
Bisimilarity Minimization in O(m log n) Time

Antti Valmari

Tampere University of Technology, Department of Software Systems
PO Box 553, FI-33101 Tampere, Finland

Antti.Valmari@tut.fi

Abstract. A new algorithm for bisimilarity minimization of labelled
directed graphs is presented. Its time consumption is O(m log n), where n
is the number of states and m is the number of transitions. Unlike earlier
algorithms, it meets this bound even if the number of different labels of
transitions is not fixed. It is based on refining a partition on states with
respect to the labelled transitions. A splitter is a pair consisting of a set
in the partition and a label. Earlier algorithms consume lots of time in
scanning splitters that have no corresponding relevant transitions. The
new algorithm avoids this by maintaining the sets of the corresponding
transitions. To facilitate this, a refinable partition data structure with
amortized constant time operations is introduced. Detailed pseudocode
and correctness proof are presented, as well as some measurements.

Keywords: Analysis of reachability graphs, verification of systems.

1 Introduction

Bisimilarity (also known as strong bisimilarity) has an important role in the
analysis and verification of the behaviours of concurrent systems. For instance,
two finite systems satisfy the same CTL or CTL∗ formulae if and only if they are
bisimilar [2], and two process-algebraic systems are observationally equivalent in
the sense of [10] if and only if their so-called saturated versions are bisimilar [8].
Bisimilarity abstracts away precisely the part of information stored by the state
of the system that does not have any effect on subsequent behaviour of the
system (this only holds in the absence of the notion of “invisible action”). Unlike
isomorphism, bisimilarity can unite different states. These properties make it also
a useful mathematical tool for dealing with other concepts, like symmetries.

Bisimilarity is an equivalence relation for comparing the vertices of a directed
graph whose vertices or edges or both have labels. We will use the words state
and transition instead of “vertex” and “edge” from now on, because the vertices
represent states of the concurrent system and edges represent (semantic) transi-
tions between states. Absence of state labels is equivalent to every state having
the same label, and similarly with transitions. So we may simplify the discussion
by assuming that both states and transitions have labels.

If two states s1 and s2 are bisimilar, then they have the same label, and they
can simulate each other’s transitions in the following sense. If s1 can make a

G. Franceschinis and K. Wolf (Eds.): PETRI NETS 2009, LNCS 5606, pp. 123–142, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

124 A. Valmari

transition with label a to some state s′1, then there is a state s′2 that is bisimilar
with s′1 such that s2 can make an a-transition to s′2. In the same fashion, whatever
transition s2 can make, s1 can simulate it.

The description of bisimilarity given above cannot be used as a definition,
because it is circular: to explain what it means that s1 and s2 are bisimilar,
it appeals to the bisimilarity of s′1 and s′2. Many different relations satisfy the
description. Therefore, the precise definition uses the auxiliary concept of bisim-
ulation. A binary relation between states is a bisimulation if and only if it meets
the description of bisimilarity given above. The empty relation and the identity
relation are trivially bisimulations. It is not difficult to check that the union of
any set of bisimulations over the same graph is a bisimulation. It is the largest
bisimulation, and it is an equivalence. It is the bisimilarity relation.

Bisimilarity can be applied to reachability graphs of Petri nets. The label of
a semantic transition could be the name of the Petri net transition whose occur-
rence created the semantic transition, or it could be something more abstract,
like a common name of several Petri net transitions. The label of a state could
be a collection of Boolean variables that describe some properties of the state,
such as there is a token in a certain subset of places. Using the marking as the
label of the state as such would make bisimilarity useless, because then each
state would be bisimilar only with itself.

Two systems can be compared by taking their disjoint union and checking
that their initial states are bisimilar in it. If the systems have several initial
states, then each initial state of each system must have a bisimilar initial state
in the other system. For each system, there is a unique smallest system that is
bisimilar to it. It can be found by removing the states that are not reachable
from any initial state, dividing the set of remaining states to equivalence classes
according to bisimilarity, and fusing each equivalence class into a single state.
The label and output transitions of the fused state are copied from one of its
states, where the end state of the copy transition is the fused state that contains
the end state of the copied transition. Thanks to the properties of bisimilarity, it
does not matter which state in the fused state is used in the copying. The fused
state is made an initial state if and only if it contains an original initial state.

In this paper we concentrate on finding the bisimilarity equivalence classes.
We present a new algorithm whose asymptotic time consumption is better than
that of earlier algorithms. The consumption does not depend on the number of
different labels of transitions. This is nice when there are many different labels,
like “send〈x〉” and “receive〈x〉” where x may assume many different values.

In Section 2 we describe the problem in more detail and discuss earlier work.
The new algorithm uses three copies of a special refinable partition data structure
that is described in Section 3. The new algorithm is presented in Section 4.
Detailed proofs of its correctness and performance are deferred to Section 5,
because they cannot be followed before having seen the algorithm as a whole.
Some measurements that were made with a prototype implementation are shown
in Section 6. Section 7 contains the conclusions.

Bisimilarity Minimization in O(m log n) Time 125

2 Background

The bisimilarity minimization problem is the following. A partition S of a set
S is a collection of non-empty, mutually disjoint sets S1, S2, . . . , Sk such that
S1 ∪ S2 ∪ · · · ∪ Sk = S. A refinement of S is any partition {Z1, Z2, . . . , Zh} such
that Z1 ∪ · · · ∪ Zh = S and each Zi is a subset of some Sj . Given is a labelled
directed graph (S, L, Δ), where Δ ⊆ S×L×S, together with an initial partition
I of S. By s−a→ s′ we mean that (s, a, s′) ∈ Δ. A partition S is compatible
with Δ, if and only if for every S ∈ S, S′ ∈ S, s1 ∈ S, s2 ∈ S, s′1 ∈ S′, and
a ∈ L such that s1 −a→ s′1, there is an s′2 ∈ S′ such that s2 −a→ s′2. It has been
proven that there is a unique partition that is a refinement of I, compatible with
Δ, and contains as few sets as possible. The task is to find that partition.

In this formulation of the problem, the state labels of Section 1 have been
replaced by the initial partition. This is not an important modification, because
the only thing done with state labels in the definition of bisimilarity is checking
whether the labels of two states are the same or not. The initial partition can
be constructed quickly enough by sorting the states according to their labels.

We denote the numbers of states, transitions, and labels by n = |S|, m = |Δ|,
and α = |L|. The number of sets in the initial partition is denoted with k.
To avoid getting into troublesome technicalities with complexity formulae, we
assume that n ≤ 2m. This is not a significant restriction, because to violate it
the directed graph must be rather pathological. If every state of a graph has at
least one input or output transition, then it meets the assumption.

