a winning strategy 

playing from a node p, that does not imply that p E R; for p E B, that Red has a 

winning strategy playing from p simply means that, no matter how Black plays 

from p, Red can thereafter move according to the strategy and win. Indeed, if the 

set of all nodes from which Red has a winning strategy is nonempty then that set 

must have both B nodes and R nodes. And, of course, the same is true for Black. 

3. Some preliminary theorems 

In our theorems and other discussion, when we mention a game 92 we shall 

assume, usually without explicit mention, that % = (Q, R, B, E, W, Sz). 

Theorem 3.1. If a player of a game 3 has LVR strategies f and g such that, for sets 
A, C c Q, f is a winning LVR strategy playing from A and g is a winning LVR 
strategy playing from C, then there is a winning LVR strategy h for that player 
playing from A U C. Furthermore, if f and g are no-memory strategies then so is h. 

Proof. Let as be the set of all ordered pairs (L, p) such that p is a node from 

which that player moves and L is an LVR that occurs sometime when p is visited 

in some play from C when that player is using the strategy g. Then a winning 

LVR strategy h from A U C for the player is as follows: 

g(L, P) 

h(L1 ‘) = (f (L, p) 
if CL, PI E agfi, 

otherwise. 

If the player plays h for a play beginning at a node of C, then it is easily 

established that for any move that the player makes thereafter at a node p with 

LVR L, h(L, p) = g(L, p); thus the player wins. 

However, if the play is initially from a node of A - C then the play will begin 

with h(L, p) =f (L, p) and will continue as such until the first time (if ever) that 

(L, p) E ag. At that point the player will move according to h(L, p) = g(L, p) and 

will do so forever. 

In the latter case, the play will be like some play from C except for some finite 

portion of each; thus the permset will be the same, which is a win for the player. 

On the other hand, if (L, p) is’never in a8 then h(L, p) = f (L, p) forever. 

Since the play originates from a node of A, again the player will win. 0 
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Corollary. If a player of a game has, for each p E A G Q, a winning LVR strategy 
playing from p then the player has a winning LVR strategy playing from A. 
Furthermore, if all of the former are no-memory strategies then so is the latter. 

We note that the proof of Theorem 3.1 makes no use of the meaning of ‘LVR’. 

Both Theorem 3.1 and the Corollary would be valid if any other class of strategies 

were to replace the class of LVR strategies. 

Theorem 3.2. Zf a player of a game 3 has a winning LVR strategy f playing from 
p E Q, and q E Q is visited in some play from p in which that player always follows 
f, then that player has a winning LVR strategy f ’ playing from q. Furthermore, if f 
is a no-memory strategy then so is f ‘. 

Proof. Let PI be a finite portion of some play of the game beginning at p and 

ending at node q, in which the player is playing according to strategy f; let L, be 

the LVR for the moment at the end of PI. Let P2 be the finite portion of a play 

from q, let s be the node visited at the end of Pz and let L, be the LVR 

(according to P,) at that moment. We can compute from L, and L, the LVR L3 
for the moment at the end of the play P, Pz (i.e., the play that is the concatenation 

of PI and PJ: L, = L;, L2, where LI is the sequence L, with those nodes 

occurring in both L, and L2 deleted. We fix the play PI and the sequence L,, and 

we allow P2 to vary, giving us variable s and L, from which an LD is determined. 

We write L3 = p(L2) to express the functional relationship of L, to Lz. 
Then a winning LVR strategy f’ that the player can use to play from node q is 

f’(s, LJ = f (s, f?(L2)). In other words, we are having the player (when playing 

from q) play as if he or she were playing from p by prefixing the imaginary prefix 

P, to the actual play. The permset of any infinite play beginning from q will be 

the same as it would have been had the play begun at p since these two plays 

differ only in an initial finite portion. Thus, since f is a winning strategy playing 

from p, so is f’ playing from q. 0 

We can summarize Theorems 3.1 and 3.2 as follows. 

Corollary. If U, (UR) is the set of all nodes from which Red (Black) has some 
winning LVR strategy or other than Red (Black) has a uniform winning LVR 
strategy playing from U, (Us). Furthermore, if p E U, and q is a node visited 
during a play from p in which Red is a winning LVR strategy, then q E U, (and 
similarly for U, and Black). Furthermore, these two assertions are true also for 
no-memory strategies. 

In the sequel we shall use Theorem 3.1 and 3.2 and the two corollaries without 

explicit reference. 

We shall frequently discuss the situation in which some A s Q is given for a 

game and we wish to determine the set N of all nodes from which a player has a 
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Fig. 3. A = {rz, b2}. 

strategy to force the placemarker to be in A after one or more moues. We call 

attention to the possibility that a node may be in A - N. An example of this is 

given in Fig. 3, in which R = {r,, r,, r,, 4 r } and B = {b,, b2, b3}. If A = {r2, bz} 
and the player is Black then N = {b2, r,, b3, r4}. Although r, is in A, it is not in 

N: if Red moves from r2 to 6, then Black cannot force the placemarker back into 

A. 
However, if we talk about the set N’ of nodes from which a player has a 

strategy to force the placemarker to be in A after zero or more moves then (for 

any A and any game) A G N’; indeed, N’ = N U A. It follows that A G N if and 

only if N = N’. 

If A is a good place to be then the player has an interesting advantage when 

A c N: if the placemarker is ever in A then the player can play so that either it 

stays in A forever or it always comes back into A after leaving. An example in 

which A G N is A = {bz} for Black in Fig. 3. 

Theorem 3.3. In a game 33 let D, H c Q, D f~ H = 0, and let N (N’) be the set of 
nodes outside of H from which a player has a no-memory strategy to force the 
placemarker to be in D after one or more moves (after zero or more moves) while 
keeping it out of H. Then (1) N and N’ are constructible from 3, D and H. And 
(2) from Q - H - N, the opponent has a no-memory strategy to insure that the 
placemarker either reaches H sometimes without having entered D or stays forever 
in Q - H - N - D after the first move. 

Proof. Without loss of generality, assume the player is Red and the opponent is 

Black. From the remarks preceding this theorem, N c N’ and any p E N’ -N 

must be in D. 
We begin by constructing N’. To this end, we define a function y : 2Q-H-+ 

2Q-H as follows: for any X c_ Q - H, y(X) is the set of all p E Q - H such that at 

least one of the following holds: 

1. PEX. 
2. pERand,forsome(p,p’)EE,p’EX. 

3. p~Band,forall(p,p’)~E,p’~X. 

Note that, for X s Q - H, y(X) is the set of all nodes p E Q - H such that either 

p is in X or else from p Red can force the placemarker to be in X after one move. 

We then define Do = D and D,+, = r(Di) for all i. Clearly, for each i 3 0, 

D, g N’. Note that, for each i, Di c Dj+, and if D, = Di+, then Di = D, for all 
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xai. Putting k=lQ-H-01 we thus get Dk=Dx for all x?=k. For any 

p E Q - H - Dk, Red cannot force the placemarker into Dk, and hence cannot 

force it into D. Therefore, Dk = N’. 
We next determine the set N’ - N. By definition of N’ and N, for all p E N’, p 

is outside N if and only if p E D and Black can force the placemarker in one move 

from p into Q - N’; in other words, if and only if either p E B rl D and at least 

one edge from p goes into Q - N’ or else p E R fl D and all such edges go into 

Q - N’. We can easily determine all such nodes, and we can construct N from N’ 

by removing all of them. Requirement (1) of Theorem 3.3 is satisfied. 

Finally we note that, for each p E Q - H - N, if p E B then there is an edge 

from p into Q - N - D and if p E R then all edges from p go into Q - N - D 
(otherwise, in each case, p would be in N). Thus from Q - H - N, Black has the 

strategy required by (2) of our theorem. Cl 

Corollary. If a player has a strategy from some node to accomplish either of the 
two objectives mentioned in Theorem 3.3 then that player has a no-memory 
strategy to achieve that objective. 

The proof of Theorem 3.3 gives an algorithm for computing the set N or N’, 

Red’s no-memory strategy from this set, and Black’s no-memory strategy from 

Q -H - N or Q -H - N’, given the game % and sets D, H G Q, such that 

D n H = 0. This algorithm will be an important part of the solution algorithm in 

the constructive proof of the Main Theorem in Section 4, and will play an 

important role in Section 6. 

Let G4 be a game, and let Q’ be an arbitrary subset of Q. The pseudogame of 99 
determined by Q’ is (Q’, R’, B’, E’, W’, Sz’) where R’ = R fl Q’, B’ = B f~ Q’, 
E’ = E fl (Q’ x Q’), W’ = W fl Q’ and 52’ = Sz n 2w’. If this pseudogame is a 

game then it is called the subgame of $2 determined by Q’. 

