gcb\orz’/wOfKSL;o(oN 1/173!(5 and Wodels 7Cw churrcucy
Sdovingev— lectue Neles v Co'MPuk/‘ Scieamcea. 354

Expressibility Results for Linear-Time and
Branching-Time Logics

E. M. Clarke, I. A. Draghicescu

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract We investigate the expressive power of linear-time and branching-time temporal logics as fragments
of the logic CTL*. We give a simple characterization of those CTL* formulas that can be expressed in linear-
time logic. We also give a simple method for showing that certain CTL* formulas cannot be expressed in the
branching-time logic CTL. Both results are illustrated with examples.

key words: temporal logic, linear-time logic, branching-time logic, computation tree logics, fairness

Contents

1. Introduction

2. Computation Tree Logics (CTL, LTL and CTL*)
3. Linear-Time

4. Branching-Time

5. Conclusion

OThis research was partially supported by NSF grant CCR-87-226-33.

1. Introduction

Temporal Logics are widely used for reasoning about concurrent programs and reactive systems. We will model
such programs by labelled state-transition graphs, called Kripke structures [8]. If some state is designated as
the inirial state, then the Kripke structure can be unwound into an infinite tree with that state as the root. Since
paths in the tree represent possible computations of the program, we will refer to the infinite tree obtained
in this manner as the computation tree of the program. Temporal logics may differ according to how they
handle branching in the underlying computation tree. In linear-time logic, operators are provided for describing
events along a single computation path. In a branching-time logic the temporal operators quantify over the
paths that are possible from a given state. Each type of logic has its advantages and disadvantages. Testing
satisfiability for linear-time formulas appears easier than for branching-time formulas [1], while automatic
verification techniques based on model checking [5] have lower complexity in the case of branching-time
logics.

Lamport [9] was the first to investigate the expressive power of the two types of temporal logic from the
perpsective of computer science. His 1980 POPL paper discussed two logics: a simple linear-time logic and
a simple branching-time logic. He showed that each logic could express certain properties that could not be
expressed in the other. For example, branching-time logic cannot express certain natural fairness properties that
can easily expressed in the linear-time logic. Linear-time logic, on the other hand, cannot express the possibility
of event occuring at sometime in the future along some computation path, even though this can be expressed
in the branching time logic. There were some difficulties with the method that Lamport used for obtaining
these results, however. In particular, his approach was somewhat like comparing “apples and oranges”, since
the truth of a branching-time formula was determined with respect to a state while the truth of a linear-time
formula was determined with respect to an individual computation path. This resulted in a notion of expressive
equivalence that classified some satisfiable formulas as being equivalent to false.

Emerson and Halpern [7] provided a uniform framework for investigating this question. They formulated
the problem in terms of the expressive power of various fragments of a single logic called CTL* (Computation
Tree Logic), which was first discussed in [4] and [6]. This logic combines both linear-time and branching-time
operators; its syntax is given in terms of path formulas that are interpreted over computation paths and srate
formulas that are true or false in a state. The path formulas use the standard temporal operators G (always),
F (sometimes), X (nexttime), and U (until) and are like the formulas of traditional linear-time logic except that
both atomic propositions and state formulas are allowed as primitive components of formulas. A state formula
may be obtained from a path formula by prefixing it with a path quantifier that can either be an “A” (for
every path) or a “E” (there exists a path). Linear-time logic (LTL) is identified with the set of all CTL* state
formulas that have the form Af where f is a path formula that does not contain any state sub-formulas. The
branching-time part (called CTL) consists of all CTL* state formulas in which every linear-time operator is -
immediately preceded by a path quantifier.

Since both LTL and CTL consist entirely of state formulas, Emerson and Halpern were able to avoid the
uniform framework problem in Lamport’s paper. They showed that there exists a formula of LTL that cannot
be expressed in CTL and vice versa. In general, the proofs of their inexpressibility results are quite long and
complicated. For example, the proof that the linear-time formula for strong fairness is not expressible in CTL
uses a complicated inductive argument that requires 3 1/2 journal pages to present. Furthermore, the technique
that they use in this proof does not easily generalize to other examples. One reason for this difficulty is that
formulas, which superficially appear similar, can have very different properties. For example, although A(FGp)
cannot be expressed as a CTL formula, A(GFp) can be expressed as a CTL formula and in fact is equivalent
to AG(AFp). Likewise, the CTL formula AG(AFp) is expressible in LTL since it is equivalent to A(FGp), but
the formula AF(AGp), obtained by reversing the operators AF and AG, is not expressible in LTL.