In some applications of the bisimilarity minimization problem, only those
states are relevant that are reachable from an initial state. Furthermore, it may
be that a state is irrelevant also if no final state is reachable from it and it is not
initial. It is well known that irrelevant states can be removed in O(m + n) time
by basic graph traversal algorithms.

The bisimilarity minimization problem can be solved by starting with the
initial partition, and splitting sets of the partition as long as necessary. In this
context, the sets of the partition are traditionally called blocks. If s1 and s2

are in the same block B and s1 −a→ s′1, where s′1 is in block B′, but there is
no s′2 ∈ B′ such that s2 −a→ s′2, then B must be split so that s1 and s2 go
into different halves. This splitting may make further splitting necessary. There
may be s′′1 , s′′2 , s′′ in some block B′′, and b such that s′′1 −b→ s1, s′′2 −b→ s2,
s′′ −b→ s1, s′′ −b→ s2, and they do not have other b-labelled output transitions.
Then the separation of s1 and s2 into different blocks makes it necessary to
separate s′′, s′′1 , and s′′2 into three different blocks. We will call this three-way
splitting.

Hopcroft’s famous deterministic finite automaton (DFA) minimization al-
gorithm [7] contains an early sub-quadratic algorithm for an important sub-
problem of the bisimilarity minimization problem. DFA minimization consists
of removing irrelevant states and solving a restricted version of the bisimilarity
minimization problem. In this version, k ≤ 2 (the final states and the other
states), and the graph is deterministic, that is, for each s and a, there is at most
one s′ such that s−a→ s′. Thus m ≤ αn, while in general m ≤ αn2.

126 A. Valmari

Hopcroft’s algorithm runs in O(αn log n) time (see [5] or [9]). It uses splitters.
Precise meaning varies in the literature, but let us define a splitter as a block–
label pair (B, a). It is used for splitting each block according to whether its states
do or do not have an outgoing a-labelled transition whose end state is in B. In
Hopcroft’s algorithm, these transitions are traversed backwards, and their start
states are moved to tentative new blocks. This is much better than scanning a
block and checking which of its states have an a-transition to some state in B,
because the latter approach may involve costly scanning of numerous states that
lack such a transition.

Because DFAs are deterministic, three-way splitting is never necessary. As a
consequence, if (a, B) has been used for splitting and then B splits to B1 and B2,
it is not necessary to use both (a, B1) and (a, B2) for further splitting. Hopcroft’s
algorithm chooses the (in some sense) “smaller” of them. This guarantees that
each time when a transition is used for splitting, the size of some set is at most
half of its size in the previous time. Therefore, the same transition is used at
most a logarithmic number of times. This made it possible to reach O(αn log n)
time complexity instead of O(αn2).

An O(m log n) time algorithm for the sub-problem of bisimilarity minimiza-
tion where α = 1 (or, equivalently, transitions have no labels) was presented by
Paige and Tarjan [11]. Now the graph needs not be deterministic and three-way
splitting is necessary. To facilitate the use of the “half the size” trick, the al-
gorithm uses compound blocks. A compound block is a collection of blocks that
once constituted together a single block that has been used for splitting. The
use of the largest block in the compound block may be avoided in further split-
ting. A counter-based technique was used to find out whether the start state of
the current transition has an output transition also to elsewhere in the current
compound block, in addition to the current block.

Generalizing the Paige–Tarjan algorithm to α ≥ 1 while maintaining its good
complexity is not trivial. The algorithm in [4, p. 229] does not meet the challenge.
The paper does not give its time complexity, but there is certainly an αn term,
because the algorithm scans the set of labels for each block that it uses in a
splitter. Furthermore, it relies on the restrictive assumption that there is a global
upper bound to the number of output transitions of any state and label (p. 228).

In [3, p. 242], the label of each transition is represented by adding a new state
in the middle of the transition and initially partitioning these states according to
the labels they represent. Then the Paige–Tarjan algorithm can be used as such.
The time complexity is O(m log m), which is slightly worse than O(m log n). The
approach also consumes more memory by a constant factor than the algorithm
presented in Section 4.

When α is not fixed, an O(m log n) algorithm even for the deterministic case
had not been published until 2008 [12]. The problem has been the time spent in
scanning empty splitters, that is, splitters whose block does not have incoming
transitions with the label. Nothing needs to be done for them, but they are so
numerous that simply looking at each of them separately takes too much time.
In [12], this is avoided by maintaining the non-empty sets of transitions that

Bisimilarity Minimization in O(m log n) Time 127

correspond to splitters, and using these sets instead of the splitters to organize
the work. The sets constitute a partition of the set of transitions that can be
maintained similarly to the blocks. Therefore, [12] presents a refinable partition
data structure, one instance of which is used for the blocks and another for the
transitions.

In this paper we apply the above idea to the Paige–Tarjan algorithm, to
design an O(m log n) algorithm for the bisimilarity minimization problem. To
implement three-way splitting of blocks and to mimic the compound blocks, new
features are added to the refinable partition data structure. The counter-based
technique in [11] is replaced by a third instance of the structure.

3 A Refinable Partition Data Structure

In this section, a refinable partition data structure is presented. It is an extension
of the structure presented in [12]. It maintains a partition {A1, A2, . . . , Asets} of
the set {1, 2, . . . , items} for some integer constant items. Later in this paper three
instances of it will be used, one where the elements are states and items = n,
and two where the elements are transitions and items = m.

The partition is refinable, meaning that it is possible to replace any Ai by
two or three sets, provided that they are non-empty and disjoint and their union
is Ai. This operation is called splitting. One part inherits the index i from Ai,
while the other parts each get a brand new index.

To indicate which elements go into which subset of Ai, elements are 1-marked
and perhaps also 2-marked before splitting Ai. There is one splitting operation
that divides Ai to its 1-marked states and the remaining states, so that the set
of 1-marked states gets a new index, and the remaining states retain the old
index i. If either subset would be empty, then the operation does not divide Ai.
There is also another splitting operation that does the same for 2-marked states.
Each operation returns the index of the new subset, or zero to indicate that Ai

did not split. The reason for having these two splitting operations instead of
one three-way splitting operation is that returning the index or zero would be
clumsier with the three-way operation. To discuss marking and splitting, let A1

i

and A2
i denote the sets of 1-marked and 2-marked elements of Ai, respectively.

Initially all elements of Ai are unmarked, that is, both A1
i and A2

i are empty.
One of the three instances of the data structure uses bunches. The bunches

are a partition of the set {A1, . . . , Asets}. Therefore, a bunch Uu is a set of sets
{Au1 , Au2 , . . . , Aug}. A bunch cannot contain just any subset of {A1, . . . , Asets}.
Instead, a bunch starts its life containing precisely one set Ai. When any set in
a bunch is split, the bunch inherits all of its parts. There is also an operation
that extracts a set from a non-singleton bunch and makes a new bunch of it.

Furthermore, there are services for scanning a set or a bunch, and for other
duties. All services provided by the data structure are listed below.

