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1 Introduction

The application of propositional temporal logic (PTL) in Computer Science has been extensively studied
over the past decade. In particular, it has been shown to be a most useful tool for specifying and verifying
safety and liveness properties of concurrent systems, see for example [MP81, Lam83, CES83]. Unfortu-
nately, for several applications PTL is not expressive enough. In [SCFG82], for example, it is shown that
PTL can not specify the behaviour of an unbounded FIFQO buffer with indistinct messages. Although PTL
is in this sense weak, the language is still attractive from a specification and verification standpoint; it is,
after all, decidable. Notwithstanding this, it is natural to search for “decidable extensions”. Several such
“decidable extensions” for PTL have been examined and here we mention three in particular,

1. Pierre Wolper, [Wol83], noted that it was not possible to express in PTL the fact that a proposition
had to be true on every even moment. He gave a simple way of extending PTL, by basing logics
on regular grammars, and obtained a family of temporal logics, referred to as ETL. He showed that
ETL languages are decidable and that the family has the expressiveness of wRE.

2. In [BKP84] where a technique for achieving compositional temporal semantics and proof systems
for concurrent languages based on shared variables is presented, PTL. was modified to handle finite
sequences as models. In particular a chop operator, C, was introduced to compose sequentially
two finite sequences.! Furthermore, an iterated version of chop, C* was also used to simplify the
temporal description of while loops. Issues of decidability and an axiomatisation of PTL + € have
been considered in the thesis [Ros85].

3. Also, in [BKP84, BKPRS5, BKP86] PTL is further extended with fixed point notation to name directly
maximal and minimal solutions to temporal equations. The requirement for such solutions arises nat-
urally when we look for temporal semantics to recursive procedures. For example, given procedure
P defined by body B(P), let x stand for the temporal semantics of P and then f(x) be a temporal
formula, dependent on x, which represents the semantics of the body B(P), then clearly x < f(x).
We use notation vx.f(x) (1x.f(x)) to refer to the maximal (minimal) solutions of x <> f(x). We now
commonly refer to the extension of PTL with just v and y-forms as vTL.

Although it was believed that vTL and the ETL family were expressively equivalent, the ETL formalism
is not well-suited for the description of arbitrary recursive procedures. Generally, it would be necessary

*The work reported here has been supported under Alvey PRI/SE/054 (SERC grant GR/D/57942)
I The use of C was not necessary for obtaining compositionality, it just sweetened the notation!
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to define a grammar operator that corresponded to each recursive procedure; thus a semantics could not
be given in a compositional and syntax-directed fashion. However, ETL had a decision procedure and
axiomatisation which was lacking in the vTL case. In this paper we first give a rigorous definition of VTL
and follow with a decision procedure for the language. This shows that vTL is decidable and expressively
complete with respect to @RE. Our algorithm involves a novel graph algorithm which we believe to be of
interest in its own right. Since presentation of our result at this colloquium, Vardi [Var88] has constructed
a decision procedure for an extension of vIL which includes past time operators. His methods are based
on the construction of 2-way Biichi automata. For vTL the two methods are equivalent in time complexity.
However Vardi’s construction is polynomial space whereas our method runs in exponential space.

2 The Language vTL

2.1 Syntax and Semantics"

A formula of the fixed point temporal language vTL is constructed from a set of propositions and variables
by means of three types of constructors:

¢ The usual boolean connectives v, A, -, =, €tc.
¢ The unary next operator .
¢ The maximal and the minimal fixed point constructs vx.f, tx.f where f is a VIL formula.

We shall focus on the fixed point construction. This notion is in fact a generalisation of the grammar
operators of Wolper’s ETL language. In vx.f or fix.f, the operator v or i binds all the occurrences of x in
f which are not already bound. Thus for instance in vx.{(a A Ox) v ux.(b A Ox)} the x is bound by v and
the x is bound by z. A bound variable plays the role of a place holder and therefore can be freely renamed.
This implies that by renaming the variables if necessary, we can make the distinct fixed point operators
bind distinct variables. We assume from now on that every formula satisfies this property. For instance,
the equivalent of the above formula would be vx.{(aA Ox) v uy.(b AQy)}. A non-bound variable is called
free. A formula without free variables is termed closed otherwise it is open.