Theorem 3.4. The pseudogame of a game % determined by Q’ E Q is a subgame if 
and only if for all p E Q’ there is a q E Q’ such that (p, q) E E. Any winning play 
for a player in a subgame of % is a winning play for the same player in 2% 

Proof. It is clear that a pseudogame satisfies conditions 1, 2, 4 and 5 in the 

definition of ‘game’. Hence it is a game if and only if it satisfies condition 3, which 

is what the first statement of the theorem states. The second statement is clear 

from the definition of 52’. 0 

We close this section with a theorem that will be useful in the following 

sections. 

Theorem 3.5. For any A E Q, 0 #A # Q, if one of the two players has a strategy 
from A to keep the placemarker in A forever, then the pseudogame determined by 
A is a subgame. 
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Proof. From the strategy we infer that, from any node of A from which the 

player moves, there is at least one move that advances the placemarker to a new 

node of A; and all of the opponent’s moves from any node of A have this 

property. Theorem 3.4 then gives us the result. 0 

4. Proof of algorithmic solvability 

Given a game 3, we define U, (UR) to be the set of all nodes from which Red 

(Black) has a winning LVR strategy. The solution to ‘?J is a determination of U,, 

U,, Red’s winning strategy playing from iJR and Black’s winning strategy playing 

from U,. This section consists of a proof of the following, which is the main 

theorem of this paper. The proof is adapted from Gurevich and Harrington [6] 

(see also [12]). 

Theorem 4.1. In a game 93, U, II U, = 0 and U, U U, = Q; furthermore, U,, U,, 
the winning strategy for Red playing from UR and the winning strategy for Black 
playing from U, can be effectively determined from 3. 

Proof. If W = 0 then the game is trivial, as noted in Section 2. For the remainder 

of the proof we shall assume that W # 0. Let W = {w,, . . . , wn}. 

That U, fl U, = 0 is obvious. The constructive proof of our theorem is by 

induction on m = lQ[. For the basis m = 2, the sets R, B and E are unique up to 

isomorphism. Putting R = {r} and B = {b}, E must be the set {(r, b), (b, r)}. 
Whatever W and Q may be, Red and Black never have any choice, and W is 

always the permset. So either U, = Q and U, = 0, or vice versa, and the winning 

strategy is obvious. 

As an inductive hypothesis, assume for any m 3 3 that Theorem 4.1 is true for 

all games with fewer than m nodes, and let % be a game in which ]Q I= m. For 

each i in, define Ni,B (Nj,R) to be the set of nodes, excluding wi, from which 

Black (Red) has an LVR strategy to keep out of wi forever and to win the game. 

Clearly, any play from a node of Ni,B in which Black plays the indicated strategy 

will be entirely inside Nj,R; similarly for Ni,R and Red. Define NR (NR) to be the 

set of all nodes from which Black (Red) has a strategy to force the play into 

in zero or more moves. By the Corollary to Theorem 3.3 this strategy can be a 

no-memory strategy. Clearly, Ni,B s NR and Ni,R s NR for each i. Also NR c U, 
and NR c U,. 

We must prove that the Nj,B’s, Ns, the Nj,R’~ and NR can be effectively 

determined. Let X, be the set of nodes from which Red can force the placemarker 
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to rvi in zero or more moves. By Theorem 3.3, the set Xi is constructible. For any 

p E Q -X, there is an edge (p, q) for some q E Q -Xi (otherwise p would be in 

Xi). It follows by Theorem 3.4 that the pseudogame determined by the set Q -Xi 

is a subgame of ‘29, with fewer than m nodes (since y E X,). By the inductive 

hypothesis we can determine both the set Z of nodes from which Black has a 

winning LVR strategy fin the subgame and f itself. Since Red has no move out 

of Q -Xi in 92, f is also a winning LVR strategy for Black playing from Z in 99. It 

follows that Z G N;,,. 

Now the LVR strategy for Black from Ni,R to keep out of w, forever and win 

would also have to avoid Xi. It follows, by definition of Z, that NiFR s Z. With the 

result of the previous paragraph we get Ni,R = Z. Thus Ni,B is constructible. 

From the Rli,B’S, the set NB and an accompanying strategy are easily 

constructed from lJyzl Ni,B by Theorem 3.3. Similarly, the Ni.R’s and NR with 

accompanying strategies can be effectively determined. 

The method of our proof will be to deal with the game 29 by peeling off NR and 

NB leaving us with what we shall prove is a subgame having Q - NR - NA as its 

set of nodes. In this subgame a new NR and NR is peeled off, etc. Finally we get a 

game in which either NR U NR = 0 or NR U NB = Q, which can then be handled 

directly. We put QN = Q - NR - NB. 

Lemma 1. If Qn # 0 then the pseudogame of 59 determined by Q,,, is a subgame. 
Any winning strategy in the subgame for a player from p E Q,,, can be augmented to 
become a winning strategy in 3 for the same player playing from p. 

Proof. Black has no strategy to force the placemarker from any p E Q - Ns into 

NA (otherwise p would be in BB). Thus, by Theorem 3.3, Red has a strategy from 

Q - NB to remain in Q - Ns forever. And thus, by Theorem 3.5, the pseudogame 

determined by Q - Ns is a subgame 92’ of 99. Likewise Red has no strategy from 

Q - NR, and hence no strategy from Qhi = Q - NB - NR, to force the place- 

marker into NR. So (by similar reasoning) the pseudogram of 59’ determined by 

QN is a subgrame of 9’ and hence a subgame of 9, giving us the first statement of 

Lemma 1. 

The second statement of Lemma 1 follows from the fact that a move by either 

player out of QN constitutes a forfeiture of the game (since Red can move out of 

QN only into N,, where Black has a winning strategy, and Black can so move 

only into N,, where Red has a winning strategy). 0 

Lemma 2. If NR = Nn = 0 and W E Sz then, from all of Q, Black has a winning 
LVR strategy (i.e., U, = 0, U, = Q). Similarly, if Ns = NR = 0 and W E 2w - a 
then Red has a winning strategy from all of Q. 

Proof. We prove only the first sentence of our lemma; the second sentence will 

follow by symmetry. Accordingly, we assume Ns = NR = 0 and W E 52. Thus if all 

the nodes of W are visited infinitely often then Black wins. 
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We define the designated integer of any given moment of the play of a game to 

be either the smallest integer i, 1 G i s n, such that wj has never been visited in 

the play so far or, if all nodes have been visited, the i such that y is first in the 

LVR. In the latter case, note that the placemarker’s last visit to wi was earlier 

than its last visit to Wj, for any j # i. 

For each i, let Ai be the set of nodes from which Black has a no-memory 

strategy to force the placemarker to w, in zero or more moves. Put Qi = Q -A;. 

Note that all edges from Qj to Ai are from R nodes, and from any such node there 

must be another edge leading to another node of Q;. It follows by Theorem 3.4 

that the pseudogame determined by Qj is a subgame ?Jj of $5 (For the purposes of 

Case II in the proof of Theorem 5.4 of in Section 5, we observe that $9; lacks the 

node w,, and hence has fewer winning-condition nodes than 99.) 

We claim that Red has no winning strategy in 3; playing from any node of Q;. 

To prove this claim, we assume that p is a node of Qi from which Red has a 

winning LVR strategy J in 3;. We let Ui,R be the set of all nodes of Qi from which 

Red can play6 and be guaranteed a win. Since p E Ui,, we know that U,,, # 0. Let 

f be the LVR strategy in % for Red defined as follows: for any LVR L of % let 

(L), be the LVR of $9; obtained from L by deleting all winning-condition nodes of 

59 that are not nodes of 3;; for any LVR L and node q of l&, f(L, q) = 

5((L),, q); for q EA;, and for q E Qj - &,R, f(L, q) is not defined. Now, since in 

% Black has no moves from Qj into Ai, it follows that if Red plays ffrom Ui,R in $9 

then the placemarker will remain in Uj,R and Red will win the play. So f is a 

winning LVR strategy for Red playing from Uj,R in 3, which insures that the 

placemarker keeps out of w,, implying that iJi,R E NR and thus contradicting the 

hypothesis that NR = 0. Our argument proves that Red has no winning LVR 

strategy playing from any node of Q; in the subgame ?z?~. 

But since wj $ Q;, the game 99; has fewer than m nodes. By the inductive 

hypothesis, therefore, Black must have in ‘Z$ a winning LVR strategy gj playing 

from every node. Let the strategy hi in the game % be defined from gi the way the 

strategy f is defined from h above. If Black plays hi from Q; in the game 99 one of 

two things will happen: (1) Red may play forever so that the play never leaves 

Q;, in which case Black wins. Or (2) Red may move into Ai, where hi is not 

defined. But if this happens Black can force the placemarker to w,. 