Size(s) Returns the number of elements in the set with index s, that is, |As|.
Set(e) Returns the index of the set that element e belongs to, that is, the s such

that e ∈ As.

128 A. Valmari

Fig. 1. Illustrating the refinable partition data structure

Mark1(e) and Mark2(e) Mark the element e for splitting the set As that con-
tains e. Mark1 adds e to A1

s and Mark2 to A2
s, unless it is already in A1

s∪A2
s.

Split1(s) and Split2(s) If A1
s = ∅ or As = A1

s∪A2
s, then Split1(s) unmarks all 1-

marked elements in As and returns zero. Otherwise, it updates As := As−A1
s,

adds a new set Az := A1
s to the partition, puts it into the same bunch with

As, and returns z. In the end, A1
z = A2

z = A1
s = ∅, but A2

s has not changed.
Split2 works similarly on 2-marked elements.

No marks(s) Returns True if and only if A1
s = A2

s = ∅.
First(s) and Next(e) The elements of As can be scanned by first executing

e := First(s) and then while e �= 0 do e := Next(e). Each element will be
returned exactly once, but the order in which they are returned is unspec-
ified. While scanning a set, Mark1, Mark2, Split1, and Split2 must not be
executed. These operations are provided to promote data abstraction. In-
stead of using them, it would be slightly more efficient to scan As directly
from the arrays that implement the data structure.

Bunch(s) Returns the index of the bunch that set s belongs to.
Bunch first(u) and Bunch next(e) Let Uu = {Au1 , Au2 , . . . , Aug} be a bunch.

With these operations, the elements of Au1 ∪Au2 ∪· · ·∪Aug can be scanned,
similarly to how First(s) and Next(e) scan a set in the partition.

Has many(u) Returns False if and only if bunch Uu consists of precisely one set.
Extract set(u) Let Uu = {Au1 , Au2 , . . . , Aug} be a bunch. If g = 1, then this

operation returns zero without changing anything. Otherwise, it selects some
i, introduces a new bunch {Aui}, removes Aui from Uu, and returns ui. The
chosen i is such that if Uu has a unique biggest set, then it is not Aui .

Left neighbour (e) and Right neighbour (e) If the partition consists of one set,
then both of these return zero. Otherwise, at least one of them returns an
element that is not currently in the same set as e, but was in the same set
until the most recent splitting of the set. The other one may return zero or
an element. The motivation for these operations is explained in Section 4.

The implementation of the services is illustrated in Figure 1, and shown in
Figures 2 and 3. We will soon discuss the implementation of the most complicated
operations. The variables sets and bunches tell the numbers of sets and bunches.
The implementation uses them and the following arrays:

Bisimilarity Minimization in O(m log n) Time 129

Size(s)

return end [s] − first [s]

Set(e)

return sidx [e]

First(s)

return elems[first [s]] /* Certainly exists, because the Ai are non-empty */

Next(e)

if loc[e] + 1 ≥ end [sidx [e]] then return 0 else return elems[loc[e] + 1]

Mark1(e)

s := sidx [e]; � := loc[e]; m := mid1[s]
if m ≤ � < mid2[s] then

mid1[s] := m + 1
elems[�] := elems[m]; loc[elems[�]] := �; elems [m] := e; loc[e] := m

Mark2(e)

s := sidx [e]; � := loc[e]; m := mid2[s] − 1
if mid1[s] ≤ � ≤ m then

mid2[s] := m
elems[�] := elems[m]; loc[elems[�]] := �; elems [m] := e; loc[e] := m

Split1(s)

if mid1[s] = mid2[s] then mid1[s] := first [s]
if mid1[s] = first [s] then return 0
else

sets := sets + 1; uidx [sets] := uidx [s]
first [sets] := first [s]; end [sets] := mid1[s]; first [s] := mid1[s]
mid1[sets] := first [sets]; mid2[sets] := end [sets]
for � := first [sets] to end [sets] − 1 do sidx [elems[�]] := sets
return sets

Split2(s)

if mid1[s] = mid2[s] then mid2[s] := end [s]
if mid2[s] = end [s] then return 0
else

sets := sets + 1; uidx [sets] := uidx [s]
first [sets] := mid2[s]; end [sets] := end [s]; end [s] := mid2[s]
mid1[sets] := first [sets]; mid2[sets] := end [sets]
for � := first [sets] to end [sets] − 1 do sidx [elems[�]] := sets
return sets

No marks(s)

if mid1[s] = first [s] ∧ mid2[s] = end [s] then return True else return False

Fig. 2. Main features of the refinable partition data structure

elems Contains 1, 2, . . . , items in such an order that elements that belong to the
same set are one after another. It is also the case that the sets that belong
to the same bunch are one after another in elems .

130 A. Valmari

Bunch(s)

return uidx [s]

Bunch first(u)

return elems[ufirst [u]]

Bunch next(e)

if loc[e] + 1 ≥ uend [uidx [sidx [e]]] then return 0 else return elems[loc[e] + 1]

Has many(u)

if end [sidx [elems[ufirst [u]]]] �= uend [u] then return True else return False

Extract set(u)

s1 := sidx [elems [ufirst [u]]]; s2 := sidx [elems[uend [u] − 1]]
if s1 = s2 then return 0
else

bunches := bunches + 1
if Size(s1) ≤ Size(s2) then ufirst [u] := end [s1] else uend [u] := first [s2]; s1 := s2

ufirst [bunches] := first [s1]; uend [bunches] := end [s1]; uidx [s1] := bunches
return s1

Left neighbour (e)

� := first [sidx [e]]; if � > 1 then return elems[� − 1] else return 0

Right neighbour (e)

� := end [sidx [e]]; if � ≤ items then return elems[�] else return 0

Fig. 3. Bunch- and neighbour-features of the refinable partition data structure

first and end Indicate the segment in elems where the elements of a set are
stored. That is, As = { elems[f], elems [f + 1], . . . , elems [� − 1] }, where
f = first [s] and � = end [s].

mid1 and mid2 Let f and � be as above, and let m1 = mid1[s] and m2 =
mid2[s]. Then A1

s = { elems [f], . . . , elems [m1 − 1] }, the unmarked elements
are elems [m1], . . . , elems [m2 − 1], and A2

s = { elems[m2], . . . , elems [�− 1] }.
loc Tells the location of each element in elems , that is, elems [loc[e]] = e.
sidx The index of the set that e belongs to is sidx [e]. That is, e ∈ Asidx [e].
uidx The index of the bunch that As belongs to is uidx [s]. That is, As ∈ Uuidx [s].
ufirst and uend The union of the sets in bunch Uu is { elems [f], elems [f + 1],

. . . , elems [� − 1] }, where f = ufirst[u] and � = uend [u].