As with other propositional temporal languages, a model o is an infinite sequence of states o = 6y01 -+ -
where each state assigns truth values to all the propositions. As usual 6 = 0;0%, - - - denotes the i-tail of the
sequence. Our approach to the semantics of the fixed points is to work with the set of models of a formula
rather than an individual model. Let S be the total set of sequences and let P(S) be the power set of §, that
is all the subsets of S. We will show how to pick from P(S) the models M; of a closed formula f. Then
o | fiff 0 € M;. Now the satisfaction relation is defined only for closed formulae and only a subset of
them, In fact some closed fixed points with negations on the bound variables do not exist. Examples are
given below. It will be shown that, in the absence of essential negation on the fixed points, they do exist.
Now a nested formula of a closed formula has free variables when regarded on its own. So our semantics
must be able to deal with open formulae. Our approach is to regard an open formula as a map where the
free variables can each be assigned a set from P(S) and the result is again in P(S). To be precise if f is
free on n variables, then we construct a map [f] : P(S)" — P(S). Closed formulae can be included in this
scheme by setting [f]() = My i.e. [f] is the constant map. The essence of our definition is the recursive
construction of [.]:

1. [p)O = {olo(@) = true}.
2. [x] is the identity map.

3. For the connectives, we show how A is done. The others are similar. Suppose f and g are free onm
and » variables, respectively, of which r are in common. Then f A g has m+n —r free variables. Let
us order the variables such that f shares its last 7 free variables with the first 7 of g. Then

[ng](Ml)' . ’Mm+n—r) = [.f](Mlx "t me) M [g](Mm—H»l" v aMmM—r)
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In the right hand side if either 7 or » is zero then the function application returns the model set as
before.

4. [Of1 =T o [f] where T : P(S) — P(S) is defined by T(M) = {glc! € M}.

5. Now we deal with the fixed points. If x is not free in f - that is it does not occur in f - then vix.f and
px.f are identical with f. Otherwise suppose that f has n 2 1 free variables. Order them such that
x is the first one. Let M; € P(S), 2 <i < nbe n— 1 arbitrary model sets. Now [f1(.,M,---,M,)
is a map on P(S). Whenever this map has a maximum fixed point M or a minimum fixed point
M’ for all n— 1 tuples from P(S), then vx.f or ux.f is defined and [vx.fl(Ma,---,M,) = M or
Lx.flMz, - -+, Mp) = M".

We can immediately derive some basic properties of VIL from the construction just given. In the following
theorem and beyond f(x/y) is used to denote the formula obtained from f by replacing all the occurrences
of y with x.

Theorem 1 Given that the fixed points exist, we have
1. o fagiff ok fand o g. Similarly for other connectives

2. px.f = —vx.—f(—x/x) as maps. In particular if the fixed point formula is closed then px.f <>
—Vx.f(—x/x)

3. vx.f & f(vx fix), px.f <> f(ux.fix). The process of replacing the left hand side by the right hand
side is known as “unwinding” .

4. Suppose f,t are VTL formulae such that ¢ & f(t/x) where f is free on x. Then t = vx.f, ux.f =t
This is the so called fixed point induction.

Proof The first part is easy. For the second part, employing the notation above, we observe that the
fixed points of [f](., My, - ,M,) and [—f(—x/x)](., M3, -, M,) are complementary in S. This implies the
minimum fixed point of one is the maximum fixed point of the other. For the third equation, we have
FM, My, ,Mp) = M and [f(vx.fIx)](Mp, - - \ M) = f([vx.fl(Mp, -+ \Mp), M3, ,\Mp) = f(M, M3, -- ,M,,) =
M as required. The fourth part is left to the reader.

2.2 Existence Theorem

The previous section left the question of the existence of fixed points open. We will deal with this problem
here. The curried map [f](., M3, - - ,M,) operates on the complete lattice P(S) under the set inclusion, It
has been shown by Tarski [Tar55] that, for a monotonic function on complete lattices, the minimum and
maximum fixed points exist.

Theorem 2 A monotonic function f on a complete lattice L has unique maximum and minimum fuced points.

Monotonic means that x < y implies f(x) < f(»). Actually we can show how to construct the fixed points
(abstractly). Construct two sublattices { f¥(1)} and {f%(0)} of L where 0 and 1 are the least and the greatest
element of L and the maps are inductively defined for all ordinals ¢ as follows

FF*(x) if e is not limiting

fix = { Np<ar f2(x) if a is limiting

FHx) = F(fel(x)) if e is not limiting
v = Upea FEG)  if e is limiting
Now we can apply the above theorem to these sublattices to get

Corollary 1 Let f be a monotonic function on a complete lattice. Then there exists two ordinals & and of
and the maximum and the minimum fixed poines are £%(1) and £%(0)
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Corollary 2 Let f and g be two monotonic functions on a complete lattice and f(x) < g(x) for all x. Then
their maximum and minimum fixed points are related similarly.