The winning LVR strategy for Black playing from all nodes is as follows: At 

any time her choice will be based on the designated integer i, and she plays 

according to the paragraph above. That is to say, as long as the placemarker is in 

Qj she plays hi; but if it reaches Ai she forces it to w,. As a result, either she wins 

without ever visiting wi or the placemarker eventually reaches w,. If it reaches w, 

there is a new designated integer i’ and Black then repeats with i’ in place of i. 

And so on. 

We note that this strategy, call it f, is an LVR strategy. Where L is any LVR of 

3, let the integer @I(L) be defined as follows: if L has length II then we(,) is the 

first node in L; if L has length less than n then G(L) is the smallest i such that w, 
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is not in L. The strategy f can thus be defined as follows: for any LVR L of % and 

node p E Q, (1) if G(L)=. I and p E Ai then f (L, p) is as directed by the 

no-memory strategy that forces the placemarker into w,; (2) if c+(L) = i and p E Qj 

then f(L, P) = gd(Lh, P) w h ere (L), is L with those nodes not in Qi deleted. 

Thus f is an LVR strategy. 

If Black plays according to this strategy the permset will depend on how Red 

plays. For any i and for any time when w, is first in the LVR, it may be possible 

for Red to play so that the placemarker never reaches w,. But if he does then 

Black wins. On the other hand if Red can always, and does always, permit the 

appropriate w, to be visited then such a play will have W as its permset, since each 

integer i, 1 s i s n, will be the designated integer infinitely often. In that case also 

Black wins, since W E 52. q 

We can now complete the inductive step and, with it, the proof of the Main 

Theorem. Given a game 54 where IQ1 = m, we construct NR and Nn and take 

QN = Q - NR - NR. If Q,,, = 0 then U, = NR, U, = NR and the strategies can be 

effectively determined. If NR U NB = 0, Lemma 2 gives us our result. 

But if neither NR U NB nor QN is empty then we consider the subgame Y& of % 

determined by QN. Clearly, lQvyl< IQl, and so by the inductive hypothesis there 

are sets 17; and Ug (where UK U UY, = QN and UK fl iJb = O), and LVR strategies 

fk and fb such that fk (f;) . 1s a winning LVR strategy for Red (Black) playing 

from UK (Ug) in 9.. By Lemma 1, we can obtain a winning LVR strategy for 

Red (Black) playing from ZJk (Ub) in the game 99. By Theorem 3.1, we can 

construct a winning LVR strategy for Red (Black) playing from U, = ZJk U NR 

(from ZJ, = Uh U N,) in 3, since there is a winning LVR strategy for Red (Black) 

playing from NR (N,). This concludes the proof of Theorem 4.1. q 

The algorithm to solve a given game is thus a recursive one. The remainder of 

this section will exhibit parts of the algorithm explicitly. Assume that 

F&,0(% X) (FQs,o(% X)) . IS a f unction whose value when X c Q is the set of all 

nodes from which Red (Black) can force the placemarker to be in X after zero or 

more moves. The proof of Theorem 3.3 makes it clear how to write a 

subalgorithm that computes these functions. Let SUB(‘3, X) be a function whose 

value when X c Q is the pseudogame of 59 determined by X. (We shall be using 

this function only when we know that the pseudogame will be a subgame.) 

Fig. 4 shows the recursive procedure that computes the functions U,(S) and 

UR(%) (the sets of nodes of Q from which Black and Red, respectively, have 

winning strategies in 59). The full algorithm for Theorem 4.1 would be an 

elaboration of Fig. 4 in which the winning strategy for Black from U, and the 

winning strategy for Red from iJR would also be constructed, using the winning 

strategies calculated from the subgames recursively referred to. There would be 

two different computations, one for the case QN # Q and the other for the case 

Q,,, = Q. The computation of the strategies in each case from other strategies 
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previously computed is straightforward. However, the algorithmic notation (i.e., 

the coding) is involved. Suffice it to say that the most natural data structure for an 

LVR strategy f would seem to be a two-dimensional array: one dimension 

indicates a node q E Q, the other dimension indicates an LVR L, and the array 

entry is f(L, q), which is the node to which the player will move the placemarker 

as directed by the strategy when the LVR at that moment is L and the 

placemarker is at node q. 

Function procedure 

[input 3 = (Q, R, B, E, W = {w,, . . . , w,}, Q); 
output functions U,(S)), U,( %)I 

begin 

if Q =0 then [U,:=0; UR:=O] else 

[Xj:=FO,,,(%, {wi}), lGi=Sn; 

X~:=FOs,o(9?, {w;}), lsicn; 
Nj,B := U,(SUB(%, Q - Xi)), 1 s i s n; 

N,R := U,(SUB(%, Q -X:)), 1 =S i G n; 

NB:=FOB,O(~, UY=lRli.B); 
N,z := ~%o(% UE, NJ& 
QN:=Q-NB-NR; 

if Q # QN then 

[Lr,:=N, U Lr,(SLrB(% Qiv)); 
U, :=NR U WSW% QN))I 

else (/The Lemma 2 case/) 

if WEGthen[U,:=Q;U,:=O] 

else [UR:= Q; U,:=0]] 

end 

Fig. 4. Recursive solution algorithm (partial). 

5. The algorithm and its complexity 

The solution algorithm is recursive; one solves a game by constructing several 

smaller games, solving those, and then constructing the solution to the desired 

game in terms of the solutions of the smaller games. It turns out almost always 

that the smaller games one constructs are, besides being smaller in the total 

number of nodes, smaller also in the number of winning-condition nodes. Indeed, 

the algorithm never calls for the construction of a game with a larger number of 

winning-condition nodes; and the only case where this number is equal is a case 

where the constructed game can be directly solved without further recursion 

steps, as we shall see. 

Thus we are able to analyze the algorithm as if it were recursive in terms of the 

number of winning-condition nodes. Using this analysis we shall demonstrate 
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that, although the time complexity of the algorithm may be exponential in the 

number of winning-condition nodes, it is polynomial in the total number of 

nodes. 

Before we can analyze the algorithm we must decide how the information 

about the game is stored inside a computer. In this section we shall adhere to the 

convention that m = IQ) and n = 1 W 1. We assume that the nodes of the graph are 

represented as the positive integers 1, . . . , m, the first IZ of which represent the 

nodes of W. There is a one-dimensional array telling whether each node is in R or 

B, and a two-dimensional array telling, for each ordered pair of nodes, whether 

there is an edge from the first to the second. We assume that all subsets of Q are 

represented as one-dimensional arrays, and when we speak of constructing a set 

we mean the construction of such an array. 

A subset of W is represented by a number 

j2”+i2’+...+jy’ 
1 2 n 

where ii = 1 if the jth node of W is in the subset, and 0 if not. Accordingly, 52 is 

represented as a one-dimensional Boolean array of size 2”, indexed from 0 to 

2” - 1. We make no claim that the data structure we have described is the most 

efficient. Nor do we claim that our time bounds are the best possible. (For 

example, Richard E. Stearns points out that an alternative to the computational 

scheme given in the proof of Theorem 5.1, more elaborate but using well known 

techniques, has a better time bound of O(m”). This improvement would carry 

through Theorems 5.2 and 5.4 to yield a slight improvement in Theorem 5.5.) 

Theorem 5.1. For the algorithm described in the proof of Theorem 3.3 (which 
finds the set N, or alternatively N’, and the two no-memory strategies from two 
given subsets D and H of Q in a given game) there is a constant k,, such that the 
time of computation is bounded by kom3. 

Proof. Referring to the details in the proof of Theorem 3.3 we note that there 

are constants c,, c2, c3, cq such that in any game the following are true: (1) For 

any X E Q -H, the time to compute y(X) is bounded by c,m’. (2) The time to 

compute N’ is bounded by c2m3. The time to compute the set N’ - N after the 

computation of N’ is bounded by c3m2, The time to compute N from the sets N’ 

and N - N’ is bounded by c4m. 
We further note that the strategy for Red can be obtained as a byproduct of the 

four steps in the computation of the set N without affecting the statements (1) 

through (4), although the values of the constants must be modified. As remarked 

in the last paragraph of the proof of Theorem 3.3, once N is known, Black’s 

no-memory strategy from Q - H - N is easy to compute. Indeed, there is a 

constant cs such that the time to compute it is bounded by csm2. 
Theorem 5.1 follows from these assertions. Cl 
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We modify the substance of the algorithm from what was given in the proof of 

the Main Theorem only in the case 1 W 1 = 1. 