To avoid marking the same element more than once, Mark1(e) first tests that
the element e is in the segment for unmarked elements of the set that contains
e. If it is, then Mark1 swaps the element with the first unmarked element, and
moves the borderline between 1-marked and unmarked elements one location
forward. The loc array is updated according to the new locations of the swapped
elements. Mark2 works similarly, but with the last unmarked element.

If set s does not contain 1-marked elements, Split1(s) returns zero and ter-
minates on its second line. If it does not contain unmarked elements, the first
line unmarks all 1-marked elements, leading to termination on the second line.
Otherwise Split1 adjusts the number of sets and the set boundaries so that the

Bisimilarity Minimization in O(m log n) Time 131

1-marked elements become a new set whose all elements are unmarked. The
second statement on line 4 makes the new set a member of the same bunch as
the original set. The for-loop updates the set index of the 1-marked elements to
refer to the new set. Split2 works similarly with 2-marked elements.

Has many(u) finds the end location of the set that the first element of bunch
u belongs to, and tests if it is different from the end location of the bunch.

Extract set(u) first finds the indices of the first and last set in bunch u. If
they are the same, the bunch consists of only one set, and Extract set returns
zero. Otherwise Extract set chooses the smaller of the two sets, removes it from
the bunch, and makes a new bunch of it.

Left neighbour (e) returns the element that is immediately before the set that
contains e in elems , or zero, if the set is the first set in elems . Right neighbour
works similarly at the opposite end of the set.

The time consumption of initializing the data structure with the partition that
consists of one set is linear in items . The operations obviously run in constant
time, except Split1 and Split2. Fortunately amortized analysis reveals that they,
too, can be treated as constant time in the analysis of the algorithm as a whole.
Their running times are proportional to the number of Mark1- and Mark2-
operations executed after the previous splitting. Thus the total cost does not
change, even if the split operations are only charged constant cost.

4 The Algorithm

In this section the new bisimilarity minimization algorithm is described. Its
operation and asymptotic time consumption are discussed at an informal level.
Detailed correctness and performance proofs are deferred to Section 5.

It is assumed that states and labels are represented with numbers. That is,
S = {1, 2, . . . , n} and L = {1, 2, . . . , α}. We have Δ ⊆ S × L × S and m = |Δ|,
that is, there are m transitions. Let I = {S1, S2, . . . , Sk} denote the initial
partition of S. The input to the algorithm consists of n, α, Δ, and S2, . . . , Sk.
The set S1 need not be given, because it is S − (S2 ∪ · · · ∪ Sk).

Let Δa,B = Δ ∩ (S × {a} × B) and Δs,a,B = Δ ∩ ({s} × {a} × B). That is,
Δa,B is the set of those transitions whose label is a and whose end state is in B.
Adding the requirement that the start state must be s converts Δa,B to Δs,a,B.

It is assumed that transitions are represented via three arrays tail , label ,
and head . Each transition (s, a, s′) has an index t in the range 1, . . . , m such
that tail [t] = s, label [t] = a, and head [t] = s′. It is also assumed that the
indices of the transitions that share the same head state s are available via
In transitions [s] in some unspecified order. It may be implemented similarly
to elems , first , and end , and initialized in Θ(m + n) time with counting sort.
For convenience, confusing the transitions with their indices will be allowed in
formulae, like in In transitions [s] = { (s1, a, s2) ∈ Δ | s2 = s }.

For keeping track of work to be done, the algorithm uses four worksets. In
the prototype implementation, stacks were used as the worksets. However, they
need not be stacks. It suffices that they provide three constant time operations:

132 A. Valmari

Add(e) that adds the element e to the workset without checking whether it
already is there, Remove that removes any element of the workset and returns
the removed element, and Empty that returns True if and only if the workset
is empty. The capacity of a workset is the maximum number of elements it can
store.

The algorithm uses the following data structures:

Blocks . This is a refinable partition data structure on {1, . . . , n}. Its sets are the
blocks. The index of the set in Blocks is used as the index of the block also
elsewhere in the algorithm.

Splitters. This is a refinable partition data structure on {1, . . . , m}. Each set
in it consists of the indices of the a-labelled input transitions of some block
B, for some label a. That is, Splitters = {Δa,B | a ∈ L ∧ B ∈ Blocks ∧
Δa,B �= ∅ }. That this property remains valid is not obvious from the code,
so it will be proven later as Lemma 1 (1). The bunch feature of Splitters will
be used. When saying that a transition is in a bunch it is meant that the
bunch contains a splitter that contains the transition.

Outsets. This, too, is a refinable partition data structure on {1, . . . , m}, but it
stores a finer partition than Splitters . Transitions that are in the same set
of Outsets also share their start state. That is, Outsets = {Δs,a,B | s ∈ S ∧
a ∈ L ∧ B ∈ Blocks ∧ Δs,a,B �= ∅ }. This will be proven as Lemma 1 (2).

Unready Bunches. This is an initially empty workset of capacity �m/2�. It con-
tains the indices of the bunches of Splitters that consist of two or more
splitters. This will be proven as Lemma 1 (3).

Touched Blocks . This is an initially empty workset of capacity n. It contains the
indices of the blocks that have been affected when using a splitter, but have
not yet been split. In other words, precisely those blocks contain marked
states.

Touched Splitters and Touched Outsets. These are initially empty worksets of
capacity m. They contain the indices of the sets in Splitters and Outsets,
respectively, that must be updated, because the block where their transitions
end has been split. In other words, precisely those splitters or outsets contain
marked transitions.

Before discussing the main algorithm, it is useful to introduce the Update sub-
routine that is shown in Figure 4. Each time a block has been split, it is necessary
to split sets in Splitters and Outsets accordingly, to keep them consistent with
Blocks in the above-mentioned sense. The updating of Splitters may make it nec-
essary to update Unready Bunches , to maintain its above-mentioned relation to
Splitters . These duties are taken care of by Update.

When Update is called, b and b′ contain the indices of the halves of the block
that has just been split. Both halves must be non-empty.