To ensure that the vIL formula f exists, we have to make sure that all the maps which arise in the con-
struction of [f] are monotonic. It is clear that non-monotonicity stems from the negation symbol preceding
a variable or a fixed point construction. But by Theorem 1 we can push the latter negations in. So we can
assume that this has been done. The required condition says then that a negation symbol should occur only
before a proposition. This guarantees monotonicity because all the constructs other than negation preserve
monotonic behaviour. For instance let us suppose that [ f] on P(S)" is montonic on all the variables. Then
so is the curried function [f](.,, Ma,---). So [vx.f] and [ux.f] both exist. Also they are monotonic on all
their variables. This follows from Corollary 2. From now on we will restrict vTL to consist of positive
formulae (that is the negation symbol occurs only before propositions) and those which reduce to positive
form when the negation symbols are pushed through. For the rest of the paper our aim is to develop a
decision procedure for this logic.

2.3 Examples

To illustrate the discussions so far, we will consider some examples. Some fixed points will be monotonic
and some not. Among the non-monotonic ones, some do not exist, while the others do and are equivalent
to monotonic formulae.

1. Consider f = p A Ox. To see what vx.f is, we look at [f]. Given M e P(S) we have [f](M) =
{olow(p) = true and 6! € M}. Suppose M = [fI(M). Then ¢ € M implies Gu(p) = true and
o! € M. Thus g;(p) = trueforalli. Let N = {0|o;(p) = trueforalli{}. Then M < N and
[f1(V) = N. This proves that N is exactly the model set of vx.f. In TL the equivalent formula is Op.

2. ux.(pv Ox) & vx—(pv O—x) & —vx.(—p A Ox) This is ~O0-p & Op.
3. wx.(p A Ox) & false.

4, vx.(p A Ox A O%—x) < false.
For writing ¢ for the fixed point, we have ¢ < p A Ot A %=+ Substitute for (¢ in the right hand
side gives r <3 p A Op A Ot A O3t A 2t & false.

5. r= vx.(p A (O—x) does not exist.
For let ¢ be a model such that ¢ = p and 6! = ¢. Then ¢ | ¢ iff 0 E —¢, a contradiction.

6. vi.p AQ-p AQ—xAO%N) & va.(p A O—p A O™).
The reader should convince himself that the two formulae on the left and the right hand side (without
the vx.) have the same fixed point sets. In other words, the ()—x term is redundant. The fixed point
on the right hand side is the set of models where p is true on exactly the even states.

7. vx.(p Ax A (O—x) does not exist. For it can be shown that [p A x A (O—x] has fixed point sets (e.g.
the empty set), but it does not have a unique maximum fixed point set.

2.4 Reduction to Guarded form

From now on we confine ourselves to the monotone case. Thus the bound variables are positive and the
fixed points are either maximal or minimal.

We will call the occurrence of a variable guarded if a O operator precedes it. We show that unguarded
occurrences of bound variables can be eliminated without affecting the semantics. There are two rules for
V’

1. va.(f v (x A g)) & vx.(f v g). The implication from left to right follows from Corollary 2. For
the reverse implication let ¢ denote the right hand fixed point. Then ¢ ¢> f(#/x) v g(#/x). Sot ¢
fx) v (t A g(t/x)). Thus £ = vx.(f v (x A g)).
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2. vx.(x v f) = true.

Similar rules hold for the minimal fixed point. By unwinding and applying these rules we can eliminate
any unguarded variables, e.g.:

vi@Aax Ay bvyv Ay =vxiaaybv xAQOy)) =
vx(ana by (x AQuy.(b v xA Oy = vx((@ab)v(aaQuyb v xAOy)).

3 Decision Procedure

The key to the VTL decision procedure is the Tarski-Knaster fixed point theorem which allows us, in
principle, to decide if a fixed point formula is valid on a model. One snag is that more than a finite number
of iterations may be required to conclude the procedure. Another problem is that all the models have to be
checked for satisfiability. To get round the first problem, we show that if a formula is satisfiable, then it
has a special, so called eventually periodic, model for which the testing of validity is finitary. Other logics
such as extended tmporal logic ETL, quantified propositional temporal logic QPTL also share this property
[Wol82, SC85]. The solution of the second problem involves a marking algorithm which, in our opinion,
is interesting in its own right.