Theorem 5.2. There is a constant k and an algorithm that can solve every game $3 
in which 1 W 1 = 1 with a computation time bounded by km’. Furthermore, the 
winning strategies of such games can always be no-memory strategies. 

Proof. Let W = {w}. We assume without loss of generality that W E 52. Since a 

game in which IR = 2w is trivial, we further assume that 0 E 2w - Sz. Then Black 

wins any play if and only if w is visited infinitely often. We first apply the 

algorithm of Theorem 3.3, with Black as the player and Red as the opponent, 

taking D = {w} and H = 0, getting the set N of all nodes from which Black has a 

strategy to force the placemarker to w in one or more moves. 

Case I: w E N. From N Black has a winning strategy; she simply keeps playing 

into w. By Theorem 3.3, Red has a no-memory strategy from Q - N to keep the 

placemarker in Q -N forever, which is a winning strategy for Red. Thus the 

game is solved. 

Case II: w $ N. Red has a winning no-memory strategy from Q -N in 3. 

Furthermore, Red can extend that strategy to a winning no-memory strategy for 

all of Q: he simply makes an arbitrary rule for all nodes of N. Since w $ N, if the 

play goes forever in N then Red wins. But if the placemarker visits w Red would 

win because the placemarker is now in Q - N. 

It is clear that everything that is done in this computation can be taken care of 

by one application of the algorithm in the proof of Theorem 3.3. Thus, for some 

k, the time of computation is bounded by km3. 0 

We now look at the recursion step in the algorithm covering the cases in which 

IWI > 1. Recall that, for each i, X, is the set of nodes from which Red can force 

the placemarker to wi in zero or more moves; and X,! is the set of nodes from 

which Black can force the placemarker to wi in zero or more moves. 

From the given game 59, at most 2n + 1 subgames are constructed. These are 

the subgames determined by the sets Q - Xi, for 1s i G n, by the sets Q - X], 

for 1 c i s n and by the set QN. Let G!& = (Qhr, RN, BN, EN, W,, Sz,) be the 

subgame determined by QN. (Thus, for example, W, = W rl QN). 
In all these subgames, the set of winning-condition nodes is less than n, except 

possibly the subgame %,v. So let us examine this subgame more closely. Let N,!,,, 

NI,R (for appropriate i), Nb and Nk be defined in Y& the way Ni,s, Ni,R, NR and 

NR are defined in 59. 

Theorem 5.3. Jf W, = W then NL = Nk = 0. 

Proof. From W, = W we get (NR U NR) n W = 0 (since, by definition, W, = W fl 
QN and QN = Q - NR - B,). 
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Case I: 0 E 2w - G! That is, in 93 (and hence in Y+.,) Red wins if the permset is 

0. We claim that this assumption implies that NB = 0; the proof is as follows. 

Assume NB # 0. From Ns Black has a strategy to move the placemarker into 

lJ~=i N+ In any play in which she plays this strategy the placemarker must 

sometime arrive at a node p’ E Ni,B, for some i, from which Black has a strategy 

to play forever in Ni,B and win. This implies that some winning-condition node 

wj E N;,R c NB since 0 $ Sz, contradicting the fact that (NR U N,) n W = 0. Thus 

Ns=O. 

From this result we get Qhi = Q - NR. Note that in ‘3 Red has no move from 

any q E QN into NR; otherwise q would be in NR by definition of NR. We are now 

ready to consider Nk and Nk. 

Suppose that, for some i and p, p E N],.. By definition, Black would then have, 

in the game %,,,, an LVR strategy from p to keep out of wj forever and win; if 

Black plays according to this strategy then the placemarker will remain within 

N:,. forever. But then in ‘3 also Black would have an LVR strategy from p to 

keep out of w, and win, since N:.B E Q,,,. By definition of N,,B, the node p would 

be in Nj,B s NR, contradicting our result that NR = 0. It follows that Ni,B = 0 for 

all i and thus NL = 0. 

Finally, assume N& # 0. Then, for some i, NI,R # 0. Red’s strategy in 3, from 

Ni!,R to keep out of w, forever and win could be extended to the game $3 as 

follows: Any such play, if Black never moved in NR, would continue in QN and 

Red would win. If Black moves into NR then Red could continue with his winning 

strategy in 9 in the set NR, the play remaining in NR forever where there are no 

winning-condition nodes. Thus in this play also Red would win without ever 

entering wi. We have proved that, in 3, Red has a strategy from NI,R to win 

without ever entering w,. This implies that N;,R c Ni,R, contradicting the 

assumption that N/,R G QN-. Thus NK = 0, concluding the proof of our Theorem in 

Case I. 

Case II: 0 E &2. The proof in Case 1 goes over to this case mutatis mutandis, 

since nowhere in the above proof have we made use of any special property of 52 

other than the case definition. In particular, we have not made use of the 

assumption of Section 4 that W E G. q 

Because the solution algorithm is a recursive one, our analysis of its complexity 

should be recursive also. For any m and n cm, let F(m, n) denote the least 

upper bound of the time of computation of the solution of any game in which 

[Qlsm and (W/SK Note that F(m,n)5F(m’,n’) whenever mcm and 

n Gn’. 

Theorem 5.4. There is a positive constant k, such that, for all n > 1, m 2 n and 

game 93 where ( W( = n and 1 Q 1 = m, the time of computation for solving 3 is 

bounded by k,m’n + 4nF(m, n - 1). 
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Proof. Case I: the subgarne YIN of +?I does not have all the winning-condition nodes 
of 9 (thus W, # W). The recursive algorithm involves several steps: (1) The Xi’s 
and XB,;s are constructed. For each the algorithm of Theorem 3.3 is used and the 
time of computation is bounded by k,m 3, by Theorem 5.1. (2) The subgame of $9 
determined by each Xi and X,,; is constructed. The time for this is negligible. (3) 
The appropriate strategy from the appropriate set of nodes for each such 
subgame is constructed by recursively calling the algorithm. Each subgame has at 
most n - 1 winning-condition nodes, and less than m nodes. (4) If Q,,, # 0, the 
subgame $,, is constructed and its sets and strategies are computed, requiring 
another call of the algorithm. This subgame also has at most n - 1 winning- 
condition nodes and less than m nodes. 

Thus in this case the time of computation to solve the game 3 is bounded by 
2k,,m3n + (2n + l)F(m, n - 1). 

Case II: the game ?& has all the winning-condition nodes of 59 (W, = W). Here 
we must go further with the computation and include the computation of the sets 
and strategies for Y&. Theorem 5.3 tells us that Nb = Nk = 0, and so the 
computation for 5!& is taken from the proof of Lemma 2 in the proof of Theorem 
4.1. 

The computation of Y& involves (1) the construction of the sets (AN)i, 
1 <i G n, and (2) the solution of the subgames (%,v);. (We are adapting the 
notation in the proof of Lemma 2: (AN); and (%N)i bear the same relations to Y$,, 
that Ai and (8; bear to 99.) Note that the construction of each (AN)i involves an 
application of the algorithm of Theorem 3.3. The time bound for these two steps 
is therefore k,,m3n + nF(m, n - l), since (as noted parenthetically in the proof of 
Lemma 2) each of the games (%,v); has at most n - 1 winning-condition nodes. 

Case II is the result of putting together most of what happened in Case I with 
the above. So the bound in Case II is 3kom3n + (3n + l)F(m, n - 1). 

Finally, we take kl = 3k,, and, since n > 1, our theorem is satisfied in both 
cases. 0 

Theorem 5.5. For some constant c, F(m, n) < m3(cn)n for all n 2 1 and m 2 
max(2, n). 

Proof. Taking c = max(k, k, + 4), Theorems 5.2 and 5.4 imply 

F(m, l)<cm3 and 
F(m, n) <(c - 4)m3n + 4nF(m, n - 1) for n 2 2. 

From these inequalities, we establish that F(m, n) < c”m”n! by mathematical 
induction on n. The basis, n = 1, is clear. As an inductive hypothesis we take 

F(m, n - 1) < c”-‘m’(n - l)! 
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Definition. The pair (IV, Q) has a split if there exist (Y, /I G W such that either 

a~p~9, aE2w-SZand/3e2W-Gorelsecw~/3E2W-Q,cueS2and/3~SZ. 

The pair (W, L2) cannot have a split when 1 WI = 1, but can when ) WI = 2 or 

more. For W = {w,, w2} and &2 = {W}, the pair (W, 52) has a split with LY = {w,} 

and /3 = {w2}. 

Theorem 6.1. If (W, Q) has no splits and W E 52 then, for some w E W, 

{cYE2wIwE(Y}ca. 