To understand Update, let us first discuss what happens to a single set in
Outsets and temporarily ignore the rest. Update chooses one of the halves of the
block that has just been split, and marks those transitions of the outset that end
in the chosen half. (The implementation of this will be discussed soon.) If there

Bisimilarity Minimization in O(m log n) Time 133

Update(b, b′)
1 if Blocks .Size(b) ≤ Blocks .Size(b′) then s := Blocks .First(b)
2 else s := Blocks .First(b′)
3 while s �= 0 do
4 for t ∈ In transitions [s] do
5 p := Splitters .Set(t); o := Outsets .Set(t)
6 if Splitters .No marks(p) then Touched Splitters .Add(p)
7 if Outsets .No marks(o) then Touched Outsets .Add(o)
8 Splitters .Mark1(t); Outsets .Mark1(t)
9 s := Blocks .Next(s)

10 while ¬Touched Splitters .Empty do
11 p := Touched Splitters .Remove
12 u := Splitters .Bunch(p); if Has many(u) then u := 0
13 p′ := Splitters .Split1(p); if u �= 0 ∧ p′ �= 0 then Unready Bunches .Add(u)
14 while ¬Touched Outsets .Empty do
15 o := Touched Outsets .Remove ; o′ := Outsets .Split1(o)

Fig. 4. The Update subroutine

are no such transitions, then nothing happens to the outset. Otherwise, after the
marking phase, Update calls the split operation on the outset. If all transitions of
the outset were marked, then the split operation just unmarks them. Otherwise,
it divides the outset to two halves, those transitions that were marked and
those that were not, and unmarks all of its transitions. As a consequence, if
all transitions of the outset end in the same half-block, then Update does not
modify the outset; otherwise, it divides it to two outsets according to in which
half-block its transitions end.

To obtain good performance, Update updates all outsets in one batch. On
lines 1 and 2, Update finds the first state in the smaller half-block. As will
be discussed later, the performance of the algorithm depends on choosing the
smaller half. On lines 3 to 9, s scans through the states in the chosen half,
and t scans the input transitions of s on lines 4 to 8. Transitions in the outsets
are marked on line 8. The indices of the outsets whose transitions are marked
are collected into Touched Outsets. The test on line 7 ensures that the index
is added to Touched Outsets only once. The test works, because it is executed
before the transition is marked. Lines 14 and 15 pick each outset that contains
marked transitions one at a time, and splits it.

The processing of Splitters is otherwise similar to Outsets, but it contains an
additional step on lines 12 and 13. Line 13 may increase the number of splitters in
the bunch that contains p. If it is increased from one to two, then the bunch index
must be added to Unready Bunches , to maintain the property that it contains
the indices of precisely those bunches that consist of more than one splitter. If
line 13 does not actually split p, the test p′ �= 0 fails and Unready Bunches is
not changed. If the bunch is already in Unready Bunches , then u becomes zero
on line 12 and Unready Bunches is not changed. The code is a bit complicated,
because Has many must be executed before p is split.

134 A. Valmari

Main part

16 initialize Blocks to {S} and Splitters to {Δa,S | a ∈ L ∧ Δa,S �= ∅ }
17 make every set of Splitters a singleton bunch
18 initialize Outsets to {Δs,a,S | s ∈ S ∧ a ∈ L ∧ Δs,a,S �= ∅ }
19 for i := 2 to k do
20 for s ∈ Si do Blocks .Mark1(s)
21 b := Blocks .Split1(1); Update(1, b)
22 for u := 1 to Splitters .bunches do
23 t := Splitters .Bunch first(u)
24 while t �= 0 do
25 s := tail [t]; b := Blocks .Set(s)
26 if Blocks .No marks(b) then Touched Blocks.Add(b)
27 Blocks .Mark1(s); t := Splitters .Bunch next(t)
28 while ¬Touched Blocks .Empty do
29 b := Touched Blocks .Remove
30 b′ := Blocks .Split1(b); if b′ �= 0 then Update(b, b′)
31 while ¬Unready Bunches .Empty do
32 u := Unready Bunches .Remove ; p := Splitters .Extract set(u)
33 if Splitters .Has many(u) then Unready Bunches .Add(u)
34 t := Splitters .First(p)
35 while t �= 0 do
36 if t = Outsets .First(Outsets .Set(t)) then
37 s := tail [t]; b := Blocks .Set(s)
38 if Blocks .No marks(b) then Touched Blocks .Add(b)
39 t1 := Outsets .Left neighbour(t); t2 := Outsets .Right neighbour (t)
40 if t1 > 0 ∧ tail [t1] = s ∧ Splitters .Bunch(Splitters .Set(t1)) = u
41 ∨ t2 > 0 ∧ tail [t2] = s ∧ Splitters .Bunch(Splitters .Set(t2)) = u
42 then Blocks .Mark1(s) else Blocks .Mark2(s)
43 t := Splitters .Next(t)
44 while ¬Touched Blocks .Empty do
45 b := Touched Blocks .Remove
46 b′ := Blocks .Split1(b); if b′ �= 0 then Update(b, b′)
47 b′ := Blocks .Split2(b); if b′ �= 0 then Update(b, b′)

Fig. 5. Main part of the bisimilarity minimization algorithm

Touched Splitters and Touched Outsets are always empty when Update is
started, because they are initially empty, not used elsewhere, and Update leaves
them empty. The number of Remove-operations on them is thus the same as
the number of Add -operations. The cost of each split-operation is linear in the
number of the corresponding mark-operations. Other individual operations in
Update take constant time. Therefore, its execution time is dominated by lines 3
to 9. It is thus linear in the sum of the number of states in the scanned half-block
and the total number of their input transitions.

The main algorithm is shown in Figure 5. It starts by initializing Blocks ,
Splitters , and Outsets on lines 16 to 18 according to the situation where there
is only one block, and each splitter constitutes alone a bunch. Unready Bunches
is initially empty. This is consistent with the effect of line 17.

Bisimilarity Minimization in O(m log n) Time 135

The time consumption of the initialization is not otherwise a problem, but
the initialization of Splitters and Outsets requires putting the transitions in a
suitable order in Splitters .elems and Outsets.elems . Sorting the transitions with
heapsort would take Θ(m log m) time in the worst case, which is more than is
allowed. Sorting them with counting sort using the label as the key would take
Θ(m + α) time and memory. That is too much, when α = ω(m log n). There
is a trick with which the transitions can be classified according to their labels
in Θ(m) time and Θ(m + α) memory. It is based on [1, Exercise 2.12] and
was applied to the present purpose in [12]. The resulting order is suitable for
Splitters . Counting sorting the transitions with the start state as the key before
using the trick makes the resulting order suitable also for Outsets, and only takes
Θ(n + m) = Θ(m) extra time and memory.

Lines 19 to 21 split the original block according to the initial partition given
in the input, and update the other data structures accordingly. In the beginning
of line 21, block 1 is S1∪Si ∪Si+1∪· · ·∪Sk. The split operation extracts Si and
makes it block b. Because the Si constitute a partition, none of them is empty.
Therefore, the half-blocks 1 and b are both non-empty when Update is called.

Now blocks have to be split until the partition is compatible. As has been
discussed above, the sets in Splitters correspond precisely to the non-empty
Δa,B, where a is a label and B is a block. Therefore, the splitting obligation
introduced by a and B can be met by marking the start states of the transitions
in the corresponding splitter and then splitting the blocks that contain marked
states.

To keep track of pending splitting obligations, the algorithm uses the bunches
of Splitters together with Unready Bunches . The bunches are used largely in the
same way as compound blocks were used in [11].