Our paper gives a simple characterization of those CTL* formulas that can be expressed in LTL. We show

that a CTL* formula f can be expressed in LTL if and only if it is equivalent to the formula Af' where f'
is obtained from f by deleting the path quantifiers. We also give a necessary condition that a CTL* formula
must satisfy in order to be expressible in CTL. The condition is formulated in terms of models that are labelled
state transition graphs with fairness constraints . Intuitively, a CTL formula is unable to distinguish between
- two such models when the second is obtained from the first by adding a fairness constraint that extends some
constraint of the first model. By using these two results we are able to give simple arguments to show that a
number of example formulas cannot be expressed in LTL (in CTL). An additional advantage of our approach
is that it provides insight into why CTL and LTL have different expressive powers.

The paper is organized as follows: In Section 2 we describe the logics LTL, CTL and CTL*. Section
3 contains the characterization of those CTL* formulas that can be expressed in LTL. Section 4 gives the
necessary condition that a CTL* formula must satisfy in order to be expressible in CTL. It also contains several
examples that show how-this result can be used to give simple proofs that certain properties like strong fairness
cannot be expressed in CTL. The paper concludes in Section 5 with a discussion of some remaining open
problems.

2. Computation Tree Logics (CTL, LTL, and CTL*)

There are two types of formulas in CTL*: state formulas (which are true in a specific state) and path formulas
(which are true along a specific path). Let AP be the set of atomic proposition names. A state formula is either:
o A if A€ AP.
e If f and g are state formulas, then —f and f V g are state formulas.

e If f is a path formula, then Ef is a state formula.
A path formula is either:

e A state formula.

e If f and g are path formulas, then —f, fV g, Xf, and fUg are path formulas.

CTL* is the set of state formulas generated by the above rules.

CTL ([2], [4]) is a restricted subset of CTL* that permits only branching-time operators—each path quantifier -
must be immediately followed by exactly one of the operators G, F, X, or U. More precisely, CTL is the subset
of CTL* that is obtained if the path formulas are restricted as follows:

e If f and g are state formulas, then Xf and fUg are path formulas.

e If f is a path formula, then so is —f.

Linear temporal logic (LTL), on the other hand, will consist of formulas that have the form Af where f is

a path formula in which the only state subformulas that are permitted are atomic propositions. More formally,
a path formula is either

e An atomic proposition.

e If f and g are path formulas, then —f, fV g, Xf, and fUg are path formulas.

We define the semantics of CTL* with respect to a structure M = (S, R, £), where

e S is a set of states.
e R C S x S is the transition relation, which must be total. We write 5; — s to indicate that (s, 52) € R.

e L:S — P(AP) is a function that labels each state with a set of atomic propositions true in that state.

Unless otherwise stated, all of our results apply only to finite Kripke structures.

We define a path in M to be a sequence of states, m = o) ... such that for every i > 0, s; — Si1. 7t will
denote the suffix of = starting at s;.

We use the standard notation to indicate that a state formula f holds in a structure: M, s |=f means that f
holds at state s in structure M. Similarly, if f is a path formula, M, 7 |=f means that f holds along path 7 in
structure M. The relation = is defined inductively as follows (assuming that f; and f; are state formulas and
g and g, are path formulas):

SEA iff A€ L().

sE-A iff sEA.

sEAVAR f sEhorsER.

s FE(g) iff there exists a path = starting with s such that 7 |= g;.

r EA iff sis the first state of = and s F fi.

T g1 iff =Fea.

tEanVE iff tEgiorT kg

X if kg

n lg1Ugs iff there exists a k> O such that 7* =g, and for all 0 < j < k, 7/ = g1.

O 0NN W~

We will also use the following abbreviations in writing CTL* (CTL and LTL) formulas:

-E(=f)
~F—f.

of N g
oFf

= (—1f \V) —|g) .A(f)
trueUf oGf

i

The neéessary condition for expressability in CTL is given for Kripke structures with fairness consraints.
The fairness constraints are specified in essentially the same way as the acceptance sets for Muller automata
[10]. A Kripke structure with fairness constraints is a 4-tuple M = (S, R, £, F) where

e S, R, L are as in the definition of the standard Kripke structures.

e F C 2% is a set of faimess constraints.

Let M = (S, R, £, F) be a Kripke structure with fairness constraints and 7 = 5051 ... a path in M. Let inf(r)

denote the set of states occurring infinitely often on =. = is fair iff inf(7) € F.