3.1 The Approximation Method

Let o be a model. We consider the question of checking if a formula holds over . We start with an informal
discussion. It is clear that the cases of interest are the fixed point formulae. Let vx.f(x) be a maximal fixed
point which we abbreviate to x, We abbreviate f%(true) to x%. Thus ¢ | x iff 0 | x* for all & So we must
check the validity of x* on 0. If & is not limiting, then x* = f(x*!). Since f in general involves temporal
operators, it is necessary to know the validity of x*~! on all suffices of . The starting value is x° = true
which holds everywhere. For a nonlimiting ordinal & we can determine the suffices where x* = f(x*1)
holds by recursion on the depth of the fixed point nesting. Thus in the case when f(x) involves further fixed
points, this step requires a transfinite amount of iterations. If & is limiting, then x* = Agcax?, so that x*
holds on ¢ if ¢* receives all x¥° for 8 < ¢ The Tarski-Knaster theorem guarantees that there is an ordinal
« such that exactly the same states receive x* as x**! and then x holds at those points

The situation for gx.f(x) is similar. One starts w1th x0 = false and builds up x* inductively. Then x is
valid on ¢ if it receives some x*

The approximation procedure may require transfinite ordinals to complete as illustrated by the following
example. Consider the formula

F=vx{(eAlgvOx)vOuy.(vz(x »Oz) v O}

There are two propositions p and g. The model is ¢ with the following assignments p is true on every state
except Op. ¢ is true on op and false everywhere else. Now we work out where x' is valid. As mentioned
10 is valid nowhere. It is easy to see that x is valid on all indices i except 0. Then A2 is valid on indices
i2,i2 —1 except 0, x® is valid on indices i%,i% — 1,i% — 2 except O, etc. The point is that in each step y*
is invalid everywhere because it requires x"‘ to be valid on every state of some tail of . This does not
happen because the distances between the squares goes to infinity. Now what about x*, the first infinite
ordinal? As every state but op will receive some x', s0 x? is valid on all the indices except 0. In the next
iteration, the y fixed point comes to life for the first time, making x**! valid on every suffix. In particular,
oEf.

The authors are grateful to Orna Lichtenstein for bringing, via Amir Pnueli, this fascinating example
to their attention. The first version of this paper had to undergo substantial revision as a result of this fact
as a finitary decision procedure has to get round this problem. We are thankful to Amir Pnueli for pointing
out the necessary idea, The key ingredient is that o has been specifically chosen to show this complicated
behaviour. In fact we will show that, amongst the models of any formula, there always occur models with
a repeating structure. The approximation method behaves finitary for such models.
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3.2 Hintikka Structures

To elaborate the approximation procedure precisely, we define the concept of a Hintikka structure.

Let o be a model and let f be a VTL formula. We will assume throughout that the bound variables of
f are named distinctly, by renaming them if necessary. We extract a system ¥ of equations, one for each
fixed point, of the form

xi = fix, ..., %)
where f; is a formula defining the body of the fixed point x; and x; ... x, are all the fixed points involved in
f. The formula f; involves only logical connectives, propositions, x; and Q).

The other information from f is the scope partial order. We say x is in the scope of y if the definition
of x in f is syntactically nested in the definition of y. This order is essential in the characterization of good
structures later on.

We now define a Hintikka structure (H-structure) on ¢ generated by f ( or an f Hintikka structure). It
is a labelling L(0;) of the states &; of & by subformulae of f satisfying the following properties.

. fe L{op).

. If f1 A f2 € L(&;) then f,, f2 € L(6).

. If f1v f: € L(5;) then ¢ither fy or f; is in ().

. If p € L(o) then p is true on a;.

. If x € L(0:) then g(x) € L(0;) where x = g(x) is the equation in £ defining x.
. Qg e L(g) then g € L(G1).

[=a NN T - ST B S

We will call a formula of the type (O'x a (fixed point) variable. Item 5 above provides the expansion of
a fixed point formula. This expansion together with the other items provide a parenthood relation on the
variables of successive states. Namely v, € L(0;) is a parent of v; € L(0;1) when either v; = Qv; or vy is
not preceded by (O and (v, occurs in the defining equation of vy (or rather in a disjunct thereof occuring
in L(5)).

Lemma 1 If ¢ | f then there is an f Hintikka structure on ©.

Proof. By structural induction. The cases of interest are the fixed points. We illustrate a maximal fixed
point. Let 0  vx.f(x). Applying the ideas in section 2, let o be the ordinal for which the labelling by
x* and x**! of o are identical (so that vx.f(x) = f*(true)). Set I = {i ; o; receives x*}. To construct
the H-structure let ¢’ be obtained from o by extending the set of propositions to include x and putting
0'i(x) = true precisely fori e I. Then by the approximation procedure 0" k& f(x) precisely for i € 1. By
induction we get a Hintikka structure generated by f(x) on . The union of all these structures gives the
required Hintikka structure. A similar procedure works for the minimal fixed point.