The algorithm first establishes and then maintains the property that if two
states are in the same block, then, for each bunch in Splitters, either none or
both of them have an output transition in the bunch. This invariant is crucial for
performance, as it allows to skip a largest splitter in the bunch when splitting.

The test on line 31 implies that when the algorithm terminates, each bunch
consists of a single splitter. Therefore, upon termination, if two states are in the
same block, then, for each splitter, either none or both of them have an output
transition in the splitter. This means that all splitting obligations have been
satisfied. In other words, for all states s1, s2, and s′1, labels a, and blocks B and
B′, if s1 −a→ s′1 and s1 ∈ B and s2 ∈ B and s′1 ∈ B′, then s1 has an output
transition in the splitter that corresponds to Δa,B′ , so also s2 has, implying that
there is some s′2 ∈ B′ such that s2 −a→ s′2. That is, the partition is compatible.

The for-loop on lines 22 to 30 establishes the above-mentioned property. For
each bunch, it splits the blocks so that the property starts to hold. Each cycle
around the for-loop processes Blocks similarly to the processing of Outsets in
Update. On lines 23 to 27, the start states of the transitions in the bunch are
marked, and the indices of the blocks that contain marked states are collected
into Touched Blocks . Touched Blocks is discharged on lines 28 to 30 by splitting

136 A. Valmari

the touched blocks. For each splitting, if both halves are non-empty, then Update
is called, to keep the other data structures consistent with Blocks .

Lines 22 to 30 actually separate the states according to the labels of their
output transitions. This is because bunches have not yet been divided after their
initialization, although splitters in them may have. Each bunch thus contains
precisely the a-labelled transitions for some label a. Therefore, lines 22 to 30
separate two states if and only if, for some label a, one of them has and the
other does not have an a-labelled output transition.

Lines 31 to 47 discharge Unready Bunches while maintaining the above-
mentioned property. On line 32, one bunch is chosen for processing, and a splitter
is extracted from it. If the remaining part of the bunch still contains more than
one splitter, line 33 puts it back to Unready Bunches , in accordance with the
main property of Unready Bunches .

To re-establish the above-mentioned property, it may be necessary to separate
two states because only one of them has an output transition in the remaining
bunch u, or because only one of them has an output transition in the extracted
splitter p (which is now a bunch on its own). This means that states of each
block have to be separated into three groups: those that have output transitions
only in p, only in u, or in both. Lines 34 to 47 do that according to a pattern
that we have seen twice before. We now discuss what is new on those lines.

The first novelty is the test on line 36. All transitions in the same set of
Outsets have the same start state. They also have the same left neighbour and
the same right neighbour in the sense of line 39. So they all have the same effect
on line 42. Therefore, it suffices to investigate only one of them on lines 37 to 42.
This is what the test on line 36 achieves. The test is an optimization that affects
neither correctness nor asymptotic time consumption, but improves practical
time consumption.

The second novelty is the splitting of blocks into three parts, and the test on
lines 40 and 41 that controls the splitting. We claim that a state s that has an
output transition in p or u is 1-marked, is 2-marked, or remains unmarked, if it
has an output transition in both p and u, only in p, or only in u, respectively.
Because t scans p, s is marked in some way if and only if it has an output transi-
tion in p. If s is 1-marked, then t1 or t2 is its output transition in u. It remains to
be shown that if a marked s has an output transition in u, then t1 or t2 is such
a transition. For each s and a, the order of the Δs,a,B in Outsets.elems is the
same as the order of the Δa,B in Splitters .elems , because the algorithm updates
Splitters and Outsets in a similar way. As a consequence, the output transitions
of s that are in p or u are contiguously in Outsets.elems . Thus Left neighbour
or Right neighbour or both find an output transition in u, if any exists.

Thanks to three issues, the algorithm runs in O(m log n) time. The first is
Hopcroft’s trick [7]: because Extract set tries two splitters and extracts the
smaller of them, each time when a transition is used for splitting blocks, it
belongs to a splitter whose size is at most half the size in the previous time. All
transitions in a splitter have the same label, so there can be at most n2 of them.

Bisimilarity Minimization in O(m log n) Time 137

Thus each transition can be used at most log2 n2 = 2 log2 n times for splitting.
Bunches were needed to make it legal to skip the largest splitter.

The second is Knuutila’s trick [9]: because Update chooses the smaller half-
block, each time when a state is used for updating splitters and outsets, it belongs
to a block whose size is at most half the size in the previous time. Thus each
state can be used at most log2 n times for updating.

The third issue is from [12]. It is the organisation of the work in such a way
that the set of labels is never scanned. Instead, subsets of transitions are scanned
so that if there are no transitions for some label, then no work is done for that
label. Failure to obey this principle would easily introduce an Ω(nα) term to
time consumption.

5 Detailed Proofs

The previous section explained the principle of the algorithm. In this section,
detailed proofs of its correctness and performance are presented.

As is obvious from earlier discussion, it is important that Splitters and Outsets
are consistent with Blocks , and Unready Bunches is consistent with Splitters .
The duty of the Update subroutine is to re-establish consistency each time Blocks
has changed. Let us state this precisely, and check that also the main algorithm
maintains consistency where necessary.

Lemma 1. The following hold everywhere after line 18, except (1) and (2) on
lines 21, 30, 46, and 47 and within Update, and (3) on lines 32, 33, and 13.

(1) For any two transitions, they are in the same set in Splitters if and only if
they have the same label and they end in the same set in Blocks.

(2) For any two transitions, they are in the same set in Outsets if and only if
they have the same start state and the same label, and they end in the same
set in Blocks. This is equivalent to that they have the same start state and
belong to the same set in Splitters.

(3) Unready Bunches contains the indices of precisely those bunches of splitters
that contain two or more splitters.

Proof. The main algorithm starts by initializing Blocks , Splitters , and Outsets
on lines 16 to 18 according to the situation where there is only one block. This
makes (1) and (2) hold. It also makes (3) hold, because Unready Bunches is
initially empty and line 17 makes each bunch of splitters to consist of a single
splitter. From then on, each time a block has been split (lines 21, 30, 46, and 47)
resulting in two non-empty sub-blocks, Update is called with the two halves as the
parameters. It splits Splitters and Outsets so that (1) and (2) are re-established.

The number of splitters in a bunch grows only on line 13. It has already been
discussed. The number of splitters in a bunch decreases only on line 32. It re-
moves the bunch from Unready Bunches and removes a splitter from the bunch.
Line 33 checks whether the bunch should have remained in Unready Bunches ,
and puts it back there if necessary. The removed splitter becomes a bunch of its
own. It is a singleton bunch, so it is not added to Unready Bunches . ��

138 A. Valmari

The test on lines 40 to 42 is tricky enough to deserve a lemma of its own.