The semantics of CTL* with respect to a Kripke structure with fairness constraints M = (S, R, £, F) is
defined using only the fair paths of the structure. Thus, the relation = is defined inductively for all states s and
fair paths 7 of M using the same clauses as in the case of ordinary CTL* except the clause 4 is replaced by

4. skEE(g) iff there exists a fair path = starting with s such that = [= g;.

3. Linear Time

For every n > 0, let ~, be the equivalence relation over infinite paths given by

o' ~,c" iff for any linear formula f with length(f) < n, o' f < " Ef

Lemma 1 Suppose AP, the set of atomic propositions is finite. Let M be a Kripke structure and o a path in
M. Letn> 0.

Then there exists a prefix xy of o such that xy“ is an infinite path in M and o ~, xy“.

Proof: It will be given in the completed version.

If ¢ is a CTL* formula, we will denote by ¢¢ the linear formula obtained from ¢ by deleting all its path
quantifiers. For instance, if ¢ = AG(pU(EXg)) then ¢? = G(pU(X¢q)).

For a Kripke structure M and a path o = so8y ...5i-1(S8i...5j-1) in M we will denote by M(c) the single-path
Kripke structure defined by . M(o) = (S(0), R(0), L(0)), where :
5©) = {S0, .-, 5j-1}
R(o) = {0, 1), - - -, Bj—2,3j-1), Gj-1,30)}
L(0) : S(o) — 24, L)) = L(sx)

Let us notice that for any path of the form xy“ of a Kripke structure M and for any CTL* formula ¢, we
have

M), o k¢ iff Mo*),x” ¢

Theorem 1 Let ¢ be a CTL* state formula.
Then ¢ is expressible in LTL iff ¢ is equivalent to A¢°.

Proof: Suppose that ¢ is equivalent to Af, where f is a linear formula. We have to show that ¢ is equivalent
to Ag?.

Let M be a Kripke structure and so a state in M. We have :

M,so k= ¢ iff for all paths o in M, M,o Ef

iff for all paths of the form xy* in M, M,xy* E&=f

(by Lemma 1)

for all paths of the form xy* in M, M(xy~),xy* Ef
for all paths of the form xy* in M, M(x*),% E ¢
for all paths of the form xy* in M, M(xy~),xy” = ¢*
(as noticed above) ’
for all paths of the form xy“ in M, M,xy” [¢°

for all paths o in M, M,o F¢*

(by Lemma 1)

iff M, so = Ag?

=

Theorem 2 Let ¢ be a CTL* formula.

Then ¢ is expressible in LTL iff there exists a set P of paths such that

M,so = ¢ iff for any path o starting in so, there exists a path o' € P such that
T ~lengihig) O

Proof: Suppose ¢ is expressible in LTL. Then, by Theorem 1, ¢ is equivalent to A¢?. Let P = {0 | o |= ¢°}.
For any Kripke structure M and any state so in M, we have

M,so = ¢ iff for any path o in M starting in 59, M, 0 | ¢¢
iff for any path o in M staring in 5o, o € P
iff for any path o in M staring in 5o, there exists a path o’ € P such that

T ~lengthig) O’
(aS 0 ~iengimigy 0’ and o’ € P imply, by the definition of P, that o € P)

In order to prove the converse, suppose P is a set of paths with the following property :

M,so = ¢ iff for any path o starting in so, there exists a path ¢’ € P such that
T ™ lengihig) 7 -

By Theorem 1, it is enough to show that M,so ¢ <= M, s = A¢?.

Suppose that M, so = ¢. Then, by the above property of P, for any path o = xy“ in M starting in so, there
exists a path o' € P such that ¢ ~pnen) o'. Thus, for any o = xy*, the unique path of M(0) iS ~iengnig)-
equivalent with some path in P. Using again the property of P; we obtain that M(c), 3o = ¢. This implies that
for any o = xy*, M, o |= ¢ Therefore, by Lemma 1, for any path o in M starting in so, M,0o [¢, which
implies M, so = A¢“.

Suppose M, sq = A¢®. In particular, for any path xy“ in M starting in so, M(xy*), xy“ |= ¢9, which implies
M(xy*),3o [=-¢ and therefore there exists o’ € P such that xy“ ~ngmis) ’. Thus, by Lemma 1, for any path o
in M starting in 5o, there exists a path o’ € P such that & ~ g o'. Therefore M, s; |= ¢.

Using the above characterizations, it is easy to check, for instance, whether AFAGp is expressible in LTL.