Proof. Let /3 be a set of maximum size in 2w - Q. Since 6 # W, there exists 

w E W such that w $ /I. Now let (Y be any set such that w E LY. The set (Y Up E 52 
since la U PI > I/31. If a $ S2 then (W, Sz) would have a split. It follows that every 

such cy is in Q. 0 

The main theorem of this section is 

Theorem 6.2. For any W and Sz where W is finite and 52 c 2w, (W, S) is a 

no-memory pair if and only if it has no splits. 

Proof. Assume first that (W, L2) has a split of the form a: U p E S2, LX $ Q and 

p.$G?. Let cunp={u, ,... ,uh}, cu-p={v, ,..., v,}, /3-a={w ,,..., w,} 

and W-(c~U/?)={x,,..., xk}. Then i > 0 and j > 0. We must construct Q, R, 

B and E so that %= (Q, R, B, E, W, 52) is a game but not a no-memory game, 

i.e., a game in which from some node the player having a winning strategy does 

not have a no-memory winning strategy. 

The required game is given in Fig. 5, which is drawn with the assumption that 

h + i and h + j are both odd. If h + i (h + j) is even then the upper (lower) node 

labeled ‘if needed’ is deleted and the edge from ui (from wi) is directed to q. In 

every case, all the nodes that are an even distance from the node b are B nodes 

and all other nodes are R nodes. 

Clearly in this game, Black is the only player than ever makes a choice and 

then only at the node b. She wins if and only if she moves from b to vi infinitely 

often and from b to wi infinitely often. Thus she has a winning LVR strategy but 

not a winning no-memory strategy. 

If (W, L2) has a split of the form LY U p 4 Q but & E G? and p E !Z, a similar 

game % can be constructed where, from some node, Red has a winning LVR 

strategy but no winning no-memory strategy. This concludes the proof of the 

theorem in one direction. 

The proof in the other direction is more involved. We must prove that, in any 

game 33 where (W, Sz) has no splits, from every node q E Q one of the two 

players has a winning no-memory strategy from q. Our proof is by mathematical 

induction on /WI. 
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The basis of the induction follows from the fact that where lW1 = 1 the winning 

strategies can always be no-memory strategies, by Theorem 5.2. As an inductive 

hypothesis, let us assume for IZ 2 2 that, in all games % in which (W, Sz) has no 

splits and (W( < n, all winning strategies can be no-memory strategies. Let % be a 

game in which (WI = n, and (W, Q) has no splits. Again, without loss of 

generality, we assume that W E Sz. 
By Theorem 6.1, there is a w E W such that Black wins any play of the game in 

which w is visited infinitely often. We fix this selection of w for the remainder of 

the proof. We define Q’ to be the set of nodes other than w from which Red has 

a strategy to keep the placemarker out of w forever; by Theorem 3.3 the strategy 

is a no-memory strategy. 

Let $7 be the pseudogame determined by Q’. Red’s strategy to keep out of w 

forever is also a strategy to remain in Q’ forever, and so, by Theorem 3.5, %’ is a 

subgame of 3. Let %’ = (Q’, R’, B’, E’, W’, Q’). Since w 4 W’ (W’I <n. Since 

(W, Q) has no splits and since Sz’ = Sz rl 2w’, (W’, 12’) has no splits either. It 

follows by the inductive hypothesis that, from every node of Q’, one of the two 

players has a winning no-memory strategy in 9’. Let C’ (D’) be the set of nodes 

of Q’ from which Red (Black) has such a strategy. 

The winning no-memory strategy for Red in 3’ from C’ works also in $9 from 

C’, since Black has no move from Q’ to Q - Q’. But the situation for Black and 

D’ in this regard is more complicated. 

Case I: Red is not able in 23 to force the placemarker from w into C’ in one 
move. Then Black can force the placemarker from w into Q - C’ in one move. 

(This inference is valid whether w is an R node or a B node, i.e., whoever has the 

choice of the move from w.) 

We can now demonstrate that Black has in % a winning no-memory strategy 
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from Q - C’. The strategy is as follows: While in D’ Black plays her winning 

no-memory strategy in %‘. Suppose that Red plays so as to make the placemarker 

enter Q - Q’. Note that Black has from Q - Q’ a no-memory strategy to force 

the placemarker to w, by Theorem 3.3 and the definition of Q’. She does this and 

at w she plays to force it to Q - C’ = (Q - Q’) U D’. By Theorem 3.3, this is a 

no-memory strategy. 

However Red plays against this strategy, Black will win: if Red plays infinitely 

many times into Q - Q’, w will be visited infinitely often causing Black to win. 

On the other hand, if Red at some point refuses to move into Q - Q’ any more, 

then the play will settle down in D’, which will also be a win for Black. 

Thus, in Case I, Red has a winning no-memory strategy from C’ and Black has 

one from Q - C’. 

Case II: Red can force the placemarker from w into C’ in one moue. The sets Q’ 

and D’ are not helpful in Case II. Let F be the set of all nodes q E Q - C’ such 

that Red has a strategy in 9 to force the placemarker in one or more moves into 

C’. Since Red has a winning no-memory strategy from C’ in 3, Red also has a 

winning no-memory strategy from F in 3. Let H = Q - C’ - F. 
Any node of Q - C’ from which Red could, in 3, force the placemarker into 

C’ U F would itself be in F. Hence this could not be true of any node of H. It 

follows that from every node of H there is an edge going back to H, and, by 

Theorem 3.4, that the pseudogame determined by H is a subgame 3” of 3. Let 

C, (DN) be the set of all nodes of H from which Red (Black) has a winning 

no-memory strategy in the subgame Y$,. Since w $ H, the inductive hypothesis 

applies to the game Y&, and thus H = CH U DH. 
Since Red has no move from H into Q - H, Black’s winning strategy in Y$, 

from D, is a winning strategy in 3. And Red’s winning no-memory strategy in %” 

from C, can be augmented to a winning no-memory strategy in 9 because he has 

a winning no-memory strategy from Q - H = C’ U F. 
Thus, in Case II, Red has a winning no-memory strategy from C’ U F U CH, 

and Black has one from DH. q 

The proof of Theorem 6.2 contains an implicit algorithm to find the winning 

no-memory strategies for the players of a game without splits and the sets from 

which they are applicable. Certainly this algorithm is no more complex than the 

general algorithm whose complexity is discussed in Section 5. Investigations have 

not disclosed any reason to think it can be made substantially simpler. 

We close this section by offering a set-theoretic characterization of the 

no-memory pairs. Where W = { wi, . . . , w,}, define 

A n+1= (01. 

Note that 2w = lJy=:’ A;. 
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Theorem 6.3. Where W = {w,, . . . , w,,}, let S be a subset of the integers between 
1 and n + 1 inclusive and let !2 = UieS A,. Then (W, a) is a no-memory pair. 

Proof. Assume the antecedent is true and the consequent false. Then (W, Q) has 

a split, by Theorem 6.2. 

Case I: a;jlEsZ but cxlJfl$S2. Then aEAi and /lEAjfor some i,jES. It 

follows that a U /I E Amin(;,i) 5 Q, a contradiction. 

Case II: ry, j3 $ 52 but a: U /3 E Q. Then a: U p E A;, for some i E S. It follows 

that either cr E Ai or p E Ai E 9, also a contradiction. 0 

Theorem 6.4. Let W = {u,, . . . , u,} and let (W, Sz) be a no-memory pair. Then, 
for some permutation n of the set (1, . . . , n}, taking, for each i, wj = u,(,), there 
exists a subset S of the integers between 1 and n + 1 such that 

52 = U Aj. 
IES 

Proof. If W E Q then by Theorem 6.1 there is a ui such that {a E 2w 1 Uj E a} E 

Q. If W E 2w - 52 then (by the same principle), for some Ujj {a E 2w 1 uj E (Y} c 

2w - Q. In either case take n(l) =j, and we have either A, E Q or A, c 2w - Q, 

respectively. 

As an inductive hypothesis assume that n(l), or, . . . , x(i) have been 

assigned thus defining w,, w,, . . . , w, and for each j 6 i either Aj c Q or 

Aj~2w-sZ. Weset W’={uj(j#~(j’)foranyj’~i} andP={(Y( cu~2~‘and 

(Y E Sz}. Since (W’, Q’) is a no-memory pair, there exists ui E W’ such that either 

g bv; c~’ 2~~o~Ao~, itt-‘_2: - Q’. We set x(i + 1) = j and wi+, = uj, and 

If1 - 

It is clear that at the conclusion of this construction, when all w;‘s have been 

defined, there will be a set S such that 

sZ=UA, 
its 

which is our desired result. q 

7. Declaring the winner in finite time 

If infinite games are to be actually played as games then it must be possible in 

some way to judge what would probably happen in an infinite play, as indicated 

somehow by what has actually happened after some finite amount of time. We 

must be able to declare at a certain point in the play of the game that one of the 

two players seems to be winning and that the other player may as well concede. 