The converse of above does not hold. It will be valid under restrictions on the class of H-structures to
be discussed later.

3.3 VTL to QPTL Translation

QPTL is the extension of linear temporal logic with quantification over state variables. The reader can refer
to [Wol82] for further information. Here we will establish a syntactic translation. The basis for it is the
observation that a fixed point formula on a model can be encoded by a proposition taking true values at the
points where the formula is true. Let us make this idea precise.

Lemma 2 Let f be a VIL formula and let g be a closed subformula of f in the sense that all the variables
in g are defined within g. Let & be a model and let ¢’ be an extension of ¢ with a proposition p, not
occuring in f, which is given the interpretation of g (i.e. 6" k£ p iff &' E g). Then &' k f iff 6" E flp/g]
where the last formula results from f by replacing g by p.
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Proof. This follows from the approximation procedure.

Lemma 3 Ler vx.f (ux.f) be a fixed point formula. Let 0 be a model and let 0’ be an extension of it with
a proposition x which takes the interpretation of vx.f (ux.f) over o. Then

o' kx iff kS
where x in f is to take its propositional significance.

Proof. Observe that
vx.f & flva.fix], px.f ¢ flux.fix]
Now apply lemma 1 to the right-hand sides.

Lemma 4 Ler f(x) be a VTL formula involving a free variable x. Let & be a model, then extend o to o’
by assigning values to x in such a way that whenever 6" k= x then 6" |= f(x). Then in fact ¢" | x implies
o' E vx.f(x).

For the minimal case, &' must be such that whenever 6" k= f(x))} then 6" = x. Then 0" | px.f(x) implies
o Ex

Proof. In the approximation procedure, it is easy to prove (by transfinite induction) that o ' E x implies
o’ | x* for all & (in the minimal case ¢” | x* implies 0" | x). The result follows from Tarski-Knaster
theorem.

We can now expose the translation functor 7. Remember that all the fixed point variables are to be distinct.
1. T(f1 A f2) =T f1L AT S, etc.
2.Tp=p, Tx =x.
3. Tvx.f = dxx A O(x = Tf) A VX {0 = Tf[x/x]) = O = x)}.
4, Tpx.f = Fxx AO(TSf = x) AVX {OT f[x7x] = x') = O(x = x)}.
In 3 and 4 we need an extra dashed variable for the translation of each fixed point.
Theorem3 c EfiffocETS.

Proof The cases of interest are the fixed point formulae. We consider just the maximal case, the minimal
case is similar. Let ¢ E vx.f(x). In Tvx.f(x) we have an existentially quantified x. We will give it the
interpretation of vx.f(x) as in Lemma 3 and denote the extended model by o’. So 0’ £ x. We have, by
induction over the f structure, that for all i, 6” E f(x) iff 0" | Tf(x) where x is interpreted as a proposition
in f(x). By lemma 3 ¢” | x iff ¢’ E f(x). Thus ¢’ | O(x = Tf(x))

Now suppose ¢ be an extension of @’ by assignments to x’ such that 0” | O’ = Tf(x)). It follows,
by structural induction on £, that for all i, if 6" | x" then 6™ | f(x'). By lemma 4 o’ E x’ implies
a" | vx.f(x) for all i. So by the definition of x, ¢” | O(x" = x) as required. The converse statement
follows directly from Lemma 4.

3.4 An Example of the Translation Procedure

Let f(.,.) and g(.,.) be two formulae, each with two variables, involving only logical connectives, propo-
sitions and (O. We have

Tvx.f(x, py-g(x,y)) =

Tex A Ofx = [Fyy A D@ & g(6y) A VYO0 & g(x,y) = 00 = y)l}A

vx'.{Ofx = [Fy.y A Oy & g, ) A VY (O & g(x',y)) = 0@ = )]} = 0« =0}



69

3.5 Eventually Periodic Models

A model o is called eventuaily periodic if there exist constants m 2 0,n > O such that 6; = 0, for all
izm. Itis clear that ¢ = ¢ forall i 2 m.

Lemma 5 [f a VTL formula has a model then it has an eventually periodic model.
Proof. This follows from the corresponding statement for QPTL [Wol82] and Theorem 3.