Lemma 2. If line 42 1-marks state s, then s has an outgoing transition in bunch
u. If line 42 2-marks s, then s does not have an outgoing transition in u.

Proof. If line 42 1-marks s, then t1 or t2 is clearly such a transition.
Assume now that such a transition t′ exists. The state s has been found on

line 37 via some t. Immediately before the extract operation on line 32 both t
and t′ were in u. So, by lines 16 and 17, they have the same label, say a. Let B
and B′ be the blocks where t and t′ end. So B �= B′, t ∈ Δs,a,B, and t′ ∈ Δs,a,B′ .

Let X � Y denote that the elements of set X occupy at most as big indices
in the elems array in question as the elements of set Y .

Assume first that Δs,a,B � Δs,a,B′ . Thanks to line 18, if Δs,a,B � Δs′′,a′′,B′′

� Δs,a,B′ , then s′′ = s and a′′ = a. Therefore, t2 �= 0 and t2 is in some Δs,a,B′′ ,
where B′′ �= B. The operation of Update implies that Δa,B � Δa,B′′ � Δa,B′

in Splitters .elems . Because Extract set extracted Δa,B from one end of u while
Δa,B′ stayed in u, also Δa,B′′ was and stayed in u. As a consequence, t2 is in u
and passes the test on line 41. So s is 1-marked.

The case Δs,a,B′ � Δs,a,B is symmetric with t1 replacing t2. ��

The next lemma says that the algorithm does not do any splitting that it should
not.

Lemma 3. If the algorithm puts two states in different blocks, then those states
belong to different blocks in each partition that is a refinement of I and compat-
ible with Δ.

Proof. If two states go into different blocks on line 21, then they are in different
blocks in I.

When lines 22 to 30 are executed, the bunches of splitters still contain the
same transitions as originally, although they may have been divided into many
splitters. Thus each execution of lines 23 to 27 scans some Δa,S . Therefore, if
line 30 separates two states, then one of them has and the other does not have
an outgoing a-transition.

The case remains where line 46 or 47 puts the states into different blocks.
Assume that s1 is moved to a new block on line 46 and s2 on line 47, while
s0 stays in the original block. By Lemma 1 (1), there is some B ∈ Blocks and
a ∈ L such that s1 and s2 have but s0 does not have an a-transition to B. (B
is the block and a is the label that correspond to the splitter that is scanned on
lines 34 to 43.) It is thus necessary to separate s0 from s1 and s2 to obtain a
compatible partition.

By Lemma 2, s1 has and s2 does not have an output transition that belongs
to u. Let a be the label and B′ the end block of that transition of s1. Then s1

has and s2 does not have an a-transition that ends in B′. So it is correct to put
s1 and s2 into different blocks. ��

The next lemma says that the algorithm does all the splitting that it should.

Bisimilarity Minimization in O(m log n) Time 139

Lemma 4. When the algorithm terminates, Blocks is a refinement of I and
compatible with Δ.

Proof. Lines 19 to 21 ensure that Blocks will be a refinement of I. The rest of
the proof is based on the following Gries-style [6] invariant.

On line 31, for every states s1 and s2 that are in the same block, transi-
tion t1 that starts at s1, and bunch of splitters u that contains t1, there
is a transition t2 that starts at s2 and is in u.

Lines 22 to 30 make the invariant hold by separating s1 to a different block from
s2, if t2 does not exist.

The constituents of the invariant may change only when a block is split or the
set of transitions in a bunch is modified. Splitting a block is not a threat to the
invariant (merging blocks would be, but the algorithm does not do that). Only
Extract set modifies the set of transitions in a bunch, and the only place where
it is executed is line 32. There a bunch is divided to a new singleton bunch that
consists of the splitter p, and u that contains the rest of the original bunch.

The purpose of lines 34 to 47 is to split blocks into up to three parts according
to the existence of an output transition in p but not in u, in u but not in p, and
in both. If s does not have an output transition in p, then it stays in its block.
In the remaining two cases, by Lemma 2 it is put in a different block on line 46
or 47 depending on which case holds. So the invariant is re-established.

Lemma 1 (3) implies that when the algorithm terminates, every bunch consists
of precisely one splitter. Then the invariant actually says that for every states s1

and s2 that are in the same block, transition t1 that starts at s1, and splitter p
that contains t1, there is a transition t2 that starts at s2 and is in p. By Lemma 1
(1), this is equivalent to that Blocks is compatible with Δ. ��
The efficiency of the algorithm is stated in the next lemma.

Lemma 5. The algorithm runs in O(m log n) time and O(m + α) memory (as-
suming that n ≤ 2m).

Proof. All data structures consume O(n), O(m), or O(α) memory. The running
time of lines 16 to 18 was discussed in Section 4. Excluding the time spent in the
loops within Update, lines 19 to 21 are obviously O(n) and lines 22 to 30 Θ(m).

Because Extract set avoids choosing the largest set, each splitter that is used
as the p on lines 32 to 47 inherits at most half of the transitions of the bunch from
which it is extracted. The splitter becomes a new bunch. As a consequence, when
any transition is used anew for splitting a block, it belongs to a splitter whose
size is at most half the size in the previous time. Initially a splitter contains at
most n2 transitions. So the same transition can be used at most 2 log2 n times.
Therefore, lines 36 to 43 and 45 to 47 are executed at most 2m log2 n times.
Because splitters are not empty, lines 32 to 34 are executed at most the same
number of times as line 36, and lines 35 and 44 at most twice that many times.
Line 31 is executed once more than line 32.

140 A. Valmari

By now the act of calling Update has been taken into account in the analysis,
but the execution of Update has not. Lines 1 and 2 determine whether b or b′

is scanned. If b′ is scanned, then each scanned state was marked on line 20,
27, or 42. Otherwise other states are scanned, but their number is at most the
same. So the n, m, or 2m log2 n bound applies to line 9. Whenever lines 5 to 8
are executed anew for some t, the test on lines 1 and 2 guarantees that head [t]
belongs to a block whose size is at most half of the size in the previous time. This
implies an m log2 n upper bound. Lines 11 to 13 and 15 are executed at most as
often as line 5. So every line of the algorithm meets the O(m log n) bound. ��
(It is indeed the case that the reasons why lines 8 and 9 meet the time bound are
different. Each of them may execute more often than the other, as In transitions [s]
may be empty for many s. A similar issue was discussed in [9].)

Corollary 1. The algorithm solves the bisimilarity minimization problem in
O(m log n) time and O(m + α) memory (assuming that n ≤ 2m).

6 Experience with a Prototype Implementation

For the purpose of testing the new algorithm and getting an idea of its perfor-
mance, the present author implemented it in C++. No reference implementation
was available for the general problem, but, thanks to [12], two comparable pro-
grams were available for the special case of DFA minimization. Therefore, a
pre-processing stage was added that removes unreachable states, and non-initial
states from which no state in S1 is reachable. This made the new program appli-
cable as such both to DFA minimization and to bisimilarity minimization with
at most two initial blocks.