At the same time, if infinite games are to be stimulating to the players playing 

them then they must be sufficiently complex that either no one is able to figure 
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out the winning strategy or else no one finds it worth the trouble. Indeed, we 
might expect a game to be a board game whose graph would be too enormous to 
construct, like the finite-duration games of checkers, chess and go, which we 
discussed in Section 1. 

Our task in this section is quite difficult: to find, for any given infinite game 
whose winning strategies we cannot work out, a procedure that will enable us to 
justifiably declare one of the two players the winner after some finite amount of 
time. 

One obvious suggestion is to wait for the play to settle down in some 1~ c W. 
When we are convinced that the placemarker has been visiting all the nodes of LY 
repeatedly during a sufficiently long interval when no winning-condition nodes 
outside a: have been visited then we can declare Black or Red the winner 
according to whether (Y E Q or CK E 2w - Q. 

There is something to be said for this suggestion, but there is a complication in 
the fact that the permset of an infinite play cannot be determnined from any finite 
interval even if we know that one of the players has, and is using, a winning 
strategy. Recall the example of Fig. 1 of Section 2 in which W = {b,, r,} and 
!Z = (0, W}. Black has the winning strategy from all nodes. But as Black plays 
this strategy guaranteeing herself a win, it is Red who can determine whether the 
permset is 0 or W. Red could consistently and repeatedly move into b, for an 
arbitrarily long interval causing Black to respond by consistently moving into r,, 
from which we would infer that the permset will be W. But then Red could 
suddenly decide to play into 6, and do that forever; Black would forever respond 
by moving into r,, and the permset would turn out to be 0. Our prediction that 
the permset would be W, based on apparently good evidence, would turn out to 
be false. 

We must therefore analyze the matter in greater depth. We let the postive 
integers designate the times at which moves are made in a play of the game, and 
we let node(t) be the node of the graph that has the placemarker at time t. For 
(Y E W, we define begin(a, t) to be the smallest positive integer t’ s t such that 

{node(x) f-l w ( t’ cx s t} !g a. 

Thus begin(W, t) = 1; and if begin(cy, t) > 1 then node(begin(a, t) - 1) E W - (Y. 
The function begin((v, t) is undefined if node(t) E W - CX. 

For node(t) $ W - CY and (Y # 0, score(a, t) (the score for (Y at time t) is defined 
to be the maximum nonnegative integer h such that the interval between time 
begin(a, t) and time t inclusive can be decomposed into h disjoint intervals 
I 1,. . . , I, (I, <ii for i <j) such that node(J) fl W = a for each i; for node(t) E 
W - CY, score(cu, t) = 0; score(0, t) is undefined. (By interval we mean a set 

{r I t1 c t c t2} where tl and t2 are the beginning and the end of the interval. We 
write node(l) to mean {node(t) 1 t E I}.) 

Note that if node(t) $ W - a: and score(Ly, t) = 0 then for some p E CY, either p 
was not visited at all by the placemarker at time t or before, or else the 
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placemarker visited some q E W - a since the last time it visited p. Also note 

that, for any IX and t, if node(t + 1) 4 W - (Y then either score(cr, t + 1) = 

score(a, t) or score(a, t + 1) =score(~y, t) + 1. 
In any infinite play and for any value of h, however large, for some t 2 1 and 

aE2W, score(a, t) = h. In particular, this will be true when LY is the permset of 

the play. But it is also possible for this to be true when a is not the permset. 

The question is, under what conditions and for which values of h, where LY E Sz 

((u E 2w - 52), are we justified in declaring Black (Red) the winner at time t when 

score(cu, t) = h? Without loss of generality, let us assume for the remainder of this 

section that (Y E 2w - 9. We assume that, because Q is very large, we cannot 

ascertain precisely the winning strategies for the game, or the nodes from which 

each player has a winning strategy. On the other hand, we shall assume that the 

winning strategies are in a certain class of strategies, the two major classes being 

the class of LVR strategies and the class of no-memory strategies. It is reasonble 

to expect that there might be an interesting class of strategies between these two. 

One of these will be suggested at the end of this section, but will not be 

investigated beyond the mere suggestion. 

Let 17, be the set of all nodes from which Black has a winning strategy in $3. 

We assume that from every p E Q, one of the two players has a winning strategy 

from p. Our principle can now be stated: 

Given that Red and Black are playing a game $3 for which we know that the 

winning strategies are in a class C, we are not justified in awarding the win to 

Red at time t on the basis of score(cu, t) for a E 2w - Sz unless we can 

demonstrate the following: Either {node(x) 1 begin(a, t) =SX =Z t} fl U, = 0 
or, for every winning strategy f of class C for Black from UB, there exists a 

time t’, begin(cu, t) St’ c t, such that Black has not moved according to f at 

time t’ although node(t’) E U,. 

For the sake of our discussion we put h = score(a, t). The justification for our 

principle is simply this: if at some time during the interval the placemarker is in 

U, and if Black plays her winning strategy at that time and forever after, then 

she would win the game and not Red. Therefore, we should not award the game 

to Red unless h is large enough so that we can be sure that either (1) during the 

interval Black never had a winning strategy, or (2) whatever winning strategy in 

the class C she might have played, there was at least one time when she did not 

play it. In the latter case, there may be several different winning strategies in the 

class C: the value of h must be large enough to show that Black’s moves are not 

consistent with any one of them. 

This principle is a necessary condition for awarding the game to Red, not a 

sufficient condition. There may be other things we should consider. For example, 

we may insist that t itself be sufficiently large to give both players a chance to 

learn the game to some degree. Secondly, we may wish to insist that (Y occur 

more times than the value of h needed to satisfy the stated principle, so as to test 
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further that Red knows what he is doing. We may wish to give Black more of a 

chance to spoil things for Red, etc. We shall not attempt precise formulations of 

these other considerations. 

At any rate, our proposed general method for awarding the game to one of the 

two players after some finite amount of time involves keeping score for all a, E 2w. 

If (say) (YE 2w - B and .rcore(cY, t) is sufficiently large then the play is stopped 

and the win is awarded to Red. The award does not involve a judgment that Red 

is capable of winning however Black plays in the future. Rather the judgment is 

that Red would win if Red plays in the future at least as well as he has been 

playing up to time t and Black plays at least as poorly. 

The judgment at time t may have gone against Black because she is not in a 

position to win and Red is playing sufficiently well to maintain his situation 

against the way Black is playing. It may be, however, that Black has been in a 

winning position at times when she played in a faulty manner; the judgment 

against her in this case reflects her poor playing. 

We believe that our proposed general method satisfies the objective formulated 

at the beginning of this section, even though we have not worked out the details 

completely. The virtue of the method is that it can be applied without having to 

compute the winning strategies of the game or anything else requiring computa- 

tional resources of comparable magnitude. Perhaps we have no right to claim that 

the method will enable us to pick a probable winner; indeed we shall excuse 

ourselves for not attempting to define what that means. But we shall be able to 

claim that if one player (Red or Black) is at any time declared to be the winner of 

any play of the game then the other player either never was in a position to win 

or else failed to play strategically at least once when he or she was in a winning 

position. 

We now prove some theorems that demonstrate that our method is sound. 

Theorem 7.1. For a, /3 c W, if score(cu, t) > score(a, t - 1) > 0 and score@& t) > 
score@, t - 1) > 0, for any t 3 2, then a = /3. 

Proof. For the proof by contradiction, assume the antecedent and LY # /?. 

Without loss of generality, assume also that w E /3 - cy. Then w was last visited 

before time begin(a, t). There are at least two intervals, I,, I2 E {x ) begin(a, t) c 
x =S t} for which I1 <Z, and node(Z,) II W = node(&) fl W = CC. Let t’ be any time 

for which node({x 1 t’ <x<t})nW=P, and let I,={xlt’~x=~t}. Since WE 

p - (Y, it must be that t’ < begin(a, t). Let 14 = {x ( t’ =S x =S t - l}. 