Now we consider the question of checking for the validity of a fixed point formula x (= vx.f(x) or ix.f(x)).
Since ¢’ and o**", for all i 2 m, receive the same x® it is necessary to consider only the labels of o; for
0<i<m+n—1 IfI, is the set of indices i between 0 and m + n — 1 which receive x*, we have

{0,1,-«- . m+n-1}=Iy 21, 2 --- inthe v case,

@=Iyclh - inthe [ case.

It follows that I = I 541 for some (¢ < m+ n. This proves

Lemma 6 Ler 0 be an eventually periodic model with m,n as above. Then for any i 2m+n,
0 Evaf() iff O fi(true)
O Fuxf() iff ok f(false)

3.6 Good Hintikka Structures

The next step is to relate eventually periodic models to H-structures. If o is an eventually periodic model
with m, n defined as above, then it is necessary to build the labelling L(c;) only for 0 £ i <m+n-1. So
whenever a formula is added to L(Gyu4), k 2 n, it is in fact added to L(Gyuy) Where 0 < r € n— 1 is the
remainder of k by n. In other words the Hintikka structure is built step by step on 0 ... Guia1 Where the
successor of Gimin-1 1S G, €tc. Such an H-structure is called compatible.

Lemma 7 Let ¢ be an eventually periodic model of f. Then there exists a compatible Hintikka structure
on ¢ generated by f.

Proof The proof follows similar lines as that of Lemma 1.

The converse again does not hold. It is in fact necessary to add an extra condition to ensure that minimal
fixed points are satisfied. In a Hintikka structure on 4 model @, let v; € L(3), v; € L{(0;) j> ibe
two variables. We say v; generates v, if there is a chain of parents from v; to v; (along ;- - ;) such that
every variable in the chain is in the scope of v;. We define a good Hintikka structure to be one in which no
minimal variable generates itself infinitely often. In the case of a compatible H-structure, this means that
there is no loop of the form

Vg =P V] =P Vg =D e >V

where vp = vy, the variable v; is in L(G;u.) where r is the remainder of i mod n and finally some v; is a
minimal variable with every v; in its scope.

We will show that with the restriction of good structures, the implication of the lemma becomes an
equivalence. The construction of the compatible good H-structure is more complex, since only appropriate
choices regarding formulae of the type f v f> gives rise to a good H-structure.
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3.7 The Result

Theorem 4 Let f be an VTL formula and let ¢ be a model.

1. If ¢ is an eventually periodic model of f then there exists a good compatible Hintikka structure on
O generated by f.

2. If f generates a good Hintikka structure on & then & k f.

Proof.
Part I: Suppose that & | f and we want to establish a Hintikka structure on &. It is done by structural
induction on f. The cases of interest are the fixed points.

1. vx.f(x). Applying the approximation procedure, let x denote f(true) for some sufficiently large i.
Then 0 occurs among the indices J which receive x. Furthermore f(x) holds at exactly the same
indices (where x must be treated as a proposition). Adding the good Hintikka labellings of f(x) and
x to the states indexed by /, we obtain a Hintikka labelling generated by x. Moreover it is good.
The reason is that a bad chain in it does not involve x since x is maximal and outside the scope of
all minimals. Hence it already occurs in the Hintikka labelling of some f(x), contradicting that the
Hintikka labellings generated by f(x) are all good.

2. px.f(x). This is the interesting case. To build up the Hintikka structure of x, we proceed according
to the approximation procesure for x, starting from x? = false. Whenever o; receives x, then x is
added to L(0;). Then f(x) is true on ¢ (x' to be taken as a proposition) so that we can add the good
Hintikka structure for f(x) on ¢, This procedure is repeated until 0p receives x = x” for some n. At
this point we obtain a Hintikka structure H which we prove to be good. For let us have a bad loop
in H. Suppose x occurs in the loop. An instance of x generated another instance of x only when they
are added in two successive steps, contradicting that x generated itself. No other minimal can occur
in a bad loop since as the loop is free from x so it must occur in the Hintikka structure of some f(x)
which is good. Done.

Part 2: Again this is done by structural induction. We consider the maximal and minimal fixed points.

1. vx.f(x). Let I be the set of indices at which x occurs in the Hintikka structure. (0 € J). We will
show by induction on i that these points receive x* for all i. Clearly they receive x°. Suppose they
have received x’ for some i. Now treating x in the Hintikka structure as x’, the given H-structure is
the union of the set of Hintikka structures generated by all f(x¥) at the indices of /. Hence they are
good and inductively x*! = f(x') is valid at these points. This shows that the states of / receive all X
and hence x. So 0 | vx.f(x).