The author tested the correctness of his implementation first by giving an
extensive set of randomly generated DFAs to the new and the reference program,
and checking that the outputs were isomorphic. Then he tested the new program
with more than 300 randomly generated nondeterministic graphs of various sizes
and densities. Unfortunately, in the nondeterministic case there is no reference
program, no straightforward way to check isomorphism, nor other simple way of
fully checking the output. Therefore, each nondeterministic graph was given to
the program in four different versions, and it was checked that the four outputs
had the same number of states and the same number of transitions. Two of the
versions were obtained by randomly permuting the numbering of states in the
original version, and the first output was used as the fourth input.

Timing measurements were conducted by Petri Lehtinen and executed on
a PC with Linux and 1 gigabyte of memory. A sample of results with ran-
domly generated nondeterministic graphs is shown in Table 1. Each entry shows
the fastest and slowest of three measurements, made with |S1| = n/2 + d and
|S2| = n/2− d, where d ∈ {−1, 0, 1}. The times are shown in seconds. The clock
was started when the input file had been read, and stopped when the program
was ready to start writing the output file. No attempt was made to optimize
the implementation to the extreme. In particular, all instances of the refinable

Bisimilarity Minimization in O(m log n) Time 141

Table 1. Running time with nondeterministic input containing two initial blocks

n α m = 20 000 m = 50 000 m = 100 000 m = 200 000 m = 500 000 1 000 000

1 000 10 0.017 0.017 0.043 0.044 0.119 0.123 0.092 0.365 0.257 0.260 0.539 0.547
1 000 100 0.021 0.022 0.084 0.088 0.251 0.255 0.501 0.505 1.016 1.025 2.330 2.402

10 000 10 0.005 0.005 0.027 0.027 0.074 0.079 0.505 0.512 1.404 1.456 2.926 2.983

partition data structure contained also the arrays and functionality (like the
bunches) that the particular instance does not need.

Because it is difficult to generate a precise number of transitions according to
the uniform distribution, sometimes the generated number was slightly smaller
than the desired number. Running time depends also on the size of the result: the
smaller it is, the less splitting of blocks. It is also very difficult to get full control
of all other activity that is going on in a modern computer. As a consequence, the
measurements contain some noise. The results should be considered as typical,
not as the absolute truth.

When m is big enough compared to nα, each state is likely to have an output
transition with every label to both a state in S1 and in S2, causing the graph
to minimize to 2 states and 4α transitions, while with a smaller m the graph
does not reduce much. This explains the anomaly with n = 1 000, α = 10, and
m = 200 000. The row n = 10 000 is subject to another, smoother phenomenon
that unduly reduces execution time: when m is small, many states are removed
in the pre-processing stage as unreachable from the initial state or as unable to
reach any final state. Altogether, the issue of precise running time is complicated.

7 Conclusions

The algorithm in this paper looks complicated. To some extent it is because it
was presented in great detail. A significant part of its implementation could be
obtained by copying the pseudocode in the figures and the definitions of arrays
in the main text, and converting them to the programming language in ques-
tion. This is how the author implemented the prototype. Algorithm descriptions
in research papers (like [11]) are often so sketchy that they are very hard to
implement. The author wanted this not to be the case with the present paper.

Only one of the instances of the refinable partition data structure used by the
algorithm uses Mark2 and Split2, and only one uses the bunch feature. These
features are supported by additional arrays. Leaving them out from the instances
that do not use them would improve the performance of the prototype.

The neighbour trick on lines 39 to 41 and Lemma 2 is ugly, because it breaks
the otherwise clean abstract interface of the data structure. It also made it
necessary to introduce Outsets and Touched Outsets. In [11], a similar problem
was solved by keeping track of how many transitions to each compound block
each state has. Finding the appropriate counter quickly enough is not trivial, so
the technique is somewhat complicated. It is plausible that something similar
could have been done in the new algorithm. We leave it for the future to find
out if it would work and be better than the chosen approach.

142 A. Valmari

In verification of concurrent systems, it is common to use equivalence notions
that abstract away from invisible actions. Bisimilarity does not do that. However,
it preserves all commonly used equivalences. Therefore, the new algorithm can
be used as a preprocessing stage that makes the graph smaller before it is given
to a reduction or minimization algorithm of the equivalence in question. Because
the new algorithm is cheap compared to most algorithms for other equivalences,
this kind of preprocessing may save a lot of time in practice.

When minimizing with respect to observation equivalence by saturating the
graph and then running bisimilarity minimization [8], the growth in the number
of transitions caused by saturation is a problem. A natural, but apparently
difficult, topic for future research is whether saturation could be replaced by
adding suitable graph traversal to the new algorithm, without losing too much
of its good performance.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing Finite Kripke Struc-
tures in Propositional Temporal Logic. Theoret. Comput. Sci. 59, 115–131 (1988)

3. Dovier, A., Piazza, C., Policriti, A.: An Efficient Algorithm for Computing Bisim-
ulation Equivalence. Theoret. Comput. Sci. 311, 221–256 (2004)

4. Fernandez, J.-C.: An Implementation of an Efficient Algorithm for Bisimulation
Equivalence. Science of Computer Programming 13, 219–236 (1989/1990)

5. Gries, D.: Describing an Algorithm by Hopcroft. Acta Inform. 2, 97–109 (1973)
6. Gries, D.: The Science of Programming. Springer, Heidelberg (1981)
7. Hopcroft, J.: An n log n Algorithm for Minimizing States in a Finite Automaton.

Technical Report CS-190, Stanford University (1970)
8. Kanellakis, P., Smolka, S.: CCS Expressions, Finite State Processes, and Three

Problems of Equivalence. In: 2nd ACM Symposium on Principles of Distributed
Computing, pp. 228–240 (1983)

9. Knuutila, T.: Re-describing an Algorithm by Hopcroft. Theoret. Comput. Sci. 250,
333–363 (2001)

10. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

11. Paige, R., Tarjan, R.: Three Partition Refinement Algorithms. SIAM J. Com-
put. 16(6), 973–989 (1987)

12. Valmari, A., Lehtinen, P.: Efficient Minimization of DFAs with Partial Transition
Functions. In: Albers, S., Weil, P. (eds.) STACS 2008, Symposium on Theoretical
Aspects of Computer Science, Bordeaux, France, pp. 645–656 (2008),
http://drops.dagstuhl.de/volltexte/2008/1328/

http://drops.dagstuhl.de/volltexte/2008/1328/

	Bisimilarity Minimization in $O(mlog n)$ Time
	Introduction
	Background
	A Refinable Partition Data Structure
	The Algorithm
	Detailed Proofs
	Experience with a Prototype Implementation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