If node(t) E W then node(t) E a; in that case node(t) must have been visited 

during 1, which is wholly inside interval 1;. Thus if Z, is used in the set of intervals 

in the definition of score(p, t), Z; could be used in its place. The same is true if 

node(t) 4 W. We would then have a set of intervals of equal cardinality that could 

be used for score@, t - 1) as well. 
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It follows that score@, t - 1) can be no less than score@, t), a 

contradiction. 0 

This theorem shows that whatever specific policy we institute following our 

general method for declaring a winner, there will never be a time when we would 

be obliged to declare both players to be the winner, since the first time any set 

(Y E W reaches its desired score cannot be the first time any other set /3 c_ W 
reaches its desired score. 

Theorem 7.2. Let 53 be a no-memory game. Suppose that t’ > t and, in some play 
of 3, node(t’) = node(t) and {node(t”) 1 t’ s t”< t} n W = a E 2w - Q. Then 
either no node of Cg is visited between t’ and t or else, for every winning 
no-memory strategy f for Black, at least one node of U, f~ B is visited some time 
when Black did not play according to f. 

Proof. Assume that Black plays correctly whenever the placemarker is in 

U, tl B, and that, for some t”, t’ s t”c t, node(t”) E U,. Now as long as Black 

keeps playing her winning strategy at time t” and afterward the placemarker will 

remain in U,, by Theorem 3.2. Thus node(t) E U,. But, since node(t’) = node(t), 
it follows by the same reasoning that, for all t” such that t’ c t”< t, node(t”) E r/n. 

Put t,, = t’, tl = t, d = t, - tO, and, for all h 3 2, tr, = t, + (h - 1)d. If Black and 

Red were to play forever after tl, playing between th_, and th (for each h 3 2) the 

way they played between to and t,, then the permset would be cx and Red would 

win. But in this play the placemarker is always in U, and Black is always playing 

her winning no-memory strategy, a contradiction. 0 

We note that, if 0# a E 2w - Q, node(t) E a and score(cu, t) = 2 in a no- 

memory game, then the antecedent, and hence the consequent, of Theorem 7.2 

are satisfied. 

Theorem 7.3. Let 3 be a game, and let 0 # (Y E 2w - 52, 1~~1 = k. If score(a, t) = 
k! + 1 then either (a), for all t’, begin(cu, t) c t’ G t implies node(t’) $ U,, or (b), 

for any winning LVR strategy f for Black, there exists a t’, begin(a, t) G t’ Ct, 
such that node(t’) E U, II B and Black did not play according to fat time t’. 

Proof. Assume that (a) and (b) are both false. Then we can prove as in the proof 

of Theorem 7.2 that node(t’) E 17, for all t’ such that begin(cu, t) c t’ ct. From 

score(a, t) = k! + 1, it follows that, for some w E (Y, there must be times 

t,<tZ<*.*<tk!+, such that begin(a, t) G t,, tk!+, <t and node(&) = w for 
1 <h s k! + 1. There must be hl and h2, 0 < hI < h,c k!, such that LVR(t,,) = 
LVR(t,,). Put j. = th,, j, = thz, d = j, -j,,, and, for x 2 2, jx = j. + xd. If Red and 

Black were to play forever, after time j, , so that for each i 3 1 they play the same 
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between times ji and ji+, as they did between times j. and j,, then the permset 

would be cz. Red would win in spite of the fact that the play is in U, and Black is 

playing a winning strategy, a contradiction. 0 

Theorem ‘7.4. Let % be a game, and let 0 E 2w - Q. If t’ < t and, during a play of 
‘3, node(t’) = node(t) and {node(t”) ) t’ c t” s t} n W = 0 then either no node of 
lJB is visited between t’ and t or else, for every winning LVR strategy f for Black, 
at least one node of iJ, rl B is visited some time when Black did not play according 
to f. 

The proof is the same, word for word, as the proof of Theorem 7.2. 

Comparing Theorem 7.2 about games that have no-memory strategies and 

Theorem 7.3 about the more general class of games, we see that we must wait 

much longer to declare a winner in the general game than in a game that has 

winning no-memory strategies. The question then is, can we find a subfamily of 

games for which we can get an improvement over our result of Theorem 7.3 but 

which still encompasses substantially more than the subfamily of no-memory 

games? Does there exist a class of strategies that is properly between the class of 

no-memory strategies and the class of LVR strategies that would determine such 

a family of games? 

Our research has not established any such family of games, but we have an 

idea, and a hope that it might someday prove fruitful. The idea is based on the 

observation that among winning LVR strategies some are more efficient than 

others. 

For example, consider the game of Fig. 6, in which W = {r,, r,, r3, r4} and 

!J = {W}. Red has no choices in this game, which is therefore a game of solitaire 

for Black. Nevertheless, it is a good example to illustrate efficient and inefficient 

LVR strategies. An efficient LVR strategy for Black would be as follows 

Fig. 6. Inefficient winning strategy. 
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(omitting b, , from which Black has no choice): 

From b,, 

if the LVR is, or ends in, r,, r,, then move to r,; 
otherwise move to rl. 

From b3 move to r,. 

From b4 move to r2. 

This strategy is efficient because it enables Black to cycle through her only 

winning set as quickly as possible, namely, in a total of ten moves (five for each 

player). 

An inefficient winning LVR strategy for Black in this game is as follows: 

From b,, 

if the LVR is, or ends in, r,, r,, r,, then move to r,; 

if the LVR is, or ends in, r,, r3, r2, then move to r,; 

otherwise move to r,. 
From b3, 

if the LVR is, or ends in, r,, r,, r,, then move to r,; 

otherwise move to r,. 

From b4, 
if the LVR is, or ends in, r3, r,, r,, then move to r,; 

otherwise move to r,. 

Let us trace the path of the placemarker assuming that Black uses this strategy 

and play begins at r,. Noting for each i that b, always follows ri, and that ri never 

follows bi, we abbreviate rl, b,, b2, r,, b3, . . . as 1,2,3, . . . . Thus the trace of 

the placemarker is 1, 2, 3, 4, 2, 4, 3, 2, 1, 2, 3, 4, 2, 4, 3, 2, 1, . . . . It thus takes 

16 moves to cycle through Black’s winning set, compared to 10 moves with the 

efficient strategy. This play shows a score of 2 for Red’s winning set {r2, r3, r4} at 

certain times. When Black played her more efficient LVR strategy, the play 

showed at any time at most a score of 1 for any of Red’s winning sets. 

The question is, could a class C of efficient LVR strategies be defined so that a 

modified Theorem 4.1 and an improved Theorem 7.3 are valid for this smaller 

class? The improvement in Theorem 7.3 would be a reduction in the quantity 

k! + 1. We conjecture that if such an improvement is possible it would be valid 

only for some restricted class of games. 

8. Abstract infinite games 

The abstraction here is achieved simply by removing the graph from the infinite 

game. Each player moves by simply announcing the selection of a letter from an 

alphabet. We stipulate that Red moves first, and thereafter the players move in 

turn. In any infinite play of the game an infinite word (i.e., an omega word) over 



180 R. McNaughion 

the alphabet is thereby determined. Winning and losing depends on that infinite 

word. 

In any game we stipulate a finite alphabet 2. At any time in the play of the 

game a (finite) word u has been spelled out by the sequence of the players’ 

selections. To make the game sufficiently general we also stipulate restrictions on 

the choice of letter each player is allowed to make at various times: we stipulate a 

function $J : 2* -+ 2’ - { 0} such that, where u is the word spelled out up to a 

certain time, r@(u) is a nonempty subset of 2 that tells the next-moving player to 

chose a letter from the subset $(u). Finally, we stipulate a set Y of infinite words 

over 2; Black wins if and only if the infinite word determined by the play is in Y. 

Thus we formally define an abstract infinite game & as an ordered triple 

(2, c$, Y) where 2, @ and Y are as described above. 

It is not difficult to see that infinite graph games can be represented as abstract 

infinite games. Recall our remark at the beginning of Section 2 that our concept 

of game is really a set of games, since games are usually conceived as having an 

initial configuration, i.e., an initial node on the graph where every play is to 

begin. Given an infinite graph game se= ((2, R, B, E, W, L2) with a designated 

initial node qO E R we construct & = (2, Cp, Y) as follows. 

Let d be the maximum outdegree of the nodes of Q in 9. Let 2 = 

{a,,. . . , ad}. We label the edges of E as follows: For each q E Q suppose there 

are i edges leaving q, i 6 d. Arbitrarily label these edges a,, . . . , ai. 

We now have a way for the players of % to move simply by announcing a letter 

of .Z. The function #J of ~4 is easily defined: For each u E E* let q be the node 

reached by the walk in the graph of 3 that spells out U. If i is the outdegree of q 

then #(u) = {al, . . . , ai}. 

We see that, for every infinite play of the game 93 beginning at qtr, there is an 

infinite word over 2 that uniquely represents that play. We thus define Yin Se to 

be the set of all infinite words over 2 that represent plays whose permsets are in 

the set Sz. 