2. pix.f(x). Again this is the interesting case. Since x does not occur in any infinite chain of parents,
it follows that there are only a finite number of instances of x which do not generate any further
x. Chasing parents back from these instances, after a finite number of steps k, we reach x of op.
Let I, be the indices labelled by x which does not generate any further labels of x and inductively
construct fa, ..., [x. Taking the Hintikka structure generated by f(x) on the /; instances, we see that
they are subsets of the full Hintikka structure. Also they contain no instances of x. Hence f(x%) =x'
(x® = false) holds on /; by induction. Working backwards, we establish in the same way that x? = f(x!)
holds on J; etc, Finally we conclude that x* holds on I;. Hence & = pux.f(x). Done.

3.8 Graph Building

We have seen that if a formula f has a model, then it has an eventually periodic model in which case it
generates a compatible good Hintikka structure. For the converse, it is required that f generates only a
good Hintikka structure. So the question of satisfiability of f is equivalent to whether f can generate such a
structure, It will be shown here that the f Hintikka structures correspond to paths through a labelled graph
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Gy. The graph is grown by successive decomposition of the connectives and expansion of the fixed point
variables. Its nodes are labelled by a set of subformulae of f. A formula in a node may be starred. This
indicates that the formula has been dealt with in an earlier step of the decomposition. The growing starts
from a node Ny containing f and proceeds by successive application of one of the following steps to an
unstarred formula g in a node N until no further nodes or edges are added. Note that if a node to be created
already exists, then merely an edge is added (if necessary).

1. g = f1 v f;. Then create two children Ny, N; of N and put
Ni=(N\{ghv {g".fi}
2. g = f1 A f2. Then create a child N" of N with N’ = W\ {g}) v {g". f1. f2}.
3. g = x. Let x = f(x) be the defining equation of x. Then the child N’ of N is
N = (N (2P L {2, f0)

4. None of above. Then every formula in N is either (g or an atomic proposition. Such a node is
called a state. The child of Nis N’ = {g; Qg € N}.

There is a close connection betweenHintikka structures and infinite consistent paths in Gy through
Ny. Let 7 be such a path and let S; denote the states along it. Consistent means that no state contains
a proposition and its negation. The formulae of S;, on removing the stars, actually build an f Hintikka
structure in the following sense, Take any model o with the property: o;(p) = true for p € §;, o;(p) = false
for —p € S;. Then the S; form an f Hintikka labelling of ¢. The converse statement holds as well. If L(&;)
is an f Hintikka labelling on a model &, then it can be proved, by structural induction on f, that there isa
consistent path in G whose states contain exactly the labellings L().

Finally we come to the connection with the good paths. We define exactly as before a parenthood
relation on the variables of successive nodes of Gs. A variable v € N generates a variable v € N’ further
along a path 7 when there is a chain of variables, starting with v and ending in V', in the segment of &
from N to N’ in which every variable is in the scope of v. A good path is one in which no minimal variable
indefinitely generates itself. We define correspondingly the notions of an eventually periodic path and the
concept of good paths among them.

The above discussion and theorem 4 imply

Theorem 5 A vTL formula f has a model if and only if G has a consistent good path.

The consistency requirement is dealt with easily. It is merely necessary to remove all states which contain
inconsistent labelling (that is a proposition and its negation). We will also remove any other nodes from
where all paths lead to only such states. For ease of notation we designate the resulting graph by G. The
decision problem has now been reduced to the checking of G for the existence of good paths. This is done
with the marking algorithm of section 3.10.

3.9 Remark

In general
px.f(x, vy.g(uz.f(z,y),y)) and ux’.f(x', vy'.g(x',y")
are not equal. Denoting the fixed points by their variables, we have:

x = fxy
y = 8@y
z = f(zsy)

= f(xl,)")

' o= g(x"y’)

-,
|
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From these equations it can be deduced that a path 7 of G, corresponds to a path z” of G and conversely.
But the goodness property is not preserved. for example x can have the sequence of parents

XV Z, ¥, Z, Y, 2,0

Then 7 is good. However 7’ has the generation:
xl’ yl, I’, yl) xt, yp’ .

Hence it is not good. In general we can only deduce x” = x.

3.10 Marking

The graph construction procedure has furnished us with a graph G. Here we describe a way of detecting if
G has a good path. Since all the formulae apart from the variables are not of any interest to us, we may as
well delete them. Note that each edge ¢; : M — N is provided with a parenthood relation R; & M xXN. Thus
using infix notation xR;y if x is the parent of y. The question can be formulated as follows. Does there exist
apath 7 : eje; - - - such that for any sequence of variables x;, a number n and a minimal variable x, if every
x; is in the scope of x and x;Rinx;1 then x occurs finitely often amongst the x;. Stated in simpler terms, the
condition is that no minimal variable should generate itself infinitely often.