Consider the Kripke structures shown in Figure 1,
M = ({s0, 51, 52}, { (0, 50), (S0, $1), (51, 52), (52, $2)}, L), where L(s0) = L(s2) = {p} and L(s;) = {-p},
MO = ({So}, {(S(), sO)}) L |Mo})’
M;=({t,..., 451,85}, {1, 0),..., WG-1, 1), ¢, 51), (51, 52), (52, 52)}, £;), for any j > 1,
where calLi(ty) = L(s2) = {p} and Lj(s1) = {—p}.

It is easy to see that M, so ¥ AFAGp but M, 5o = A((AFAGp)?). This implies, by Theorem 1, that AFAGp
is not expressible in LTL.

We also -have Mo, so E AFAGp and for any j > 1, M;, t; = AFAGp but M, 5o [¢ AFAGp. As any path of M
iS ~lengin(AFAGp)-€quivalent to a path in some M;, j > 0, we obtain again, by Theorem 2 this time, that AFAGp
is not expressible in LTL.

4. Branching Time

A strongly connected component C of a directed graph G = (V, R) is non-trivial if either | C |> 1 or C = {¢}
and ¢ has a self loop—ie. (c,c) € R. If M = (§,R, L, F) is a Kripke structure with fairness constraints,
then we can assume without loss of generality that each set F € F determines a non-trivial strongly connected

BROSCNG

MO.

S

o
t1 tj S, s2

Figure 1: Kripke Structures for AFAGp

subgraph of the graph of M. If F and F’ are two sets of fairness constraints, then we will say that 7’ extends
F if F' = F U {F'} where F' is a superset of some set F € F. -

Theorem 3 Let M = (S,R, L, F) be a Kripke structure with fairness constraints, and let M' = (S, R, £, F')
where the set of constraints F' extends F. Then for all CTL formulas f and all states s € S,

MskEf iff M,skf

Proof: We prove the theorem by induction on the structure of f. We have the following cases:

e f is an atomic proposition: This case is trivial.
e f=fi VL or f=—f;: This case follows directly from the inductive hypothesis.

o f=EXf or f = E[fjUfz]: We consider f = E[f{Uf]; the other case is similar. We first show that the
set of finite prefixes of the M-fair paths coincides with the set of finite prefixes of M'-fair paths. To see
that this is true let P be the set of prefixes of M-fair paths that start at s and let P’ be the corresponding
set for M’. We must show that P = P’. It is easy to see that P C P’. Since F C F, it must be the
case that every M-fair path starting at s is also M’-fair path. To show that P’ C P, let p’ € P'. Assume
that p’ is a prefix of some M’-fair path =’. If inf(x') € F, then =’ is also an M-fair path and p € P.
If inf(x') = F', then = must pass infinitely often through F since F C F'. Let p be a prefix of =’ that
includes all of p’ and ends in a state of F. Since F determines a nontrivial strongly connected component
of the graph of M, we can extend p to an M-fair path 7 such that inf(r) = F. Consequently, p € P.

Assume that M, s |= E[fijUf;]. There must be a M-fair path = that starts at s such that for some £ > 0
M,7* = f; and for all 0 < j < k, M, =% |z fi. By the above observation there is an M'-fair path =’ that
has the same prefix of length k as 7. By the inductive hypothesis M', (v’ | f, and for all 0 < j < &,
M, (x") = fi. Tt follows that M', ' |=f{Uf, and that M', s |= E[fiUf;]. Exactly the same argument can
be used to show that if M', s |= E[fiUf,], then M, s | E[fiUf].

Figure 2: Kripke Structure for A(FGp)

o f = EGf;: If M,s E EGf, then, as any M-fair path is also a M'-fair path, it follows by the inductive
hypothesis that M, s = EGf;. For the other direction suppose that M, s |= EGf; and let = be the M'-fair
path that satisfies Gf;. If inf(r) € F then we are done. Otherwise inf(r) = F' and F’ is strongly
connected. As F C F' is also strongly connected, there exists a path 7 starting in s such that inf(7,) = F
and any state on 7, is also on . It follows m, is M-fair and, by inductive hypothesis, M, m; | Gfj,
which implies M, s = EGf;. o

We illustrate how the Theorem 3 can be used to prove that A(FGp) is not expressible in CTL. Let M be
the Kripke structure shown in Figure 2 with the fairness constraint 7 = {{s1}}. The set {s;} determines a
non-trivial strongly connected component of the graph of M. A(FGp) is true in state s of M, since all fair
paths must eventually loop forever in state s;. The set {so, 51} is certainly a superset of the set {s;}. If we let
F' = FU {{s0,51}} and M’ be the corresponding Kripke structure with F' replacing F, then M and M’ will
satisfy the same CTL formulas. However, A(FGp) is not true in state so of M’ since the path.m = 50515051 .. .
is fair, but does not satisfy the path formula FGp. It follows that no CTL formula is equivalent to A(FGp).