However, there are abstract infinite games that are not meaningfully represented 

as infinite graph games. Consider, for example, the game &? = (Z: $, Y) where 

_Z = (0, l}, q(u) = .X for all u E .X*, and Y is the set of all infinite words having, 

for each i, both 0’ and 1’ as subwords. Although the result is not surprising to 

many readers, we sketch a proof that no infinite graph game corresponds to this 

abstract infinite game. 

Let ‘3 be an infinite graph game in which IQ1 = m, and, for all q E Q, there are 

exactly two edges of E leaving q, one labeled 0 and the other labeled 1. With 

these labels, every (finite) walk in the graph spells out a word u E Z*. Similarly, 

for every u E .Z* and q f Q, there is exactly one such walk from 4 spelling out U. 

Let us say that two finite words u1 and I.+ are equivalent from q E Q if the walks 

from q spelling out U, and u2 (1) end at the same node and (2) visit exactly the 

same set of nodes in their duration. Let us say that two infinite words z, and z, 

are equivalent from q if the walks from q spelling out 2, and 2, have the same 
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permset. We state two elementary propositions, leaving the proof in each case to 
the reader: 

Proposition 1. For each k 2 2m and q E Q there exists j, m C j < 2m, such that 1’ 
and lk are equivalent from q. 

Proposition 2. For each q, if (a) z = ulu2u3. * * is an infinite word, (b) each ui is a 
jinite word, (c) for each i 3 1, the walk from q. spelling out u, . . * ui ends at qi, 
and (d) for each i 2 1, ul and ui are equivalent from qi_, , then the infinite words z 
and z’ = u;u;u; - * * are equivalent from qo. 

Now consider the infinite word z = 010011 * - . o’l’o’+‘l’+’ . * * . From Proposi- 
tions 1 and 2 it follows that for some infinite sequence of integers jZm, jZmtI, . . . , 

where m c jX < 2m for each x 3 2m, the infinite words z and 

z’ = 010011 . . . ()2”-1~2m--p3pzng 2m+llj2,,,+102m+21/2,,,+2 . . . 

are equivalent from 4,). Now z represents a play of the game & which is a win for 
Black, whereas z’ represents a play that is a win for Red. But in 3, these two 
words represent wins for the same player. Thus J& is not represented by %. Our 
proof shows that no infinite graph game represents &. 

Abstract infinite games were introduced in 1953 by Gale and Stewart [4]. In 
their paper they focused on the question, for which sets Y of infinite words is the 
game determined, viz., for which such sets does one of the two players have a 
winning strategy? They gave a rather simple proof of the existence of an 
undetermined abstract infinite game with 2 = (0, l}, using the axiom of choice 
via the theorem that all sets can be well ordered, and well known facts about 
cardinals and ordinals. Although their proof was simple, their result was 
remarkable. Keep in mind that an undetermined game is not merely one where 
neither player has a computable winning strategy; it is one where no mathemati- 
cal function is a winning strategy, not even a noncomputable one. 

Morton Davis continued the investigation of Gale and Stewart in 1964 [3]. Like 
them he was interested in characterizing those games (E, $, Y) that are 
determined, by focusing on the topological properties of the set Yin the infinite 
tree determined by 2. For this it was convenient, and caused no loss of 
theoretical generality, to restrict the investigation to those in which Z = (0, 1) 
and, for all u E ,Y*, $(u) = Z. The set of plays of such a game is simply the set of 
infinite words over (0, l}. 

The topology on this space of infinite words comes about from the following 
concept of limit point: the infinite word a,a2a, * - . is a limit point of the set of 
infinite words f if, for each n 3 1, there is an infinite word g,g,g, - - - E F such 
that, for all i c n, a, = gi. The first level of the Bore1 hierarchy is the union of the 
class of denumerable unions of closed sets and the class of denumerable 
intersections of open sets. (Some papers in the literature refer to this as the 
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second level.) The second level is the union of the class of the denumerable 
unions of sets in the first level and the class of denumerable intersections of such 
sets. 

Gale and Stewart proved that all games for which Y is in the first level of the 
Bore1 hierarchy are determined. Morton Davis extended this result to all games 
for which Y is in the second level of the Bore1 hierarchy. 

We have observed above that every infinite graph game with a designated start 
node can be converted into an equivalent abstract infinite game. It turns out that 
the P of the latter is in the second level of the Bore1 hierarchy. (This is implied 
by [ll, Theorem 5.2, p. 1541; that Y is a ‘regular w-language’ is clear.) Thus we 
have another proof that, for each node of an infinite graph game, one player has 
a winning strategy when play begins at that node. However, the proof that we 
have presented in Section 4 proves more than that since it establishes that every 
strategy is computable and (as we shall show in the next section) is executable by 
a finite automaton. 

In [14] Zeitman develops a concept of graph game that is a generalization of 
both abstract infinite games and the infinite graph games of this paper. If her 
graph is finite then her game is one of ours. If her graph is an infinite rooted tree 
then her game is, in effect, an abstract infinite game. It is interesting how she 
handles the genera1 case, since it includes games that are in neither class. Of 
course, each of her games can be shown to be equivalent to an abstract infinite 
game by a construction similar to our construction above for graph games whose 
graphs are finite. 

The papers [6], [12] and [13] d escribe their games in the abstract-infinite-game 
format, focusing on the infinite tree of moves. Yet they are concerned pre- 
dominantly with games that are equivalent to the infinite graph games of this 
paper; thus the problem of characterizing those abstract games that are 
equivalent to graph games in terms of the proprties of the infinite tree of moves is 
an important one for the authors of those papers. The paper [13], points out that 
the graph game is simply ‘the transition table of a game automaton’, which is (as 
the next section will try to make clear) a finite automaton. Roughly speaking, a 
game automaton is a device that is capable of moving along the path of the 
infinite tree and telling which player is the winner of the play of the game that the 
path represents. 

9. Finite automata 

The concept of infinite graph game is one of several outgrowths from Richard 
Btichi’s study of a certain formal logical system known as the sequential calculus 
[l]. That system had two types of variables standing for nonnegative integers and 
classes of nonnegative integers. As such it was an example of a monadic 
second-order theory (see [5]). However, it was weaker than most formal systems 
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of arithmetic in that addition and subtraction could not be defined in it. Its only 

primitive notions were the successor function and set membership. 

We shall not describe the sequential calculus in any detail; we mention it only 

for historical reference. (The interested reader would do well to read from 

Sections 5 and 6 of [9].) Btichi proved that every formula of the sequential 

calculus could be interpreted as saying something about the infinite history of 

some nondeterministic finite automaton. One of the three open problems at the 

end of Biichi’s paper was the following: given a sequential-calculus formula that 

makes an assertion about the infinite history of the inputs and outputs of a finite 

automaton, does there exist a nondeterministic finite automaton that always 

satisfies that assertion in its every possible infinite history? 

Research on this problem of Biichi’s naturally led to the concept of infinite 

graph game (in a somewhat different guise). Landweber’s doctoral dissertation 

[7], written under Biichi’s direction, had the first correct proof that it is decidable 

which of the two players has a winning strategy given (in our terms) an infinite 

graph game and a designated start node. He used this result to establish the 

affirmative answer to Btichi’s open problem (see also [8] and [2]). 

For us, an interesting feature of Landweber’s work is that the winning player in 

an infinite graph game can execute his winning strategy by a finite automaton 

whose size depends on the size of the game. We explain this in terms introduced 

in the present paper. The winning strategy mentioned in our main theorem 

(Section 4) directs the winning player to move in a way that depends on the 

location in the graph and on the LVR. We construct a finite automaton capable 

of sensing the location of the placemarker at any time: that is to say, the identity 

of the node that is the placemarker’s present location is an input to the 

automaton. If the strategy to be played is what we have called a no-memory 

strategy then the automaton would not need any memory since the output (i.e., 

the move) would depend only on the node being visited. 

On the other hand, if the strategy is an LVR strategy other than a no-memory 

strategy, then the automaton would have to use the LVR as well as the identity of 

the node currently visited to determine its move. It would therefore have to 

remember something about its past. But a complete memory of the past is not 

needed, just the LVR. 

In any game there are only finitely many LVR’s, namely, _Xr=,, i! where n is the 

number of winning-condition nodes. Furthermore, as we observed in Section 2, 

the LVR at any moment of time is determined by the LVR of the immediately 

previous moment and the new node. Accordingly, an LVR strategy for the player 

of a game can be taken as a finite automaton, identifying states with the LVR’s, 

the input conditions with the nodes, and the outputs with the moves that the 

player may make. 
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