The first step in our method is to dispose of the scope restriction. To do so we use subscripted variables.
The subscript is a minimal variable. Thus x, records that x has been generated by y. This leads to another
graph G’ which can be constructed in a stepwise fashion. There is a mapping of the nodes of G’ to the
nodes of G. Let M” be a node of ¢” which maps to the node M of G. Given an edge ¢ : M — N with the
relation R, the corresponding child N’ and relation R’ are defined as follows:

1. If x, € M’, xRy and y is in the scope of z then y, € N” and xR’y,.
2. Add x, to N’ whenever x € N is a minimal variable.

It should be clear to the reader that in G” the edge relations take account of the scope restrictions. Therefore

apath in G’ is good if no minimal variable, that is x, for some minimal variable x, generates itself infinitely

often. Moreover there is a bijection between the good paths in ¢ and G’. In'this way we have removed the

scope problem. To avoid the primes, we will use the original graph and leave out the scope considerations.
The main result in our search for the algorithm is the following

Lemma 8 A path & : No — Ny — -+ is good if and only if there exists a labelling of the variables in the
nodes with numbers in the range 1 to 2 x max; | N; | with the following properties:

1. Every variable has a label,

2. Minimal variables have odd labels.

3. The label of a child is at most that of any parent.

4. All the children of a minimal variable will have a smaller label in some node further along the path.

Proof The if part is relatively easy. For if x is a minimal variable and generates itself infinitely often, then
they are labelled by odd numbers which must keep decreasing according to the fourth item. Contradiction.

Let us assume now that 7 is good. We show how to give the labellings inductively. Suppose that the
labels upto k have been used where & is even (possibly 0). First give a label of k + 1 to all the variables
all of whose children in some further node are already labelled. Next, if all the remaining variables are
maximal then label them by k+ 2 and we are done. If not, there exists a non-labeled minimal variable x all
of whose children are maximal. For if this is not the case then we can extend any chain of parents involving
minimals to reach yet another minimal contradicting the fact that 7 is good. Moreover if x occurs in the
node N, then it has non-labelled children in all the nodes in the tail of # away from N. Otherwise x would
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be marked by our first step. Now give all these children the label k+2. Observe that at the end of these two
steps the properties 2 to 4 are preserved. Furthermore, either all the variables are labelled or the number
of unlabelled variables in the tail of & (that is min;(max;; | {x;x € N; is unlabelled} |)) has decreased.
Therefore, after at most 2 X max; | N; | steps the first alternative must hold. Done.

Our method is based on this lemma. The idea is to construct a succession of labelled graphs, each
dependent solely on the previous one, such that the stages of a good path, as it is progressivley labelled,
thread through them.

Let us have the graph G, in which the numbers upto k& have been used (k even). The next graph is
constructed in a sequence of refinements. To begin with G, is identical with G,. The refinement step is as
follows. Let x € N be a variable such that all its children in some (immediate) child N” are labelled. Then
the refined graph is identical except for the following points. It contains a new node N” which is a copy
of N where all the variables with the property of x are labelled with k+ 1. Moreover there is no edge from
N to N’, rather an edge form N”’ to N’. Finally all the edges leading to N are duplicated to N” as well. If
a copy of N” already exists, then only the necessary edges are added. These refinements must come to an
end as the total number of variables which can be labelled decreases with each step.

Now the next step. First we give a label of £ + 2 to all the nonminimal variables. Then in a sequence
of refinements which are identical to the previous step, we remove the label of a variable if it maps to a
unlabelled variable in a child node. New nodes may be created as in the above paragraph.

It is important to note that each refinement preserves the property 4. Hence the graph resulting from a
sequence of above steps enjoys the properties 2 to 4.

If G has a good path, then after at most 2 x max | N | steps we arrive at a graph G,, in which some
nodes are totally labelled. Conversely, suppose that we have G,. It can be seen that the totally labelled
nodes constitute a subgraph H which is a connected component and contains the root.? Since G, satisfies
the properties 2 to 4, the same holds for . Therefore G has a good path. We have shown,

Lemma 9 G has a good path if and only if the application of at most max | N | pairs of the above steps
produces a graph with a totally labelled node.

2]t may be necessary to apply the first step beforehand.
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