The same two Kripke structures M and M’ can be used to show that the formula AF(p A Xp) is not expressible
in CTL. If 7 is a fair path in M, then p must hold almost always on 7. Consequently, 7 = F(pA Xp). It follows
that AF(p A Xp) is true in state so of M. However, ©’ = 5¢515051 ... is a fair path in M’ that does not satisfy
F(p A Xp), so AF(p A Xp) is false in state so of M'.

5. Conclusion

In the linear-time case we have obtained two necessary and sufficient conditions for a CTL* formula to be
expressible in LTL. In the branching-time case we have only given a necessary condition for a CTL* formula
to be expressible in CTL. It would be useful to have a complete characterization in this case as well. One
possibility would be to prove the converse for Theorem 3, which we state as a conjecture below:

Conjecture 1 Iff is not expressible in CTL, then it is possible to find two Kripke structures M = (S, R, L, F)
and M' = (S, R, L, F') with F' an extension of F such that for some state s € S

either M,sk=fand M',stf or 'M,sbéfand‘M’,sl=f.

So far, we have been unable to prove or disprove this conjecture. If it is true, we believe that the 'proof is
likely to be difficult.

Another problem with the result in Section 4 is that it is possible to have a CTL* formula that is equivalent
to false over ordinary Kripke models and, therefore, is expressible in CTL, but is not expressible in CTL when

the models are fair Kripke structures. In order to construct such an example we use a result from [3], which
shows that it is possible to completely characterize an ordinary Kripke structure in the logic CTL. Let M and
M’ be two Kripke structures. Let so be a state of M and s; be a state of M. Then M, 5o is CTL*-equivalent to
M, s}, iff for all CTL* formulas f, M,so Ef if M',s5Ef.

Given a Kripke structure M and a state so of M, there is a CTL formula C(M, so) such that M', 55 = C(M, o)
iff M, 5o is CTL*-equivalent to M’, s;. For the model shown in Figure 2, C(M, s¢) is given by

p A AG@p — (EX(-p) A AX(-p)) A AG(—p — (EX(—p) A EX(p)).

Now, consider the formula C(M, so) A A(FGp). This formula is equivalent to false if the models are ordinary
Kripke structures. Since A(FGp) is false in M, so, it follows that if M’, sy = C(M, so) then M', 55 = ~A(FGp).
If we modify M to include the fairness constraint 7 = {{s,}}, then C(M, 50) A A(FGp) is true in so. Thus, the
formula is not equivalent to false over fair Kripke structures. Essentially the same argument as in the first
example of Section 4 shows that it is not expressible in CTL in this case. It would be useful to have a version
of Theorem 3 that applied to ordinary Kripke structures and avoided such pathological examples.

References

[1] EM. Clarke A.P. Sistla. Complexity of propositional temporal logics. Journal of the Association for
Computing Machinery, 32(3):733-749, July 1986.

[2] M. Ben-Ari, Z. Manna, and A. Pneuli. The temporal logic of branching time. In 8th Annual ACM Symp.
on Principles of Programming Languages, pages 164-177, 1981.

[3] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing Kripke structures in temporal logic. In
1987 Colloquium on Trees in Algebra and Programming, Pisa, Italy, March 1987.

[4] E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons for branching time temporal logic.
In Proc. of the Workshop on Logic of Programs, Springer-Verlag, Yorktown Heights, NY, 1981.

{5] EMM. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244-263,
1986.

[6] E.A. Emerson and J.Y. Halpern. Decision procedures and expressiveness in the temporal logic of branching
time. J. Comput. System Sci., 30(1):1-24, 1985. -

[7] E.A. Emerson and J.Y. Halpern. ‘Sometimes’ and ‘not never’ revisited: on branching versus linear time.
In Proc. 10th ACM Symp. on Principles of Programming Languages, 1983.

[8] G.E. Hughes and M.J. Creswell. An Introduction to Modal Logic. Methuen and Co., 1977.

[9] L. Lamport. ‘Sometimes’ is sometimes ‘not never’. In Seventh Annual ACM Symposium on Principles
of Programming Languages, pages 174-185, Association for Computing Machinery, Las Vegas, January
1980.

[10] D. E. Muller. Infinite sequences and finite machines. In Proc. 4th Annual IEEE Symposium of Switching
Theory and Logical Design, pages 3-16, 1963.

